13,499
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Progress in spray-drying of protein pharmaceuticals: Literature analysis of trends in formulation and process attributes

, , , , , & show all
Pages 1415-1446 | Received 01 Mar 2021, Accepted 03 Mar 2021, Published online: 15 Apr 2021

References

  • McAndrew, P. T.; Hostetler, D.; DeGrazio, F. Container and Reconstitution Systems for Lyophilized Drug Products. In Lyophilization of Pharmaceuticals and Biologicals: New Technologies and Approaches; Ward, K. R., Matejtschuk, P., Eds.; Humana Press: Totowa, NJ, 2019; pp 193–214.
  • DiFranco, N. Lyophilization of Pharmaceuticals: An Overview. https://lubrizolcdmo.com/blog/lyophilization-of-pharmaceuticals-an-overview/ (accessed Sep 16, 2020).
  • Comission, E. Study on the Competitiveness of the European Biotechnology Industry – The Financing of Biopharmaceutical Product Development in Europe, 2010. DOI: 10.2769/33524.
  • Emami, F.; Vatanara, A.; Park, E. J.; Na, D. H. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics. 2018, 10, 131. DOI: 10.3390/pharmaceutics10030131.
  • Vehring, R.; Snyder, H.; Lechuga-Ballesteros, D. Spray Drying. In Drying Technologies for Biotechnology and Pharmaceutical Applications; Ohtake, S., Izutsu, K., Lechuga-Ballesteros, D., Eds.; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, 2020; pp 179–166. DOI: 10.1002/9783527802104.ch7.
  • Cicerone, M. T.; Pikal, M. J.; Qian, K. K. Stabilization of Proteins in Solid Form. Adv. Drug Deliv. Rev. 2015, 93, 14–24. DOI: 10.1016/j.addr.2015.05.006.
  • Ameri, M.; Maa, Y. F. Spray Drying of Biopharmaceuticals: Stability and Process Considerations. Dry. Technol. 2006, 24, 763–768. DOI: 10.1080/03602550600685275.
  • Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic Antibodies: Successes, Limitations and Hopes for the Future. Br. J. Pharmacol. 2009, 157, 220–223. DOI: 10.1111/j.1476-5381.2009.00190.x.
  • Köhler, G.; Milstein, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. DOI: 10.1038/256495a0.
  • Lu, R. M.; Hwang, Y. C.; Liu, I. J.; Lee, C. C.; Tsai, H. Z.; Li, H. J.; Wu, H. C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. DOI: 10.1186/s12929-019-0592-z.
  • Schüle, S.; Schulz-Fademrecht, T.; Garidel, P.; Bechtold-Peters, K.; Frieb, W. Stabilization of IgG1 in Spray-Dried Powders for Inhalation. Eur. J. Pharm. Biopharm. 2008, 69, 793–807. DOI: 10.1016/j.ejpb.2008.02.010.
  • Ramezani, V.; Vatanara, A.; Najafabadi, A. R.; Shokrgozar, M. A.; Khabiri, A.; Seyedabadi, M. A. A Comparative Study on the Physicochemical and Biological Stability of IgG1 and Monoclonal Antibodies During Spray Drying Process. Daru 2014, 22, 31. DOI: 10.1186/2008-2231-22-31.
  • Schüle, S.; Friess, W.; Bechtold-Peters, K.; Garidel, P. Conformational Analysis of Protein Secondary Structure during Spray-Drying of Antibody/Mannitol Formulations. Eur. J. Pharm. Biopharm. 2007, 65, 1–9. DOI: 10.1016/j.ejpb.2006.08.014.
  • Nayak, P. K.; Goode, M.; Chang, D. P.; Rajagopal, K. Ectoine and Hydroxyectoine Stabilize Antibodies in Spray-Dried Formulations at Elevated Temperature and during a Freeze/Thaw Process. Mol. Pharm. 2020, 17, 3291–3297. DOI: 10.1021/acs.molpharmaceut.0c00395.
