315
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer

, , , , , , & show all
Pages 113-126 | Received 15 Jan 2018, Accepted 19 Jan 2019, Published online: 05 Mar 2019

References

  • Tam NN, Gao Y, Leung YK, Ho SM. Androgenic regulation of oxidative stress in the rat prostate: involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth. Am J Pathol. 2003;163(6):2513–2522.
  • Tam NN, Ghatak S, Ho SM. Sex hormone-induced alterations in the activities of antioxidant enzymes and lipid peroxidation status in the prostate of Noble rats. Prostate. 2003;55(1):1–8.
  • He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, et al. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics. 1997;43(1):69–77. doi:10.1006/geno.1997.4715.
  • Korkmaz KS, Korkmaz CG, Ragnhildstveit E, Kizildag S, Pretlow TG, Saatcioglu F. Full-length cDNA sequence and genomic organization of human NKX3A - alternative forms and regulation by both androgens and estrogens. Gene. 2000;260(1–2):25–36.
  • Debelec-Butuner B, Alapinar C, Ertunc N, Gonen-Korkmaz C, Yörükoğlu K, Korkmaz KS. TNFalpha-mediated loss of beta-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells. PLoS One. 2014;9(10):e109868. doi:10.1371/journal.pone.0109868.
  • Bowen C, Stuart A, Ju JH, Tuan J, Blonder J, Conrads TP, et al. NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity. Cancer Res. 2007;67(2):455–464.
  • Markowski MC, Bowen C, Gelmann EP. Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1. Cancer Res. 2008;68(17):6896–6901.
  • Debelec-Butuner B, Alapinar C, Varisli L. Inflammation-mediated abrogation of androgen signaling: An in vitro model of prostate cell inflammation. Mol Carcinog. 2012;53(2):85–97.
  • Debelec-Butuner B, Ertunc N, Korkmaz KS. Inflammation contributes to NKX3.1 loss and augments DNA damage but does not alter the DNA damage response via increased SIRT1 expression. J Inflamm. 2015;12(1):12. doi:10.1186/s12950-015-0057-4.
  • Murata M, Thanan R, Ma N, Kawanishi S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol. 2012;2012:1. doi:10.1155/2012/623019.
  • Ding X, Hiraku Y, Ma N, Kato T, Saito K, Nagahama M, et al. Inducible nitric oxide synthase-dependent DNA damage in mouse model of inflammatory bowel disease. Cancer Sci. 2005;96(3):157–163.
  • Kurgan Ş, Önder C, Altıngöz SM, Bağış N, Uyanık M, Serdar MA, et al. High sensitivity detection of salivary 8-hydroxy deoxyguanosine levels in patients with chronic periodontitis. J Periodont Res. 2015;50(6):766–774. doi:10.1111/jre.12263.
  • Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, et al. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic Res. 2012;46(4):367–381. doi:10.3109/10715762.2012.659248.
  • Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res. 2011;711(1–2):193–201.
  • Gan W, Nie B, Shi F, Xu XM, Qian JC, Takagi Y, et al. Age-dependent increases in the oxidative damage of DNA, RNA, and their metabolites in normal and senescence-accelerated mice analyzed by LC-MS/MS: urinary 8-oxoguanosine as a novel biomarker of aging. Free Radic Biol Med. 2012;52(9):1700–1707. doi:10.1016/j.freeradbiomed.2012.02.016.
  • Nie B, Gan W, Shi F, Hu GX, Chen LG, Hayakawa H, et al. Age-dependent accumulation of 8-oxoguanine in the DNA and RNA in various rat tissues. Oxid Med Cell Longev. 2013;2013303181.
  • Fogarty MC, Devito G, Hughes CM, Burke G, Brown JC, Mceneny J, et al. Effects of alpha-lipoic acid on mtDNA damage after isolated muscle contractions. Med Sci Sports Exerc. 2013;45(8):1469–1477. doi:10.1249/MSS.0b013e31828bf31e.
  • Soares JP, Silva AM, Oliveira MM, Peixoto F, Gaivao I, Mota MP. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. Age (Dordr). 2015;37(3):9799.
  • Villaño D, Vilaplana C, Medina S, Cejuela-Anta R, Martínez-Sanz JM, Gil P, et al. Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radic Res. 2015;49(8):973–983.
  • Yasuda N, Bolin C, Cardozo-Pelaez F, Ruby BC. Effects of repeated bouts of long-duration endurance exercise on muscle and urinary levels of 8-hydroxy-2'-deoxyguanosine in moderately trained cyclists. J Sports Sci. 2015;33(16):1692–1701. doi:10.1080/02640414.2015.1004637.
