733
Views
16
CrossRef citations to date
0
Altmetric
Research Article

A meticulous overview on drying-based (spray-, freeze-, and spray-freeze) particle engineering approaches for pharmaceutical technologies

, , , , , & show all
Pages 1447-1491 | Received 22 Jan 2021, Accepted 16 Feb 2021, Published online: 15 Mar 2021

References

  • Walters, R. H.; Bhatnagar, B.; Tchessalov, S.; Izutsu, K. I.; Tsumoto, K.; Ohtake, S. Next Generation Drying Technologies for Pharmaceutical Applications. J. Pharm. Sci. 2014, 103, 2673–2695. DOI: 10.1002/jps.23998.
  • Kemp, I. C. Drying of Pharmaceuticals in Theory and Practice. Dry. Technol. 2017, 35, 918–924. DOI: 10.1080/07373937.2016.1222539.
  • Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J. Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. DOI: 10.1016/j.ajps.2014.05.005.
  • Sollohub, K.; Cal, K. Spray Drying Technique: II. Current Applications in Pharmaceutical Technology. J. Pharm. Sci. 2010, 99, 587–597. DOI: 10.1002/jps.21963.
  • Kanikkannan, N. Technologies to Improve the Solubility, Dissolution and Bioavailability of Poorly Soluble Drugs. J. Anal. Pharm. Res. 2018, 7, 00198. DOI: 10.15406/japlr.2018.07.00198
  • Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro-and Nanospheres/Particles Preparation: A Review. Dry. Technol. 2016, 34, 1758–1772. DOI: 10.1080/07373937.2016.1232271.
  • Chow, K.; Tong, H. H.; Lum, S.; Chow, A. H. Engineering of Pharmaceutical Materials: An Industrial Perspective. J. Pharm. Sci. 2008, 97, 2855–2877. DOI: 10.1002/jps.21212.
  • Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018, 10, 74–78. DOI: 10.3390/pharmaceutics10030074.
  • Kadota, K.; Sosnowski, T. R.; Tobita, S.; Tachibana, I.; Tse, J. Y.; Uchiyama, H.; Tozuka, Y. A Particle Technology Approach toward Designing Dry-Powder Inhaler Formulations for Personalized Medicine in Respiratory Diseases. Adv. Powder Technol. 2020, 31, 219–226. DOI: 10.1016/j.apt.2019.10.013.
  • Emami, F.; Vatanara, A.; Park, E. J.; Na, D. H. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics 2018, 10, 131–135. DOI: 10.3390/pharmaceutics10030131.
  • Vass, P.; Démuth, B.; Hirsch, E.; Nagy, B.; Andersen, S. K.; Vigh, T.; Verreck, G.; Csontos, I.; Nagy, Z. K.; Marosi, G. Drying Technology Strategies for Colon-Targeted Oral Delivery of Biopharmaceuticals. J. Control Release. 2019, 296, 162–178. DOI: 10.1016/j.jconrel.2019.01.023.
  • Dobry, D. E.; Settell, D. M.; Baumann, J. M.; Ray, R. J.; Graham, L. J.; Beyerinck, R. A. A Model-Based Methodology for Spray-Drying Process Development. J. Pharm. Innov. 2009, 4, 133–142. DOI: 10.1007/s12247-009-9064-4.
  • Snyder, H. E. Pharmaceutical Spray Drying: Solid-Dose Process Technology Platform for the 21st Century. Ther. Deliv. 2012, 3, 901–912. DOI: 10.4155/tde.12.64.
  • Anandharamakrishnan, C.; Ishwarya, S. P. Introduction to Spray Drying. In Spray Drying Techniques for Food Ingredient Encapsulation; Anandharamakrishnan, C., Ishwarya, S. P., Eds., 2015. DOI: doi:10.1002/9781118863985.ch1..
  • Fang, Z.; Bhandari, B. Spray Drying, Freeze Drying and Related Processes for Food Ingredient and Nutraceutical Encapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Woodhead Publishing: Sawston, Cambridge, UK, 2012; pp 73–109.
  • Vehring, R. Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 2008, 25, 999–1022. DOI: 10.1007/s11095-007-9475-1.
  • Ziaee, A.; Albadarin, A. B.; Padrela, L.; Femmer, T.; O'Reilly, E.; Walker, G. Spray Drying of Pharmaceuticals and Biopharmaceuticals: Critical Parameters and Experimental Process Optimization Approaches. Eur. J. Pharm. Sci. 2019, 127, 300–318. DOI: 10.1016/j.ejps.2018.10.026.
  • Broadhead, J.; Edmond Rouan, S. K.; Rhodes, C. T. The Spray Drying of Pharmaceuticals. Drug Dev. Ind. Pharm. 1992, 18, 1169–1206. [Database] DOI: 10.3109/03639049209046327.
  • Vicente, J.; Pinto, J.; Menezes, J.; Gaspar, F. Fundamental Analysis of Particle Formation in Spray Drying. Powder Technol. 2013, 247, 1–7. [Database] DOI: 10.1016/j.powtec.2013.06.038.
  • Sadikoglu, H.; Ozdemir, M.; Seker, M. Freeze-Drying of Pharmaceutical Products: Research and Development Needs. Dry. Technol. 2006, 24, 849–861. [Database] DOI: 10.1080/07373930600734018.
  • Chen, G.; Wang, W. Role of Freeze Drying in Nanotechnology. Dry. Technol. 2007, 25, 29–35. DOI: 10.1080/07373930601161179.
  • Tang, X. C.; Pikal, M. J. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm. Res. 2004, 21, 191–200. DOI: 10.1023/B:PHAM.0000016234.73023.75.
  • Wanning, S.; Süverkrüp, R.; Lamprecht, A. Pharmaceutical Spray Freeze Drying. Int. J. Pharm. 2015, 488, 136–153. DOI: 10.1016/j.ijpharm.2015.04.053.
  • Vishali, D. A.; Monisha, J.; Sivakamasundari, S. K.; Moses, J. A.; Anandharamakrishnan, C. Spray Freeze Drying: Emerging Applications in Drug Delivery. J. Control. Release 2019, 300, 93–101. DOI: 10.1016/j.jconrel.2019.02.044.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Dry. Technol. 2020, 38, 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Ishwarya, S. P.; Anandharamakrishnan, C.; Stapley, A. G. Spray-Freeze-Drying: A Novel Process for the Drying of Foods and Bioproducts. Trends Food Sci. Technol. 2015, 41, 161–181. DOI: 10.1016/j.tifs.2014.10.008.
  • Costantino, H. R.; Firouzabadian, L.; Wu, C.; Carrasquillo, K. G.; Griebenow, K.; Zale, S. E.; Tracy, M. A. Protein Spray Freeze Drying. 2. Effect of Formulation Variables on Particle Size and Stability. J. Pharm. Sci. 2002, 91, 388–395. DOI: 10.1002/jps.10059.
  • Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions. Nature 2011, 476, 308–311. [Database] DOI: 10.1038/nature10344.
  • Li, Y. F.; Sheng, Y. J.; Tsao, H. K. Evaporation Stains: Suppressing the Coffee-Ring Effect by Contact Angle Hysteresis. Langmuir 2013, 29, 7802–7811. DOI: 10.1021/la400948e.
  • Kim, J. Y.; Cho, K.; Ryu, S. A.; Kim, S. Y.; Weon, B. M. Crack Formation and Prevention in Colloidal Drops. Sci. Rep. 2015, 5, 13166. DOI: 10.1038/srep13166.
  • Li, W.; Ji, W.; Lan, D.; Wang, Y. Self-Assembly of Ordered Microparticle Monolayers from Drying a Droplet on a Liquid Substrate. J. Phys. Chem. Lett. 2019, 10, 6184–6188. DOI: 10.1021/acs.jpclett.9b01917.
  • Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D.; Lechuga-Ballesteros, D. Particle Formation in Spray Drying. J. Aerosol Sci. 2007, 38, 728–746. DOI: 10.1016/j.jaerosci.2007.04.005.
  • Boraey, M. A.; Hoe, S.; Sharif, H.; Miller, D. P.; Lechuga-Ballesteros, D.; Vehring, R. Improvement of the Dispersibility of Spray-Dried Budesonide Powders Using Leucine in an Ethanol–Water Cosolvent System. Powder Technol. 2013, 236, 171–178. DOI: 10.1016/j.powtec.2012.02.047.