  • Ramezani, V.; Vatanara, A.; Seyedabadi, M.; Nabi Meibodi, M.; Fanaei, H. Application of Cyclodextrins in Antibody Microparticles: Potentials for Antibody Protection in Spray Drying. Drug Dev. Ind. Pharm. 2017, 43, 1103–1111. DOI: 10.1080/03639045.2017.1293679.
  • Faghihi, H.; Vatanara, A.; Najafabadi, A. R.; Ramezani, V.; Gilani, K. The Use of Amino Acids to Prepare Physically and Conformationally Stable Spray-Dried IgG with Enhanced Aerosol Performance. Int. J. Pharm. 2014, 466, 163–171. DOI: 10.1016/j.ijpharm.2014.03.020.
  • Andya, J. D.; Maa, Y. F.; Costantino, H. R.; Nguyen, P. A.; Dasovich, N.; Sweeney, T. D.; Hsu, C. C.; Shire, S. J. The Effect of Formulation Excipients on Protein Stability and Aerosol Performance of Spray-Dried Powders of a Recombinant Humanized anti-IgE Monoclonal Antibody. Pharm. Res. 1999, 16, 350–358. DOI: 10.1023/A:1018805232453.
  • Sane, S. U.; Wong, R.; Hsu, C. C. Raman Spectroscopic Characterization of Drying-Induced Structural Changes in a Therapeutic Antibody: Correlating Structural Changes with Long-Term Stability. J. Pharm. Sci. 2004, 93, 1005–1018. DOI: 10.1002/jps.20014.
  • Deokar, V.; Sharma, A.; Mody, R.; Volety, S. M. Comparison of Strategies in Development and Manufacturing of Low Viscosity, Ultra-High Concentration Formulation for IgG1 Antibody. J. Pharm. Sci. 2020, 109, 3579–3589. DOI: 10.1016/j.xphs.2020.09.014.
  • Dani, B.; Platz, R.; Tzannis, S. T. High Concentration Formulation Feasibility of Human Immunoglubulin G for Subcutaneous Administration. J. Pharm. Sci. 2007, 96, 1504–1517. DOI: 10.1002/jps.20508.
  • Maa, Y. F.; Nguyen, P. A.; Andya, J. D.; Dasovich, N.; Sweeney, T. D.; Shire, S. J.; Hsu, C. C. Effect of Spray Drying and Subsequent Processing Conditions on Residual Moisture Content and Physical/Biochemical Stability of Protein Inhalation Powders. Pharm. Res. 1998, 15, 768–775. DOI: 10.1023/A:1011983322594.
  • Maa, Y. F.; Nguyen, P. A.; Sit, K.; Hsu, C. C. Spray-Drying Performance of a Bench-Top Spray Dryer for Protein Aerosol Powder Preparation. Biotechnol. Bioeng. 1998, 60, 301–309. DOI: 10.1002/(SICI)1097-0290(19981105)60:3<301::AID-BIT5>3.0.CO;2-L.
  • Massant, J.; Fleurime, S.; Batens, M.; Vanhaerents, H.; Van den Mooter, G. Formulating Monoclonal Antibodies as Powders for Reconstitution at High Concentration Using Spray-Drying: Trehalose/Amino Acid Combinations as Reconstitution Time Reducing and Stability Improving Formulations. Eur. J. Pharm. Biopharm. 2020, 156, 131–142. DOI: 10.1016/j.ejpb.2020.08.019.
  • Maa, Y. F.; Costantino, H. R.; Nguyen, P. A.; Hsu, C. C. The Effect of Operating and Formulation Variables on the Morphology of Spray-Dried Protein Particles. Pharm. Dev. Technol. 1997, 2, 213–223. DOI: 10.3109/10837459709031441.