  • Ba X, Aguilera-Aguirre L, Rashid QT, Bacsi A, Radak Z, Sur S, et al. The role of 8-oxoguanine DNA glycosylase-1 in inflammation. Int J Mol Sci. 2014;15(9):16975–16997.
  • Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 2008;266(1):60–72.
  • Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, et al. Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci. 2011;102(11):2022–2028.
  • Debelec-Butuner B, Bostancı A, Heiserich L, Eberle C, Ozcan F, Aslan M, et al. Automated cell-based quantitation of 8-OHdG damage. Methods Mol Biol. 2016;1516:299–308.
  • Cafueri G, Parodi F, Pistorio A, Bertolotto M, Ventura F, Gambini C, et al. Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition. PLoS One. 2012;7(4):e35312. doi:10.1371/journal.pone.0035312.
  • Kim J, Kim NH, Sohn E, Kim CS, Kim JS. Methylglyoxal induces cellular damage by increasing argpyrimidine accumulation and oxidative DNA damage in human lens epithelial cells. Biochem Biophys Res Commun. 2010;391(1):346–351. doi:10.1016/j.bbrc.2009.11.061.
  • Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–579. doi:10.1016/j.cell.2014.03.032.
  • Thompson CM, Fedorov Y, Brown DD, Suh M, Proctor DM, Kuriakose L, et al. Assessment of Cr(VI)-induced cytotoxicity and genotoxicity using high content analysis. PLoS One. 2012;7(8):e42720.
  • Dizdaroglu M, Jaruga P, Rodriguez H. Measurement of 8-hydroxy-2'-deoxyguanosine in DNA by high-performance liquid chromatography-mass spectrometry: comparison with measurement by gas chromatography-mass spectrometry. Nucleic Acids Res. 2001;29(3):E12.
  • Kondo S, Toyokuni S, Tanaka T, et al. Overexpression of the hOGG1 gene and high 8-hydroxy-2'-deoxyguanosine (8-OHdG) lyase activity in human colorectal carcinoma: regulation mechanism of the 8-OHdG level in DNA. Clin Cancer Res. 2000;6(4):1394–1400.
  • Runge R, Hiemann R, Wendisch M, Kasten-Pisula U, Storch K, Zöphel K, et al. Fully automated interpretation of ionizing radiation-induced γH2AX foci by the novel pattern recognition system AKLIDES®). Int J Radiat Biol. 2012;88(5):439–447.
  • Willitzki A, Lorenz S, Hiemann R, Guttek K, Goihl A, Hartig R, et al. Fully automated analysis of chemically induced gammaH2AX foci in human peripheral blood mononuclear cells by indirect immunofluorescence. Cytometry.. 2013;83(11):1017–1026. doi:10.1002/cyto.a.22350.
  • Leifert WR, Siddiqui SM. γH2AX is a biomarker of modulated cytostatic drug resistance. Cytometry A. 2015;87(8):692–695.
  • Menegakis A, von Neubeck C, Yaromina A, Thames H, Hering S, Hennenlotter J, et al. γH2AX assay in ex vivo irradiated tumour specimens: A novel method to determine tumour radiation sensitivity in patient-derived material. Radiother Oncol. 2015;116(3):473–479.
  • Reddig A, Lorenz S, Hiemann R, Guttek K, Hartig R, Heiserich L, et al. Assessment of modulated cytostatic drug resistance by automated γH2AX analysis. Cytometry A. 2015;87(8):724–732.
  • Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 2005;65(15):6773–6779.
  • Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319(5860):202–206.
  • Puc J, Kozbial P, Li W, Tan Y, Liu Z, Suter T, et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell. 2015;160(3):367–380. doi:10.1016/j.cell.2014.12.023.
  • Xu J, Zheng SL, Turner A, Isaacs SD, Wiley KE, Hawkins GA, et al. Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res. 2002;62(8):2253–2257.
  • Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11(12):1513–1530.
  • Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. Cancer Lett. 2009;282(2):125–136.
  • Debelec-Butuner B, Korkmaz KS. NKX3.1 binding to GPX2, QSCN6, SOD1, and SOD2 promoters contributes to antioxidant response regulation via transactivation. Turk J Biol. 2014;38(5):640–647. doi:10.3906/biy-1401-72.
  • Bowen C, Zheng T, Gelmann EP. NKX3.1 suppresses TMPRSS2-ERG gene rearrangement and mediates repair of androgen receptor-induced DNA damage. Cancer Res. 2015;75(13):2686–2698. doi:10.1158/0008-5472.CAN-14-3387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.