  • Baldelli, A.; Vehring, R. Control of the Radial Distribution of Chemical Components in Spray-Dried Crystalline Microparticles. Aerosol Sci. Technol. 2016, 50, 1130–1142. DOI: 10.1080/02786826.2016.1216941.
  • Food and D. Administration. Pharmaceutical Solid Polymorphism Chemistry, Manufacturing, and Controls Information, 2007. FDA: Rockville, MD.
  • Davis, M.; Walker, G. Recent Strategies in Spray Drying for the Enhanced Bioavailability of Poorly Water-Soluble Drugs. J Control Release 2018, 269, 110–127. DOI: 10.1016/j.jconrel.2017.11.005.
  • De Mohac, L. M.; Raimi-Abraham, B.; Caruana, R.; Gaetano, G.; Licciardi, M. Multicomponent Solid Dispersion a New Generation of Solid Dispersion Produced by Spray-Drying. J. Drug Deliv. Sci. Technol. 2020, 57, 101750. DOI: 10.1016/j.jddst.2020.101750.
  • Alshehri, S.; Imam, S. S.; Hussain, A.; Altamimi, M. A.; Alruwaili, N. K.; Alotaibi, F.; Alanazi, A.; Shakeel, F. Potential of Solid Dispersions to Enhance Solubility, Bioavailability, and Therapeutic Efficacy of Poorly Water-Soluble Drugs: Newer Formulation Techniques, Current Marketed Scenario and Patents. Drug Deliv. 2020, 27, 1625–1643. DOI: 10.1080/10717544.2020.1846638.
  • Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous Solid Dispersions: An Update for Preparation, Characterization, Mechanism on Bioavailability, Stability, Regulatory Considerations and Marketed Products. Int. J. Pharm. 2020, 586, 119560. DOI: 10.1016/j.ijpharm.2020.119560.
  • Laitinen, R. Theoretical Considerations in Developing Amorphous Solid Dispersions. In Amorphous Solid Dispersions. Advances in Delivery Science and Technology; Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A., Eds.; Springer: New York, NY, 2014. DOI: doi:.10.1007/978-1-4939-1598-9_2.
  • Haser, A.; Zhang, F. New Strategies for Improving the Development and Performance of Amorphous Solid Dispersions. AAPS PharmSciTech 2018, 19, 978–990. DOI: 10.1208/s12249-018-0953-z.
  • Patel, B. B.; Patel, J. K.; Chakraborty, S.; Shukla, D. Revealing Facts behind Spray Dried Solid Dispersion Technology Used for Solubility Enhancement. Saudi Pharm. J. 2015, 23, 352–365. DOI: 10.1016/j.jsps.2013.12.013.
  • Nair, A. R.; Lakshman, Y. D.; Anand, V. S.; Sree, K. N.; Bhat, K.; Dengale, S. J. Overview of Extensively Employed Polymeric Carriers in Solid Dispersion Technology. AAPS PharmSciTech 2020, 21, 1–20. DOI: 10.1208/s12249-020-01849-z.
  • Friesen, D. T.; Shanker, R.; Crew, M.; Smithey, D. T.; Curatolo, W. J.; Nightingale, J. A. Hydroxypropyl Methylcellulose Acetate Succinate-Based Spray-Dried Dispersions: An Overview. Mol. Pharm. 2008, 5, 1003–1019. DOI: 10.1021/mp8000793.
  • Chavan, R. B.; Rathi, S.; Jyothi, V. G.; Shastri, N. R. Cellulose Based Polymers in Development of Amorphous Solid Dispersions. Asian J. Pharm. Sci. 2019, 14, 248–264. DOI: 10.1016/j.ajps.2018.09.003.
  • Li, J.; Patel, D.; Wang, G. Use of Spray-Dried Dispersions in Early Pharmaceutical Development: Theoretical and Practical Challenges. AAPS J. 2017, 19, 321–333. DOI: 10.1208/s12248-016-0017-9.
  • Fridgeirsdottir, G. A.; Harris, R.; Fischer, P. M.; Roberts, C. J. Support Tools in Formulation Development for Poorly Soluble Drugs. J. Pharm. Sci. 2016, 105, 2260–2269. DOI: 10.1016/j.xphs.2016.05.024.
  • Rawlinson-Malone, C. F.; Ferreira, A. P.; Nicholls, D.; Nicholson, S. Elucidating Spray-Dried Dispersion Dissolution Mechanisms with Focused Beam Reflectance Measurement: Contribution of Polymer Chemistry and Particle Properties to Performance. Pharm. Dev. Technol. 2019, 24, 1055–1062. DOI: 10.1080/10837450.2018.1559189.
  • Vodak, D.; Morgen, M. Design and Development of HPMCAS-Based Spray-Dried Dispersions. In Amorphous Solid Dispersions. Advances in Delivery Science and Technology; Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A., Eds.; Springer: New York, NY, 2014. DOI: 10.1007/978-1-4939-1598-9_9.
  • Schittny, A.; Huwyler, J.; Puchkov, M. Mechanisms of Increased Bioavailability through Amorphous Solid Dispersions: A Review. Drug Deliv. 2020, 27, 110–127. DOI: 10.1080/10717544.2019.1704940.
  • Miller, D. A.; Gil, M. Spray-Drying Technology. In Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series; Williams, R. III, Watts, A., Miller, D., Eds., Vol. 3; Springer: New York, NY, 2012. DOI: doi:.10.1007/978-1-4614-1144-4_10.
  • Son, G. H.; Lee, B. J.; Cho, C. W. Mechanisms of Drug Release from Advanced Drug Formulations Such as Polymeric-Based Drug-Delivery Systems and Lipid Nanoparticles. J. Pharm. Investig. 2017, 47, 287–296. DOI: 10.1007/s40005-017-0320-1.
  • Verma, U.; Naik, J. B.; Patil, J. S.; Yadava, S. K. Screening of Process Variables to Enhance the Solubility of Famotidine with 2-HydroxyPropyl-β-Cyclodextrin & PVP K-30 by using Plackett-Burman design approach . Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 282–292. DOI: 10.1016/j.msec.2017.03.238.
  • Pradhan, R.; Kim, S. Y.; Yong, C. S.; Kim, J. O. Preparation and Characterization of Spray-Dried Valsartan-Loaded Eudragit® E PO Solid Dispersion Microparticles. Asian J. Pharm. Sci. 2016, 11, 744–750. DOI: 10.1016/j.ajps.2016.05.002.
  • Chen, X. Q.; Stefanski, K.; Shen, H.; Huang, C.; Caporuscio, C.; Yang, W.; Lam, P.; Su, C.; Gudmundsson, O.; Hageman, M. Oral Delivery of Highly Lipophilic Poorly Water-Soluble Drugs: Spray-Dried Dispersions to Improve Oral Absorption and Enable High-Dose Toxicology Studies of a P2Y1 Antagonist. J. Pharm. Sci. 2014, 103, 3924–3931. DOI: 10.1002/jps.24199.
  • Siow, C. R. S.; Wan Sia Heng, P.; Chan, L. W. Application of Freeze-Drying in the Development of Oral Drug Delivery Systems. Expert Opin. Drug Deliv. 2016, 13, 1595–1608. DOI: 10.1080/17425247.2016.1198767.
  • Kulthe, V. V.; Chaudhari, P. D.; Aboul-Enein, H. Y. Freeze-Dried Amorphous Dispersions for Solubility Enhancement of Thermosensitive API Having Low Molecular Lipophilicity. Drug Res. (Stuttg) 2014, 64, 493–498. DOI: 10.1055/s-0033-1363249.
  • Alqurshi, A.; Chan, K. L. A.; Royall, P. G. In-Situ Freeze-Drying - Forming Amorphous Solids Directly within Capsules: An Investigation of Dissolution Enhancement for a Poorly Soluble Drug. Sci. Rep. 2017, 7, 1–10. DOI: 10.1038/s41598-017-02676-2.
  • Basha, M.; Salama, A.; Noshi, S. H. Soluplus® Based Solid Dispersion as Fast Disintegrating Tablets: A Combined Experimental Approach for Enhancing the Dissolution and Antiulcer Efficacy of Famotidine. Drug Dev. Ind. Pharm. 2020, 46, 253–263. DOI: 10.1080/03639045.2020.1716376.