  • Abdul-Fattah, A. M.; Truong-Le, V.; Yee, L.; Nguyen, L.; Kalonia, D. S.; Cicerone, M. T.; Pikal, M. J. Drying-Induced Variations in Physico-Chemical Properties of Amorphous Pharmaceuticals and Their Impact on Stability (I): Stability of a Monoclonal Antibody. J. Pharm. Sci. 2007, 96, 1983–2008. DOI: 10.1002/jps.20859.
  • Koshari, S. H. S.; Ross, J. L.; Nayak, P. K.; Zarraga, I. E.; Rajagopal, K.; Wagner, N. J.; Lenhoff, A. M. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy. Mol. Pharm. 2017, 14, 546–553. DOI: 10.1021/acs.molpharmaceut.6b00940.
  • Lassner, P.; Adler, M.; Lee, G. Formation of Insoluble Particulates in a Spray-Dried F(ab')(2) fragment. J. Pharm. Sci. 2014, 103, 1021–1031. DOI: 10.1002/jps.23891.
  • Maa, Y. F.; Nguyen, P. A.; Sweeney, T.; Shire, S. J.; Hsu, C. Protein Inhalation Powders: Spray Drying vs Spray Freeze Drying. Pharm. Res. 1999, 16, 249–254. DOI: 10.1023/A:1018828425184.
  • Ramezani, V.; Vatanara, A.; Rouholamini Najafabadi, A.; Gilani, K.; Nabi-Meybodi, M. Screening and Evaluation of Variables in the Formation of Antibody Particles by Spray Drying. Powder Technol. 2013, 233, 341–346. DOI: 10.1016/j.powtec.2012.07.038.
  • Faghihi, H.; Najafabadi, A. R.; Vatanara, A. Optimization and Characterization of Spray-Dried IgG Formulations: A Design of Experiment Approach. Daru 2017, 25, 22. DOI: 10.1186/s40199-017-0187-8.
  • Costantino, H. R.; Andya, J. D.; Nguyen, P. A.; Dasovich, N.; Sweeney, T. D.; Shire, S. J.; Hsu, C. C.; Maa, Y. F. Effect of Mannitol Crystallization on the Stability and Aerosol Performance of a Spray-Dried Pharmaceutical Protein, Recombinant Humanized anti-IgE monoclonal antibody. J. Pharm. Sci. 1998, 87, 1406–1411. DOI: 10.1021/js9800679.
  • Batens, M.; Massant, J.; Teodorescu, B.; Van den Mooter, G. Formulating Monoclonal Antibodies as Powders for Reconstitution at High Concentration Using Spray Drying: Models and Pitfalls. Eur. J. Pharm. Biopharm. 2018, 127, 407–422. DOI: 10.1016/j.ejpb.2018.02.002.
  • Maury, M.; Murphy, K.; Kumar, S.; Mauerer, A.; Lee, G. Spray-Drying of Proteins: Effects of Sorbitol and Trehalose on Aggregation and FT-IR Amide I Spectrum of an Immunoglobulin G. Eur. J. Pharm. Biopharm. 2005, 59, 251–261. DOI: 10.1016/j.ejpb.2004.07.010.
  • Bowen, M.; Turok, R.; Maa, Y. F. Spray Drying of Monoclonal Antibodies: Investigating Powder-Based Biologic Drug Substance Bulk Storage. Dry Technol. 2013, 31, 1441–1450. DOI: 10.1080/07373937.2013.796968.
  • Moussa, E. M.; Wilson, N. E.; Zhou, Q. T.; Singh, S. K.; Nema, S.; Topp, E. M. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (SsHDX-MS). Pharm. Res. 2018, 35, 12. DOI: 10.1007/s11095-017-2318-9.
  • Gikanga, B.; Turok, R.; Hui, A.; Bowen, M.; Stauch, O. B.; Maa, Y. F. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale. PDA J. Pharm. Sci. Technol. 2015, 69, 59–73. DOI: 10.5731/pdajpst.2015.01003.
  • Principi, N.; Silvestri, E.; Esposito, S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front. Pharmacol. 2019, 10, 513. DOI: 10.3389/fphar.2019.00513.
