130
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES Cellular and Molecular Biology

Insights into Apoptosis Mechanisms Induced by DNA-Damaging Agents in Burkitt's Lymphoma Cells

, , &
Pages 830-835 | Published online: 01 Sep 2009

REFERENCES

  • Lane D. P. Cancer. p53, guardian of the genome. Nature 1992; 358(6381)15–16
  • Vogelstein B., Kinzler K. W. p53 function and dysfunction. Cell 1992; 70(4)523–526
  • Chipuk J. E., Maurer U., Green D. R., Schuler M. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 2003; 4(5)371–381
  • Chipuk J. E., Green D. R. Cytoplasmic p53: bax and forward. Cell Cycle 2004; 3(4)429–431
  • Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267(5293)1456–1462
  • Duckett C. S., Nava V. E., Gedrich R. W., Clem R. J., Van Dongen J. L., Gilfillan M. C., Shiels H., Hardwick J. M., Thompson C. B. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 1996; 15(11)2685–2694
  • Ambrosini G., Adida C., Altieri D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3(8)917–921
  • Altieri D. C. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 2001; 7(12)542–547
  • Stauber R. H., Mann W., Knauer S. K. Nuclear and cytoplasmic survivin: molecular mechanism, prognostic and therapeutic potential. Cancer Res 2007; 67(13)5999–6002
  • Li F., Ambrosini G., Chu E. Y., Plescia J., Tognin S., Marchisio P. C., Altieri D. C. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998; 396(6711)580–584
  • Hoffman W. H., Biade S., Zilfou J. T., Chen J., Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 2002; 277(5)3247–3257
  • Zhou M., Gu L., Li F., Zhu Y., Woods W. G., Findley H. W. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Pharmacol Exp Ther 2002; 303(1)124–131
  • Farrell P. J., Allan G. J., Shanahan F., Vousden K. H., Crook T. p53 is frequently mutated in Burkitt's lymphoma cell lines. EMBO J 1991; 10(10)2879–2887
  • Debuire B., Romano J., Ehrhart J. C., Fiscella M., May E., Appella E., May P. p53 mutations in Raji cells: characterization and localization relative to other Burkitt's lymphomas. Oncogene 1992; 7(11)2161–2167
  • Gaidano G., Ballerini P., Gong J. Z., Inghirami G., Neri A., Newcomb E. W., Magrath I. T., Knowles D. M., Dalla-Favera R. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U.S.A. 1991; 88(12)5413–5417
  • Seabright M. A. A rapid banding technique for human chromosomes. Lancet 1971; 2(7731)971–972
  • Drexler H. G., Dirks W. G., Matsuo Y., MacLeod R. A. False leukemia-lymphoma cell lines: an update on over 500 cell lines. Leukemia 2003; 17(2)416–426
  • Karpova M. B., Schoumans J., Ernberg I., Henter J. I., Nordenskjöld M., Fadeel B. Raji revisited: cytogenetics of the original Burkitt's lymphoma cell line. Leukemia 2005; 19(1)159–161
  • Karpova M. B., Schoumans J., Blennow E., Ernberg I., Henter J. I., Smirnov A. F., Nordenskjöld M., Fadeel B. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Int J Oncol 2006; 28(3)605–617
  • Benchimol S. p53-dependent pathways of apoptosis. Cell Death Differ 2001; 8(11)1049–1051
  • Klumb C. E., Furtado D. R., de Resende L. M., Carriço M. K., Coelho A. M., de Meis E., Maia R. C., Rumjanek F. D. DNA sequence profile of TP53 gene mutations in childhood B-cell non-Hodgkin's lymphomas: prognostic implications. Eur J Haematol 2003; 71(2)81–90
  • Brown J. M., Wouters B. G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 1999; 59(7)1391–1399
  • Soussi T., Béroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 2001; 1(3)233–240
  • O'Connor P. M., Jackman J., Jondle D., Bhatia K., Magrath I., Kohn K. W. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res 1993; 53(20)4776–4780
  • Fan S., el-Deiry W. S., Bae I., Freeman J., Jondle D., Bhatia K., Fornace A. J., Jr., Magrath I., Kohn K. W., O'Connor P. M. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 1994; 54(22)5824–5830
  • Allday M. J., Inman G. J., Crawford D. H., Farrell P. J. DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J 1995; 14(20)4994–5005
  • Ryan K. M., Vousden K. H. Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol Cell Biol 1998; 18(7)3692–3698
  • Rowan S., Ludwig R. L., Haupt Y., Bates S., Lu X., Oren M., Vousden K. H. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J 1996; 15(4)827–838
  • Kakudo Y., Shibata H., Otsuka K., Kato S., Ishioka C. Lack of correlation between p53-dependent transcriptional activity and the ability to induce apoptosis among 179 mutant p53s. Cancer Res 2005; 65(6)2108–2114
  • Doucet J. P., Hussain A., Al-Rasheed M., Gaidano G., Gutiérrez M. I., Magrath I., Bhatia K. Differences in the expression of apoptotic proteins in Burkitt's lymphoma cell lines: potential models for screening apoptosis-inducing agents. Leuk Lymphoma 2004; 45(2)357–362
  • Wade M., Allday M. J. Epstein-Barr virus suppresses a G(2)/M checkpoint activated by genotoxins. Mol Cell Biol 2000; 20(4)1344–1360
  • Kelly G. L., Milner A. E., Tierney R. J., Croom-Carter D. S., Altmann M., Hammerschmidt W., Bell A. I., Rickinson A. B. Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt's lymphoma cells and with increased resistance to apoptosis. J Virol 2005; 79(16)10709–10717
  • Leao M., Anderton E., Wade M., Meekings K., Allday M. J. Epstein-Barr virus-induced resistance to drugs that activate the mitotic spindle assembly checkpoint in Burkitt's lymphoma cells. J Virol 2007; 81(1)248–260
  • Lindström M. S., Klangby U., Wiman K. G. p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene 2001; 20: 2171–2177

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.