  • Adali, M. B.; Barresi, A. A.; Boccardo, G.; Pisano, R. Spray Freeze-Drying as a Solution to Continuous Manufacturing of Pharmaceutical Products in Bulk. Processes 2020, 8, 709. DOI: 10.3390/pr8060709.
  • Langford, A.; Bhatnagar, B.; Walters, R.; Tchessalov, S.; Ohtake, S. Drying Technologies for Biopharmaceutical Applications: Recent Developments and Future Direction. Dry. Technol. 2018, 36, 677–684. DOI: 10.1080/07373937.2017.1355318.
  • He, X.; Pei, L.; Tong, H. H.; Zheng, Y. Comparison of Spray Freeze Drying and the Solvent Evaporation Method for Preparing Solid Dispersions of Baicalein with Pluronic F68 to Improve Dissolution and Oral Bioavailability. AAPS PharmSciTech 2011, 12, 104–113. DOI: 10.1208/s12249-010-9560-3.
  • Adeli, E. The Use of Spray Freeze Drying for Dissolution and Oral Bioavailability Improvement of Azithromycin. Powder Technol. 2017, 319, 323–331. DOI: 10.1016/j.powtec.2017.06.043.
  • Hu, J.; Rogers, T. L.; Brown, J.; Young, T.; Johnston, K. P.; Williams, R. O. III Improvement of Dissolution Rates of Poorly Water Soluble APIs Using Novel Spray Freezing into Liquid Technology. Pharm. Res. 2002, 19, 1278–1284. DOI: 10.1023/A:1020390422785.
  • Ahmed, M. M.; Fatima, F.; Kalam, M. A.; Alshamsan, A.; Soliman, G. A.; S. M.; Alshahrani, M. F.; Aldawsari, S.; Bhatia, M. K.; Anwer Development of Spray-Dried Amorphous Solid Dispersions of Tadalafil Using Glycyrrhizin for Enhanced Dissolution and Aphrodisiac Activity in Male Rats. Saudi Pharm. J. 2020, 28, 1817–1826. DOI: 10.1016/j.jsps.2020.11.007.
  • Zhang, X.; Rao, Q.; Qiu, Z.; Lin, Y.; Zhang, L.; Hu, Q.; Chen, T.; Ma, Z.; Gao, H.; Luo, D.; Zhao, J. Using Acetone/Water Binary Solvent to Enhance the Stability and Bioavailability of Spray Dried Enzalutamide/HPMC-AS Solid Dispersions. J. Pharm. Sci. 2020. DOI: 10.1016/j.xphs.2020.10.010.
  • Rahman, M.; Ahmad, S.; Tarabokija, J.; Parker, N.; Bilgili, E. Spray-Dried Amorphous Solid Dispersions of Griseofulvin in HPC/Soluplus/SDS: Elucidating the Multifaceted Impact of SDS as a Minor Component. Pharmaceutics 2020. DOI: 10.3390/pharmaceutics.
  • Potharaju, S.; Mutyam, S. K.; Liu, M.; Green, C.; Frueh, L.; Nilsen, A.; Pou, S.; Winter, R.; Riscoe, M. K.; Shankar, G. Improving Solubility and Oral Bioavailability of a Novel Antimalarial Prodrug: Comparing Spray-Dried Dispersions with Self-Emulsifying Drug Delivery Systems. Pharm. Dev. Technol. 2020, 25, 625–639. DOI: 10.1080/10837450.2020.1725893.
  • Anwer, M. K.; Ahmed, M. M.; Alshetaili, A.; Almutairy, B. K.; Alalaiwe, A.; Fatima, F.; Ansari, M. N.; Iqbal, M. Preparation of Spray Dried Amorphous Solid Dispersion of Diosmin in Soluplus with Improved Hepato-Renoprotective Activity: In Vitro Anti-Oxidant and In-Vivo Safety Studies. J. Drug Deliv. Sci. Technol. 2020, 60, 102101. DOI: 10.1016/j.jddst.2020.102101.
  • Altamimi, M. A.; Elzayat, E. M.; Qamar, W.; Alshehri, S. M.; Sherif, A. Y.; Haq, N.; Shakeel, F. Evaluation of the Bioavailability of Hydrocortisone When Prepared as Solid Dispersion. Saudi Pharm. J. 2019, 27, 629–636. DOI: 10.1016/j.jsps.2019.03.004.
  • Hassouna, F.; El Dahab, M. A.; Fulem, M.; Haiek, A. D.; Laachachi, A.; Kopecký, D.; Šoóš, M. Multi-Scale Analysis of Amorphous Solid Dispersions Prepared by Freeze Drying of Ibuprofen Loaded Acrylic Polymer Nanoparticles. J. Drug Deliv. Sci. Technol. 2019, 53, 101182. DOI: 10.1016/j.jddst.2019.101182.
  • Mohammadi, G.; Hemati, V.; Nikbakht, M. R.; Mirzaee, S.; Fattahi, A.; Ghanbari, K.; Adibkia, K. In Vitro and In Vivo Evaluation of Clarithromycin–Urea Solid Dispersions Prepared by Solvent Evaporation, Electrospraying and Freeze Drying Methods. Powder Technol. 2014, 257, 168–174. DOI: 10.1016/j.powtec.2014.03.014.
  • Tong, H. H.; Du, Z.; Wang, G. N.; Chan, H. M.; Chang, Q.; Lai, L. C.; Chow, A. H.; Zheng, Y. Spray Freeze Drying with Polyvinylpyrrolidone and Sodium Caprate for Improved Dissolution and Oral Bioavailability of Oleanolic Acid, a BCS Class IV Compound. Int. J. Pharm. 2011, 404, 148–158. DOI: 10.1016/j.ijpharm.2010.11.027.
  • Braig, V.; Konnerth, C.; Peukert, W.; Lee, G. Can Spray Freeze-Drying Improve the Re-Dispersion of Crystalline Nanoparticles of Pure Naproxen? Int. J. Pharm. 2019, 564, 293–298. DOI: 10.1016/j.ijpharm.2019.04.061.
  • Umemoto, Y.; Uchida, S.; Yoshida, T.; Shimada, K.; Kojima, H.; Takagi, A.; Tanaka, S.; Kashiwagura, Y.; Namiki, N. An Effective Polyvinyl Alcohol for the Solubilization of Poorly Water-Soluble Drugs in Solid Dispersion Formulations. J. Drug Deliv. Sci. Technol. 2020, 55, 101401. DOI: 10.1016/j.jddst.2019.101401.
  • Ibrahim, M.; Verma, R.; Garcia-Contreras, L. Inhalation Drug Delivery Devices: Technology Update. Med. Devices (Auckl) 2015, 8, 131–139. DOI: 10.2147/MDER.S48888.
  • AboulFotouh, K.; Zhang, Y.; Maniruzzaman, M.; Williams, R. O.; Cui, Z. Amorphous Solid Dispersion Dry Powder for Pulmonary Drug Delivery: Advantages and Challenges. Int. J. Pharm. 2020, 587, 119711. DOI: 10.1016/j.ijpharm.2020.119711.
  • Ige, P. P.; Pardeshi, S. R.; Sonawane, R. O. Development of pH-Dependent Nanospheres for Nebulisation- In Vitro Diffusion, Aerodynamic and Cytotoxicity Studies. Drug Res. (Stuttg) 2018, 68, 680–686. DOI: 10.1055/a-0595-7678.
  • Jüptner, A.; Scherließ, R. Spray Dried Formulations for Inhalation—Meaningful Characterisation of Powder Properties. Pharmaceutics 2019, 12, 14. DOI: 10.3390/pharmaceutics12010014.
  • Hofmann, W. Modelling Particle Deposition in Human Lungs: Modelling Concepts and Comparison with Experimental Data. Biomarkers 2009, 14, 59–62. DOI: 10.1080/13547500902965120.
  • Chandel, A.; Goyal, A. K.; Ghosh, G.; Rath, G. Recent Advances in Aerosolised Drug Delivery. Biomed. Pharmacother. 2019, 112, 108601. DOI: 10.1016/j.biopha.2019.108601.
  • Peng, T.; Lin, S.; Niu, B.; Wang, X.; Huang, Y.; Zhang, X.; Li, G.; Pan, X.; Wu, C. Influence of Physical Properties of Carrier on the Performance of Dry Powder inhalers. Acta Pharm. Sin. B 2016, 6, 308–318. DOI: 10.1016/j.apsb.2016.03.011.