  • Leung, S. S. Y.; Parumasivam, T.; Gao, F. G.; Carter, E. A.; Carrigy, N. B.; Vehring, R.; Finlay, W. H.; Morales, S.; Britton, W. J.; Kutter, E.; et al. Effects of Storage Conditions on the Stability of Spray Dried, Inhalable Bacteriophage Powders. Int. J. Pharm. 2017, 521, 141–149. DOI: 10.1016/j.ijpharm.2017.01.060.
  • Leung, S. S. Y.; Parumasivam, T.; Gao, F. G.; Carrigy, N. B.; Vehring, R.; Finlay, W. H.; Morales, S.; Britton, W. J.; Kutter, E.; Chan, H.-K. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections. Pharm. Res. 2016, 33, 1486–1496. DOI: 10.1007/s11095-016-1892-6.
  • Matinkhoo, S.; Lynch, K. H.; Dennis, J. J.; Finlay, W. H.; Vehring, R. Spray-Dried Respirable Powders Containing Bacteriophages for the Treatment of Pulmonary Infections. J. Pharm. Sci. 2011, 100, 5197–5205. DOI: 10.1002/jps.22715.
  • Kunamneni, A.; Ogaugwu, C.; Goli, D. Enzymes as Therapeutic Agents. In Enzymes in Human and Animal Nutrition; Nunes, C. S., Kumar, V., Eds.; Academic Press: Cambridge, MA, 2018; pp 301–312. DOI: 10.1016/B978-0-12-805419-2.00015-0.
  • Baldo, B. A. Enzymes Approved for Human Therapy: Indications, Mechanisms and Adverse Effects. BioDrugs. 2015, 29, 31–55. DOI: 10.1007/s40259-015-0116-7.
  • Bisswanger, H. Enzyme Assays. Perspect. Sci. 2014, 1, 41–55. DOI: 10.1016/j.pisc.2014.02.005.
  • Millqvist-Fureby, A.; Malmsten, M.; Bergenståhl, B. Spray-Drying of Trypsin – Surface Characterisation and Activity Preservation. Int. J. Pharm. 1999, 188, 243–253. DOI: 10.1016/S0378-5173(99)00226-4.
  • Branchu, S.; Forbes, R. T.; York, P.; Petrén, S.; Nyqvist, H.; Camber, O. Hydroxypropyl-Beta-Cyclodextrin Inhibits Spray-Drying-Induced Inactivation of Beta-Galactosidase. J. Pharm. Sci. 1999, 88, 905–911 DOI: 10.1021/js9804819.
  • Broadhead, J.; Rouan, S. K. E.; Hau, I.; Rhodes, C. T. The Effect of Process and Formulation Variables on the Properties of Spray-Dried Beta-Galactosidase. J. Pharm. Pharmacol. 1994, 46, 458–467. DOI: 10.1111/j.2042-7158.1994.tb03828.x.
  • Wilson, N. E.; Topp, E. M.; Zhou, Q. T. Effects of Drying Method and Excipient on Structure and Stability of Protein Solids Using Solid-State Hydrogen/Deuterium Exchange Mass Spectrometry (SsHDX-MS). Int. J. Pharm. 2019, 567, 118470. DOI: 10.1016/j.ijpharm.2019.118470.
  • Lipiäinen, T.; Räikkönen, H.; Kolu, A. M.; Peltoniemi, M.; Juppo, A. Comparison of Melibiose and Trehalose as Stabilising Excipients for Spray-Dried β-Galactosidase Formulations. Int. J. Pharm. 2018, 543, 21–28. DOI: 10.1016/j.ijpharm.2018.03.035.
  • Ji, S.; Thulstrup, P. W.; Mu, H.; Hansen, S. H.; van de Weert, M.; Rantanen, J.; Yang, M. Investigation of Factors Affecting the Stability of Lysozyme Spray Dried from Ethanol-Water Solutions. Int. J. Pharm. 2017, 534, 263–271. DOI: 10.1016/j.ijpharm.2017.10.021.