  • Ferron, G. A. Aerosol Properties and Lung Deposition. Eur. Respir. J. 1994, 7, 1392–1394. DOI: 10.1183/09031936.94.07081392.
  • Demoly, P.; Hagedoorn, P.; de Boer, A. H.; Frijlink, H. W. The Clinical Relevance of Dry Powder Inhaler Performance for Drug Delivery. Respir. Med. 2014, 108, 1195–1203. DOI: 10.1016/j.rmed.2014.05.009.
  • Martins, V.; Minguillón, M. C.; Moreno, T.; Querol, X.; de Miguel, E.; Capdevila, M.; Centelles, S.; Lazaridis, M. Deposition of Aerosol Particles from a Subway Microenvironment in the Human Respiratory Tract. J. Aerosol. Sci. 2015, 90, 103–113. DOI: 10.1016/j.jaerosci.2015.08.008.
  • de Boer, A. H.; Hagedoorn, P.; Hoppentocht, M.; Buttini, F.; Grasmeijer, F.; Frijlink, H. W. Dry Powder Inhalation: Past, Present and Future. Expert Opin. Drug Deliv. 2017, 14, 499–512. DOI: 10.1080/17425247.2016.1224846.
  • Rabbani, N. R.; Seville, P. C. The Influence of Formulation Components on the Aerosolisation Properties of Spray-Dried Powders. J Control Release. 2005, 110, 130–140. DOI: 10.1016/j.jconrel.2005.09.004.
  • Chow, A. H.; Tong, H. H.; Chattopadhyay, P.; Shekunov, B. Y. Particle Engineering for Pulmonary Drug Delivery. Pharm. Res. 2007, 24, 411–437. DOI: 10.1007/s11095-006-9174-3.
  • Weers, J. G.; Tarara, T. E.; Clark, A. R. Design of Fine Particles for Pulmonary Drug Delivery. Expert Opin. Drug Deliv. 2007, 4, 297–313. DOI: 10.1517/17425247.4.3.297.
  • Pardeshi, S.; Patil, P.; Rajput, R.; Mujumdar, A.; Naik, J. Preparation and Characterization of Sustained Release Pirfenidone Loaded Microparticles for Pulmonary Drug Delivery: Spray Drying Approach. Dry. Technol. 2020. DOI: 10.1080/07373937.2020.1833213
  • Joshi, M.; Prabhakar, B. Development of Respirable Rifampicin Loaded Bovine Serum Albumin Formulation for the Treatment of Pulmonary Tuberculosis. J. Drug Deliv. Sci. Technol. 2020, 61, 102197. DOI: 10.1016/j.jddst.2020.102197.
  • Gomez, M.; McCollum, J.; Wang, H.; Ordoubadi, M.; Jar, C.; Carrigy, N. B.; Barona, D.; Tetreau, I.; Archer, M.; Gerhardt, A.; Press, C. Development of a Formulation Platform for a Spray-Dried, Inhalable Tuberculosis Vaccine Candidate. Int. J. Pharm. 2020, 593, 120121. DOI: 10.1016/j.ijpharm.2020.120121.
  • Tse, J. Y.; Kadota, K.; Imakubo, T.; Uchiyama, H.; Tozuka, Y. Enhancement of the Extra-Fine Particle Fraction of Levofloxacin Embedded in Excipient Matrix Formulations for Dry Powder Inhaler Using Response Surface Methodology. Eur. J. Pharm. Sci. 2020, 156, 105600. DOI: 10.1016/j.ejps.2020.105600.
  • Satari, N.; Taymouri, S.; Varshosaz, J.; Rostami, M.; Mirian, M. Preparation and Evaluation of Inhalable Dry Powder Containing Glucosamine-Conjugated Gefitinib SLNs for Lung Cancer Therapy. Drug Dev. Ind. Pharm. 2020, 46, 1265–1277. DOI: 10.1080/03639045.2020.1788063.
  • Ali, M. E.; Lamprecht, A. Spray Freeze Drying for Dry Powder Inhalation of Nanoparticles. Eur. J. Pharm. Biopharm. 2014, 87, 510–517. DOI: 10.1016/j.ejpb.2014.03.009.
  • Lavanya, M. N.; Preethi, R.; Moses, J. A.; Anandharamakrishnan, C. Production of Bromelain Aerosols Using Spray-Freeze-Drying Technique for Pulmonary Supplementation. Dry. Technol. 2020. DOI: 10.1080/07373937.2020.1832514.
  • Tanaka, R.; Hattori, Y.; Otsuka, M.; Ashizawa, K. Application of Spray Freeze Drying to Theophylline-Oxalic Acid Cocrystal Engineering for Inhaled Dry Powder Technology. Drug Dev. Ind. Pharm. 2020, 46, 179–187. DOI: 10.1080/03639045.2020.1716367.
  • Liao, Q.; Lam, I. C.; Lin, H. H.; Wan, L. T.; Lo, J. C.; Tai, W.; Kwok, P. C.; Lam, J. K. Effect of Formulation and Inhaler Parameters on the Dispersion of Spray Freeze Dried Voriconazole Particles. Int. J. Pharm. 2020, 584, 119444. DOI: 10.1016/j.ijpharm.2020.119444.
  • Tran, T. T.; Amalina, N.; Cheow, W. S.; Hadinoto, K. Effects of Storage on the Stability and Aerosolization Efficiency of Dry Powder Inhaler Formulation of Plasmid DNA-Chitosan Nanoparticles. J. Drug Deliv. Sci. Technol. 2020, 59, 101866. DOI: 10.1016/j.jddst.2020.101866.
  • Fontana, M. C.; Laureano, J. V.; Forgearini, B.; dos Santos, J.; Pohlmann, A. R.; Guterres, S. S.; de Araújo, B. V.; Beck, R. C. Spray-Dried Raloxifene Submicron Particles for Pulmonary Delivery: Development and In Vivo Pharmacokinetic Evaluation in Rats. Int. J. Pharm. 2020, 26, 119429. DOI: 10.1016/j.ijpharm.2020.119429.
  • Almansour, K.; Alfagih, I. M.; Ali, R.; Elsayed, M. M. Inhalable Microparticles Containing Terbinafine for Management of Pulmonary Fungal Infections: Spray Drying Process Engineering Using Lactose vs. mannitol as Excipients. J. Drug Deliv. Sci. Technol. 2020, 60, 101991. DOI: 10.1016/j.jddst.2020.101991.
  • Suzuki, É. Y.; Simon, A.; da Silva, A. L.; Amaro, M. I.; de Almeida, G. S.; Agra, L. C.; Cabral, L. M.; Rocco, P. R.; Healy, A. M.; de Sousa, V. P. Effects of a Novel Roflumilast and Formoterolfumarate Dry Powder Inhaler Formulation in Experimental Allergic Asthma. Int. J. Pharm. 2020, 588, 119771. DOI: 10.1016/j.ijpharm.2020.119771.
  • Lavanya, M. N.; Dutta, S.; Moses, J. A.; Chinnaswamy, A. Development of β‐Carotene Aerosol Formulations Using a Modified Spray Dryer. J. Food Process. Eng. 2020, 43, e13233. DOI: 10.1111/jfpe.13233.
  • Liao, Q.; Yip, L.; Chow, M. Y.; Chow, S. F.; Chan, H. K.; Kwok, P. C.; Lam, J. K. Porous and Highly Dispersible Voriconazole Dry Powders Produced by Spray Freeze Drying for Pulmonary Delivery with Efficient Lung Deposition. Int. J. Pharm. 2019, 560, 144–154. DOI: 10.1016/j.ijpharm.2019.01.057.
  • Yu, H.; Tran, T. T.; Teo, J.; Hadinoto, K. Dry Powder Aerosols of Curcumin-Chitosan Nanoparticle Complex Prepared by Spray Freeze Drying and Their Antimicrobial Efficacy against Common Respiratory Bacterial Pathogens. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 34–42. DOI: 10.1016/j.colsurfa.2016.05.053.
  • Shetty, N.; Park, H.; Zemlyanov, D.; Mangal, S.; Bhujbal, S.; Zhou, Q. T. Influence of Excipients on Physical and Aerosolization Stability of Spray Dried High-Dose Powder Formulations for Inhalation. Int. J. Pharm. 2018, 544, 222–234. DOI: 10.1016/j.ijpharm.2018.04.034.
  • Sharma, S.; Lewis, S. Taste Masking Technologies: A Review. Int. J. Pharm. Pharm. Sci. 2010, 2, 6–13.
  • Sharma, V.; Chopra, H. Role of Taste and Taste Masking of Bitter Drugs in Pharmaceutical Industries an Overview. Int. J. Pharm. Pharm. Sci. 2010, 2, 123–125.
  • Sohi, H.; Sultana, Y.; Khar, R. K. Taste Masking Technologies in Oral Pharmaceuticals: Recent Developments and Approaches. Drug Dev. Ind. Pharm. 2004, 30, 429–448. DOI: 10.1081/ddc-120037477.
  • Ayenew, Z.; Puri, V.; Kumar, L.; Bansal, A. K. Trends in Pharmaceutical Taste Masking Technologies: A Patent Review. Recent Pat. Drug Deliv. Formul. 2009, 3, 26–39. DOI: 10.2174/187221109787158364.
  • Douroumis, D. Practical Approaches of Taste Masking Technologies in Oral Solid Forms. Expert Opin. Drug Deliv. 2007, 4, 417–426. DOI: 10.1517/17425247.4.4.417.
  • Faisal, W.; Farag, F.; Abdellatif, A. A.; Abbas, A. Taste Masking Approaches for Medicines. Curr. Drug Deliv. 2018, 15, 167–185. DOI: 10.2174/1567201814666171013145958.
  • Bora, D.; Borude, P.; Bhise, K. Taste Masking by Spray-Drying Technique. AAPS PharmSciTech 2008, 9, 1159–1164. DOI: 10.1208/s12249-008-9154-5.
  • Al-Kasmi, B.; Alsirawan, M. B.; Bashimam, M.; El-Zein, H. Mechanical Microencapsulation: The Best Technique in Taste Masking for the Manufacturing scale - Effect of polymer encapsulation on drug targeting . J. Control Release. 2017, 260, 134–141. DOI: 10.1016/j.jconrel.2017.06.002.
  • Arima, H.; Higashi, T.; Motoyama, K. Improvement of the Bitter Taste of Drugs by Complexation with Cyclodextrins: Applications, Evaluations and Mechanisms. Ther. Deliv. 2012, 3, 633–644. DOI: 10.4155/tde.12.28.
  • Madhuri, B.; Khutle, N. Taste Masking: By Ion Exchange Complexation Technique. AJPRD 2016, 1, 1–5.
  • Elder, D. P. Pharmaceutical Applications of Ion-Exchange Resins. J. Chem. Educ. 2005, 82, 575. DOI: 10.1021/ed082p575.
  • Wagh, V. D.; Ghadlinge, S. V. Taste Masking Methods and Techniques in Oral Pharmaceuticals: Current Perspectives. J. Pharm. Res. 2009, 2, 1049–1054.
  • Verma, U.; Mujumdar, A.; Naik, J. Preparation of Efavirenzresinate by Spray Drying Using Response Surface Methodology and Its Physicochemical Characterization for Taste Masking. Dry. Technol. 2020, 38, 793–805. DOI: 10.1080/07373937.2019.1590845.
  • Kim, J. I.; Cho, S. M.; Cui, J. H.; Cao, Q. R.; Oh, E.; Lee, B. J. In Vitro and In Vivo Correlation of Disintegration and Bitter Taste Masking Using Orally Disintegrating Tablet Containing Ion Exchange Resin-Drug Complex. Int. J. Pharm. 2013, 455, 31–39. DOI: 10.1016/j.ijpharm.2013.07.072.
  • Naik, J.; Rajput, R.; Singh, M. K. Development and Evaluation of Ibuprofen Loaded Hydrophilic Biocompatible Polymeric Nanoparticles for the Taste Masking and Solubility Enhancement. BioNanoScience 2020. DOI: 10.1007/s12668-020-00798-y.
  • Georgieva, Y.; Kassarova, M.; Kokova, V.; Apostolova, E.; Pilicheva, B. Taste Masking of Enalapril Maleate by Microencapsulation in Eudragit EPO® Microparticles. Pharmazie 2020, 75, 61–69. DOI: 10.1691/ph.2020.9123.
  • Wasilewska, K.; Szekalska, M.; Ciosek-Skibinska, P.; Lenik, J.; Basa, A.; Jacyna, J.; Markuszewski, M.; Winnicka, K. Ethylcellulose in Organic Solution or Aqueous Dispersion Form in Designing Taste-Masked Microparticles by the Spray Drying Technique with a Model Bitter Drug: Rupatadinefumarate. Polymers 2019, 11, 522. DOI: 10.3390/polym11030522.
  • Verma, U.; Naik, J. B.; Mokale, V. J. Preparation and Characterisation of the Inclusion Complex of Famotidine with (2-Hydroxy Propyl)–β-Cyclodextrin& PVP K-30: Effects on Solubility and Bitter Taste Mask. Int. Conf. Adv. Chem. Eng. Technol. 2014, 14, 63–67. DOI: 10.13140/2.1.3417.6006.
  • Alopaeus, J. F.; Göbel, A.; Breitkreutz, J.; Sande, S. A.; Tho, I. Investigation of Hydroxypropyl-β-Cyclodextrin Inclusion Complexation of Two Poorly Soluble Model Drugs and Their Taste-Sensation-Effect of Electrolytes, Freeze-Drying and Incorporation into Oral Film Formulations. J. Drug Deliv. Sci. Technol. 2020, 26, 102245. DOI: 10.1016/j.jddst.2020.102245.
  • Farias, S.; Boateng, J. S. Development and Functional Characterization of Composite Freeze Dried Wafers for Potential Delivery of Low Dose Aspirin for Elderly People with Dysphagia. Int. J. Pharm. 2018, 553, 65–83. DOI: 10.1016/j.ijpharm.2018.10.025.
  • Preis, M.; Grother, L.; Axe, P.; Breitkreutz, J. In-Vitro and In-Vivo Evaluation of Taste-Masked Cetirizine Hydrochloride Formulated in Oral Lyophilisates. Int. J. Pharm. 2015, 491, 8–16. DOI: 10.1016/j.ijpharm.2015.06.002.
  • Tu, J.; Shen, Y.; Mahalingam, R.; Jasti, B.; Li, X. 2010 Polymers in Oral Modified Release Systems. In Oral Controlled Release Formulation Design and Drug Delivery; Wen, H., Park, K., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey. DOI: 10.1002/9780470640487.ch5.
  • Wen, H.; Park, K. 2010 Introduction and Overview of Oral Controlled Release Formulation Design. In Oral Controlled Release Formulation Design and Drug Delivery; Wen, H., Park, K., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey. DOI: 10.1002/9780470640487.ch1.
  • Chang, R. K.; Mathias, N.; Hussain, M. A. Biopharmaceutical Evaluation and CMC Aspects of Oral Modified Release Formulations. AAPS J. 2017, 19, 1348–1358. DOI: 10.1208/s12248-017-0112-6.
  • Varum, F. J.; Merchant, H. A.; Basit, A. W. Oral Modified-Release Formulations in Motion: The Relationship between Gastrointestinal Transit and Drug Absorption. Int. J. Pharm. 2010, 395, 26–36. DOI: 10.1016/j.ijpharm.2010.04.046.
  • Golub, A. L.; Frost, R. W.; Betlach, C. J.; Gonzalez, M. A. Physiologic Considerations in Drug Absorption from the Gastrointestinal Tract. J. Allergy Clin. Immunol. 1986, 78, 689–694. DOI: 10.1016/0091-6749(86)90047-3.
  • Boxenbaum, H. G. Physiological and Pharmacokinetic Factors Affecting Performance of Sustained Release Dosage Forms. Drug Dev. Ind. Pharm. 1982, 8, 1–25. DOI: 10.3109/03639048209052557.
  • Kararli, T. T. Comparison of the Gastrointestinal Anatomy, Physiology, and Biochemistry of Humans and Commonly Used Laboratory Animals. Biopharm. Drug Dispos. 1995, 16, 351–380. DOI: 10.1002/bdd.2510160502.
  • Kagan, L.; Hoffman, A. Systems for Region Selective Drug Delivery in the Gastrointestinal Tract: Biopharmaceutical Considerations. Expert Opin. Drug Deliv. 2008, 5, 681–692. DOI: 10.1517/17425247.5.6.681.
  • Dvořáčková, K.; Doležel, P.; Mašková, E.; Muselík, J.; Kejdušová, M.; Vetchý, D. The Effect of Acid pH Modifiers on the Release Characteristics of Weakly Basic Drug from Hydrophlilic–Lipophilic Matrices. AAPS PharmSciTech 2013, 14, 1341–1348. DOI: 10.1208/s12249-013-0019-1.
  • Olivares-Morales, A.; Kamiyama, Y.; Darwich, A. S.; Aarons, L.; Rostami-Hodjegan, A. Analysis of the Impact of Controlled Release Formulations on Oral Drug Absorption, Gut Wall Metabolism and Relative Bioavailability of CYP3A Substrates Using a Physiologically-Based Pharmacokinetic Model. Eur. J. Pharm. Sci. 2015, 67, 32–44. DOI: 10.1016/j.ejps.2014.10.018.
  • Ku, M. S. Preformulation Consideration for Drugs in Oral CR Formulation. In Oral Controlled Release Formulation Design and Drug Delivery; Wen, H., Park, K., Eds., 2010. DOI: doi:.10.1002/9780470640487.ch4.
  • Fan, L.; Singh, S. K. Diffusion-Controlled Release. In Controlled Release. Polymers (Properties and Applications), Vol. 13. Springer: Berlin, Heidelberg, 1989. DOI: doi:.10.1007/978-3-642-74507-2_2.
  • Keraliya, R. A.; Patel, C.; Patel, P.; Keraliya, V.; Soni, T. G.; Patel, R. C.; Patel, M. M. Osmotic Drug Delivery System as a Part of Modified Release Dosage Form. ISRN Pharm. 2012, 2012, 1–9. DOI: 10.5402/2012/528079.
  • Urquhart, J. Controlled Drug Delivery: Therapeutic and Pharmacological Aspects. J. Intern. Med. 2001, 249, 75–94. DOI: 10.1046/j.1365-2796.2001.00758.x.
  • Srikanth, M. V.; Sunil, S. A.; Rao, N. S.; Uhumwangho, M. U.; Murthy, K. R. Ion-Exchange Resins as Controlled Drug Delivery Carriers. J. Sci. Res. 2010, 2, 597. DOI: 10.3329/jsr.v2i3.4991.
  • Bermejo, M.; Sanchez-Dengra, B.; Gonzalez-Alvarez, M.; Gonzalez-Alvarez, I. Oral Controlled Release Dosage Forms: Dissolution versus Diffusion. Expert Opin. Drug Deliv. 2020, 20, 1–3. DOI: 10.1080/17425247.2020.1750593.
  • Robinson, J.; Eriksen, S. P. Theoretical Formulation of Sustained-Release Dosage Forms. J. Pharm. Sci. 1966, 55, 1254–1263. DOI: 10.1002/jps.2600551118.
  • Naik, J. B.; Waghulde, M. R. Development of Vildagliptin Loaded Eudragit® Microspheres by Screening Design: In Vitro Evaluation. J. Pharm. Investig. 2018, 48, 627–637. DOI: 10.1007/s40005-017-0355-3.
  • Deshmukh, R. K.; Naik, J. B. Optimization of Sustained Release Aceclofenac Microspheres Using Response Surface Methodology. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 197–204. DOI: 10.1016/j.msec.2014.12.008.
  • Patil, J.; Rajput, R.; Patil, P.; Mujumdar, A.; Naik, J. Generation of Sustained Release Chitosan Nanoparticles for Delivery of Ketorolac Tromethamine: A Tubular Microreactor Approach. Int. J. Polym. Mater. 2020, 69, 516–524. DOI: 10.1080/00914037.2019.1581201.
  • Waghulde, M.; Mujumdar, A.; Naik, J. Preparation and Characterization of Miglitol-Loaded Poly (d, l-Lactide-Co-Glycolide) Microparticles Using High Pressure Homogenization-Solvent Evaporation Method. Int. J. Polym. Mater. 2019, 68, 198–207. DOI: 10.1080/00914037.2018.1434652.
  • Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric Systems for Controlled Drug Release. Chem. Rev. 1999, 99, 3181–3198. DOI: 10.1021/cr940351u.
  • Deshpande, A. A.; Rhodes, C. T.; Shah, N. H.; Malick, A. W. Controlled-Release Drug Delivery Systems for Prolonged Gastric Residence: An Overview. Drug Dev. Ind. Pharm. 1996, 22, 531–539. DOI: 10.3109/03639049609108355.
  • Ré, M. I. Formulating Drug Delivery Systems by Spray Drying. Dry. Technol. 2006, 24, 433–446. DOI: 10.1080/07373930600611877.
  • Khairnar, G.; Mokale, V.; Khairnar, R.; Mujumdar, A.; Naik, J. Production of Antihyerglycemic and Antihypertensive Drug Loaded Sustained Release Nanoparticles Using Spray Drying Technique: Optimization by Placket Burman Design. Dry. Technol. 2020, 25, 1–2. DOI: 10.1080/07373937.2020.1825292.
  • Waghulde, M.; Rajput, R.; Mujumdar, A.; Naik, J. Production and Evaluation of Vildagliptin-Loaded Poly (dl-Lactide) and Poly (dl-Lactide-Glycolide) Micro-/Nanoparticles: Response Surface Methodology Approach. Dry. Technol. 2018, 37, 1256–1276. DOI: 10.1080/07373937.2018.1495231.
  • Wagh, P.; Mujumdar, A.; Naik, J. B. Preparation and Characterization of Ketorolac Tromethamine-Loaded Ethyl Cellulose Micro-/Nanospheres Using Different Techniques. Part. Sci. Technol. 2019, 37, 347–357. DOI: 10.1080/02726351.2017.1383330.
  • Deshmukh, R.; Mujumdar, A.; Naik, J. Production of Aceclofenac-Loaded Sustained Release Micro/Nanoparticles Using Pressure Homogenization and Spray Drying. Dry. Technol. 2018, 36, 459–467. DOI: 10.1080/07373937.2017.1341418.
  • Waghulde, M.; Naik, J. Comparative Study of Encapsulated Vildagliptin Microparticles Produced by Spray Drying and Solvent Evaporation Technique. Dry. Technol. 2017, 35, 1644–1654. DOI: 10.1080/07373937.2016.1273230.
  • Deshmukh, R. K.; Naik, J. B. Optimization of Spray-Dried Diclofenac Sodium-Loaded Microspheres by Screening Design. Dry. Technol. 2016, 34, 1593–1603. DOI: 10.1080/07373937.2016.1138121.
  • He, H.; Hong, Y.; Gu, Z.; Liu, G.; Cheng, L.; Li, Z. Improved Stability and Controlled Release of CLA with Spray-Dried Microcapsules of OSA-Modified Starch and Xanthan Gum. Carbohydr. Polym. 2016, 147, 243–250. DOI: 10.1016/j.carbpol.2016.03.078.
  • Ribeiro, R. F.; Motta, M. H.; Härter, A. P.; Flores, F. C.; Beck, R. C.; Schaffazick, S. R.; da Silva, C. D. Spray-Dried Powders Improve the Controlled Release of Antifungal Tioconazole-Loaded Polymeric Nanocapsules Compared to with Lyophilized Products. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 875–884. DOI: 10.1016/j.msec.2015.10.035.
  • Salama, R.; Hoe, S.; Chan, H. K.; Traini, D.; Young, P. M. Preparation and Characterisation of Controlled Release Co-Spray Dried Drug–Polymer Microparticles for Inhalation 1: Influence of Polymer Concentration on Physical and In Vitro Characteristics. Eur. J. Pharm. Biopharm. 2008, 69, 486–495. DOI: 10.1016/j.ejpb.2007.12.019.
  • Salama, R. O.; Traini, D.; Chan, H. K.; Young, P. M. Preparation and Characterisation of Controlled Release Co-Spray Dried Drug–Polymer Microparticles for Inhalation 2: Evaluation of In Vitro Release Profiling Methodologies for Controlled Release Respiratory Aerosols. Eur. J. Pharm. Biopharm. 2008, 70, 145–152. DOI: 10.1016/j.ejpb.2008.04.009.
  • Park, C. W.; Li, X.; Vogt, F. G.; Hayes, D. Jr.; Zwischenberger, J. B.; Park, E. S.; Mansour, H. M. Advanced Spray-Dried Design, Physicochemical Characterization, and Aerosol Dispersion Performance of Vancomycin and Clarithromycin Multifunctional Controlled Release Particles for Targeted Respiratory Delivery as Dry Powder Inhalation Aerosols. Int. J. Pharm. 2013, 455, 374–392. DOI: 10.1016/j.ijpharm.2013.06.047.
  • Mokale, V.; Rajput, R.; Patil, J.; Yadava, S.; Naik, J. Formulation of Metformin Hydrochloride Nanoparticles by Using Spray Drying Technique and In Vitro Evaluation of Sustained Release with 32-Level Factorial Design Approach. Dry. Technol. 2016, 34, 1455–1461. DOI: 10.1080/07373937.2015.1125916.
  • Wagh, P. S.; Naik, J. B. Development of Mefenamic Acid–Loaded Polymeric Microparticles Using Solvent Evaporation and Spray-Drying Technique. Dry. Technol. 2016, 34, 608–617. DOI: 10.1080/07373937.2015.1064947.
  • Liu, W.; Wang, S.; Lu, W.; Cheng, Z.; Jiang, N. Sustained Release Ziprasidone Microparticles Prepared by Spray Drying with Soluplus® and Ethyl Cellulose to Eliminate Food Effect and Enhance Bioavailability. AAPS PharmSciTech 2020, 21, 1–8. DOI: 10.1208/s12249-019-1592-8.
  • Soni, G.; Yadav, K. S.; Gupta, M. K. QbD Based Approach for Formulation Development of Spray Dried Microparticles of Erlotinib Hydrochloride for Sustained Release. J. Drug Deliv. Sci. Technol. 2020, 57, 101684. DOI: 10.1016/j.jddst.2020.101684.
  • Zhou, J.; Chen, Y.; Luo, M.; Deng, F.; Lin, S.; Wu, W.; Li, G.; Nan, K. Dual Cross-Linked Chitosan Microspheres Formulated with Spray-Drying Technique for the Sustained Release of Levofloxacin. Drug Dev. Ind. Pharm. 2019, 45, 568–576. DOI: 10.1080/03639045.2019.1569025.
  • Kim, S. R.; Ho, M. J.; Choi, Y. W.; Kang, M. J. Improved Drug Loading and Sustained Release of Entecavir‐Loaded PLGA Microsphere Prepared by Spray Drying Technique. Bull. Korean Chem. Soc. 2019, 40, 306–312. DOI: 10.1002/bkcs.11682.
  • Shao, P.; Xuan, S.; Wu, W.; Qu, L. Encapsulation Efficiency and Controlled Release of Ganoderma lucidum Polysaccharide Microcapsules by Spray Drying Using Different Combinations of Wall Materials. Int. J. Biol. Macromol. 2019, 125, 962–969. DOI: 10.1016/j.ijbiomac.2018.12.153.
  • Gonçalves, A.; Estevinho, B. N.; Rocha, F. Design and Characterization of Controlled-Release Vitamin a Microparticles Prepared by a Spray-Drying Process. Powder Technol. 2017, 305, 411–417. DOI: 10.1016/j.powtec.2016.10.010.
  • Gonçalves, A.; Estevinho, B. N.; Rocha, F. Characterization of Biopolymer-Based Systems Obtained by Spray-Drying for Retinoic Acid Controlled Delivery. Powder Technol. 2019, 345, 758–765. DOI: 10.1016/j.powtec.2019.01.062.
  • Di, A.; Zhang, S.; Liu, X.; Tong, Z.; Sun, S.; Tang, Z.; Chen, X. D.; Wu, W. D. Microfluidic Spray Dried and Spray Freeze Dried Uniform Microparticles Potentially for Intranasal Drug Delivery and Controlled Release. Powder Technol. 2020, 379, 144–153. DOI: 10.1016/j.powtec.2020.10.061.
  • Naik, J. B.; Pardeshi, S. R.; Patil, R. P.; Patil, P. B.; Mujumdar, A. Mucoadhesive Micro-/Nano Carriers in Ophthalmic Drug Delivery: An Overview. Bionanoscience 2020, 10, 564–582. DOI: 10.1007/s12668-020-00752-y.
  • Thakkar, S.; Misra, M. Electrospray Drying of Docetaxelnanosuspension: A Study on Particle Formation and Evaluation of Nanocrystals Thereof. J. Drug Deliv. Sci. Technol. 2020, 60, 102009. DOI: 10.1016/j.jddst.2020.102009.
  • Sun, W.; Ni, R.; Zhang, X.; Li, L. C.; Mao, S. Spray Drying of a Poorly Water-Soluble Drug Nanosuspension for Tablet Preparation: Formulation and Process Optimization with Bioavailability Evaluation. Drug Dev. Ind. Pharm. 2015, 41, 927–933. DOI: 10.3109/03639045.2014.914528.
  • Meeus, J.; Chen, X.; Scurr, D. J.; Ciarnelli, V.; Amssoms, K.; Roberts, C. J.; Davies, M. C.; van Den Mooter, G. Nanoscale Surface Characterization and Miscibility Study of a Spray-Dried Injectable Polymeric Matrix Consisting of Poly(Lactic-Co-Glycolic Acid) and Polyvinylpyrrolidone. J. Pharm. Sci. 2012, 101, 3473–3485. DOI: 10.1002/jps.23131.
  • Meeus, J.; Scurr, D. J.; Amssoms, K.; Davies, M. C.; Roberts, C. J.; Van den Mooter, G. Surface Characteristics of Spray-Dried Microspheres Consisting of PLGA and PVP: Relating the Influence of Heat and Humidity to the Thermal Characteristics of These Polymers. Mol. Pharm. 2013, 10, 3213–3224. DOI: 10.1021/mp400263d.
  • Kim, S. J.; Kim, C. W. Development and Characterization of Sodium Hyaluronate Microparticle-Based Sustained Release Formulation of Recombinant Human Growth Hormone Prepared by Spray-Drying. J. Pharm. Sci. 2016, 105, 613–622. DOI: 10.1016/j.xphs.2015.11.046.
  • Xu, P. X.; Dai, Z. Q.; Li, D. J.; Liu, C. Q.; Wu, C. E.; Song, J. F. Preparation, Optimization, Characterization, and in Vitro Bioaccessibility of a Lutein Microparticle Using Spray Drying with β‐Cyclodextrin and Stevioside. J. Food Process. Preserv. 2021, 45, e15032. DOI: 10.1111/jfpp.15032.
  • Dürrigl, M.; Kregar, M. L.; Hafner, A.; Klarić, M. Š.; Filipović-Grčić, J. Mupirocin Calcium Microencapsulation via Spray Drying: Feed Solvent Influence on Microparticle Properties, Stability and Antimicrobial Activity. Drug Dev. Ind. Pharm. 2011, 37, 1402–1414. DOI: 10.3109/03639045.2011.580350.
  • Sarabandi, K.; Jafari, S. M. Effect of Chitosan Coating on the Properties of Nanoliposomes Loaded with Flaxseed-Peptide Fractions: Stability during Spray-Drying. Food Chem. 2020, 310, 125951. DOI: 10.1016/j.foodchem.2019.125951.
  • Khatib, I.; Tang, P.; Ruan, J.; Cipolla, D.; Dayton, F.; Blanchard, J. D.; Chan, H.-K. Formation of Ciprofloxacin Nanocrystals within Liposomes by Spray Drying for Controlled Release via Inhalation. Int. J. Pharm. 2020, 578, 119045. DOI: 10.1016/j.ijpharm.2020.119045.
  • Maniyar, M. G.; Kokare, C. R. Formulation and Evaluation of Spray Dried Liposomes of Lopinavir for Topical Application. J. Pharm. Investig. 2019, 49, 259–270. DOI: 10.1007/s40005-018-0403-7.
  • Ozaki, K.; Hayashi, M. Effect of Cycloinulohexaose with Additives on the Freeze-Drying of Liposome. Int. J. Pharm. 1998, 160, 219–227. DOI: 10.1016/S0378-5173(97)00319-0.
  • Chatterjee, B.; Hamed Almurisi, S.; Ahmed Mahdi Dukhan, A.; Mandal, U. K.; Sengupta, P. Controversies with Self-Emulsifying Drug Delivery System from Pharmacokinetic Point of View . Drug Deliv. 2016, 23, 3639–3652. DOI: 10.1080/10717544.2016.1214990.
  • Kamal, M. M.; Salawi, A.; Lam, M.; Nokhodchi, A.; Abu-Fayyad, A.; El Sayed, K. A.; Nazzal, S. Development and Characterization of Curcumin-Loaded Solid Self-Emulsifying Drug Delivery System (SEDDS) by Spray Drying Using Soluplus® as Solid Carrier. Powder Technol. 2020, 369, 137–145. DOI: 10.1016/j.powtec.2020.05.023.
  • Kuncahyo, I.; Choiri, S.; Fudholi, A. Solidification of Meloxicam Self-Nano Emulsifying Drug Delivery System Formulation Incorporated into Soluble and Insoluble Carriers Using Freeze Drying Method. IOP Conference Series: Materials Science and Engineering, IOP Publishing: Bristol, United Kingdom, 2019. DOI: 10.1088/1757-899X/578/1/012051.
  • Dangre, P. V.; Gilhotra, R. M.; Dhole, S. N. Formulation and Development of Solid Self Micro-Emulsifying Drug Delivery System (S-SMEDDS) Containing Chlorthalidone for Improvement of Dissolution. J. Pharm. Investig. 2016, 46, 633–644. DOI: 10.1007/s40005-016-0243-2.
  • `Amirmahani, N.; Mahmoodi, N. O.; Galangash, M. M.; Ghavidast, A. Advances in Nanomicelles for Sustained Drug Delivery. J. Ind. Eng. Chem. 2017, 55, 21–34. DOI: 10.1016/j.jiec.2017.06.050.
  • Lim, S. B.; Rubinstein, I.; Önyüksel, H. Freeze Drying of Peptide Drugs Self-Associated with Long-Circulating, Biocompatible and Biodegradable Sterically Stabilized Phospholipid Nanomicelles. Int. J. Pharm. 2008, 356, 345–350. DOI: 10.1016/j.ijpharm.2008.01.014.
  • Wang, G.; Wang, J.-J.; Chen, X.-L.; Du, L.; Li, F. Quercetin-Loaded Freeze-Dried Nanomicelles: Improving Absorption and anti-Glioma Efficiency In Vitro and In Vivo. J Control Release. 2016, 235, 276–290. DOI: 10.1016/j.jconrel.2016.05.045.
  • Farhangi, M.; Mahboubi, A.; Kobarfard, F.; Vatanara, A.; Mortazavi, S. A. Optimization of a Dry Powder Inhaler of Ciprofloxacin-Loaded Polymeric Nanomicelles by Spray Drying Process. Pharm. Dev. Technol. 2019, 24, 584–592. DOI: 10.1080/10837450.2018.1545237.
  • Poozesh, S.; Bilgili, E. Scale-Up of Pharmaceutical Spray Drying Using Scale-Up Rules: A Review. Int. J. Pharm. 2019, 562, 271–292. DOI: 10.1016/j.ijpharm.2019.03.047.
  • Gil, M.; Vicente, J.; Gaspar, F. Scale-Up Methodology for Pharmaceutical Spray Drying. Chimicaoggi/Chemistry Today; TKS TeknoScienze Publisher: Viale Brianza, Milano, Italy. Vol. 28, 2010.
  • Thybo, P.; Hovgaard, L.; Lindeløv, J. S.; Brask, A.; Andersen, S. K. Scaling up the Spray Drying Process from Pilot to Production Scale Using an Atomized Droplet Size Criterion. Pharm. Res. 2008, 25, 1610–1620. DOI: 10.1007/s11095-008-9565-8.
  • Kemp, I. C.; Hartwig, T.; Herdman, R.; Hamilton, P.; Bisten, A.; Bermingham, S. Spray Drying with a Two-Fluid Nozzle to Produce Fine Particles: Atomization, Scale-Up, and Modeling. Dry. Technol. 2016, 34, 1243–1252. DOI: 10.1080/07373937.2015.1103748.
  • Oakley, D. E. Scale-Up of Spray Dryers with the Aid of Computational Fluid Dynamics. Dry. Technol. 1994, 12, 217–233. DOI: 10.1080/07373939408959954.
  • Ameri, M.; Maa, Y. F. Spray Drying of Biopharmaceuticals: Stability and Process Considerations. Dry. Technol. 2006, 24, 763–768. DOI: 10.1080/03602550600685275.
  • Al-Khattawi, A.; Bayly, A.; Phillips, A.; Wilson, D. The Design and Scale-Up of Spray Dried Particle Delivery Systems. Expert Opin. Drug Deliv. 2018, 15, 47–63. DOI: 10.1080/17425247.2017.1321634.
  • Pisano, R.; Fissore, D.; Barresi, A. A.; Rastelli, M. Quality by Design: Scale-Up of Freeze-Drying Cycles in Pharmaceutical Industry. AAPS PharmSciTech 2013, 14, 1137–1149. DOI: 10.1208/s12249-013-0003-9.
  • Schneid, S.; Gieseler, H. Rational Approaches and Transfer Strategies for the Scale-Up of Freeze-Drying Cycles. Chimicaoggi/Chemistry Today 2011; Vol. 29, pp 10–13.
  • Patel, S. M.; Pikal, M. J. Emerging Freeze-Drying Process Development and Scale-Up Issues. AAPS PharmSciTech 2011, 12, 372–378. DOI: 10.1208/s12249-011-9599-9.
  • Tsinontides, S. C.; Rajniak, P.; Pham, D.; Hunke, W. A.; Placek, J.; Reynolds, S. D. Freeze Drying-Principles and Practice for Successful Scale-Up to Manufacturing. Int. J. Pharm. 2004, 280, 1–6. DOI: 10.1016/j.ijpharm.2004.04.018.
  • Fissore, D.; Barresi, A. A. Scale-Up and Process Transfer of Freeze-Drying Recipes. Dry. Technol. 2011, 29, 1673–1684. DOI: 10.1080/07373937.2011.597059.
  • Rambhatla, S.; Pikal, M. J. Heat and Mass Transfer Scale-Up Issues during Freeze-Drying, I: Atypical Radiation and the Edge Vial Effect. AAPS PharmSciTech 2003, 4, 22–31. DOI: 10.1208/pt040214.
  • Scutella, B.; Passot, S.; Bourlés, E.; Fonseca, F.; Tréléa, I. C. How Vial Geometry Variability Influences Heat Transfer and Product Temperature during Freeze-Drying. J. Pharm. Sci. 2017, 106, 770–778. DOI: 10.1016/j.xphs.2016.11.007.
  • Rambhatla, S.; Tchessalov, S.; Pikal, M. J. Heat and Mass Transfer Scale-Up Issues during Freeze-Drying, III: Control and Characterization of Dryer Differences via Operational Qualification Tests. AAPS PharmSciTech 2006, 7, E61–E70. DOI: 10.1208/pt070239.
  • Patel, S. M.; Pikal, M. J. Lyophilization Process Design Space. J. Pharm. Sci. 2013, 102, 3883–3887. DOI: 10.1002/jps.23703.
  • Food and Drug Administration (2007). Guidance for Industry ANDAs: Pharmaceutical Solid Polymorphism, FDA, 5630 Fishers Lane, Rm 1061, Rockville, MD 20852.
  • Popplewell, L. M. Evaluating Encapsulation Economics. Perfumer Flavorist 2001, 26, 2–6.
  • Swarbrick, J.; Bovlan, J. Freeze Drying in Encyclopedia of Pharmaceutical Technology; Marcel Dekker Inc: New York, 2001.
  • Warikoo, V.; Godawat, R.; Brower, K.; Jain, S.; Cummings, D.; Simons, E.; Johnson, T.; Walther, J.; Yu, M.; Wright, B.; et al. Integrated Continuous Production of Recombinant Therapeutic Proteins. Biotechnol. Bioeng. 2012, 109, 3018–3029. DOI: 10.1002/bit.24584.
  • Croughan, M. S.; Konstantinov, K. B.; Cooney, C. The Future of Industrial Bioprocessing: Batch or Continuous? Biotechnol. Bioeng. 2015, 112, 648–651. DOI: 10.1002/bit.25529.
  • Shanley, A. 2020. Breaking through Obstacles to Improve Drug Manufacturing. Pharmaceutical Technology, 41, 14-19. Accessed on December 28, 2020 from http://www.pharmtech.com/breaking-through-obstacles-improve-drug-manufacturing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.