  • Haj-Ahmad, R. R.; Mamayusupov, M.; Elkordy, E. A.; Elkordy, A. A. Influences of Copolymers (Copovidone, Eudragit RL PO and Kollicoat MAE 30 DP) on Stability and Bioactivity of Spray-Dried and Freeze-Dried lysozyme. Drug Dev. Ind. Pharm. 2016, 42, 2086–2096. DOI: 10.1080/03639045.2016.1200068.
  • Schaefer, J.; Lee, G. Making Large, Flowable Particles of Protein or Disaccharide in a Mini-Scale Spray Dryer. Pharm. Dev. Technol. 2016, 21, 803–811. DOI: 10.3109/10837450.2015.1063649.
  • Wan, F.; Maltesen, M. J.; Andersen, S. K.; Bjerregaard, S.; Foged, C.; Rantanen, J.; Yang, M. One-Step Production of Protein-Loaded PLGA Microparticles via Spray Drying Using 3-Fluid Nozzle. Pharm. Res. 2014, 31, 1967–1977. DOI: 10.1007/s11095-014-1299-1.
  • Lorenzen, E.; Lee, G. Trehalose and Sorbitol Alter the Kinetic Pattern of Inactivation of Glutamate Dehydrogenase during Drying in Levitated Microdroplets. J. Pharm. Sci. 2013, 102, 4268–4273. DOI: 10.1002/jps.23743.
  • Haj-Ahmad, R. R.; Elkordy, A. A.; Chaw, C. S.; Moore, A. Compare and Contrast the Effects of Surfactants (PluronicF-127 and CremophorEL) and Sugars (β-Cyclodextrin and Inulin) on Properties of Spray Dried and Crystallised Lysozyme. Eur. J. Pharm. Sci. 2013, 49, 519–534. DOI: 10.1016/j.ejps.2013.05.004.
  • Bögelein, J.; Lee, G. Cyclone Selection Influences Protein Damage during Drying in a Mini Spray-Dryer. Int. J. Pharm. 2010, 401, 68–71. DOI: 10.1016/j.ijpharm.2010.09.023.
  • Hulse, W. L.; Forbes, R. T.; Bonner, M. C.; Getrost, M. Do Co-Spray Dried Excipients Offer Better Lysozyme Stabilisation than Single Excipients? Eur. J. Pharm. Sci. 2008, 33, 294–305. DOI: 10.1016/j.ejps.2007.12.007.
  • Elkordy, A. A.; Forbes, R. T.; Barry, B. W. Study of Protein Conformational Stability and Integrity Using Calorimetry and FT-Raman Spectroscopy Correlated with Enzymatic Activity. Eur. J. Pharm. Sci. 2008, 33, 177–190. DOI: 10.1016/j.ejps.2007.11.002.
  • Liao, Y. H.; Brown, M. B.; Jones, S. A.; Nazir, T.; Martin, G. P. The Effects of Polyvinyl Alcohol on the in Vitro Stability and Delivery of Spray-Dried Protein Particles from Surfactant-Free HFA 134a-Based Pressurised Metered Dose Inhalers. Int. J. Pharm. 2005, 304, 29–39. DOI: 10.1016/j.ijpharm.2005.07.013.
  • Ziaee, A.; Albadarin, A. B.; Padrela, L.; Ung, M.-T.; Femmer, T.; Walker, G.; O'Reilly, E. A Rational Approach towards Spray Drying of Biopharmaceuticals: The Case of Lysozyme. Powder Technol. 2020, 366, 206–215. DOI: 10.1016/j.powtec.2020.02.057.
  • Li, H. Y.; Song, X.; Seville, P. C. The Use of Sodium Carboxymethylcellulose in the Preparation of Spray-Dried Proteins for Pulmonary Drug Delivery. Eur. J. Pharm. Sci. 2010, 40, 56–61. DOI: 10.1016/j.ejps.2010.02.007.
  • Ji, S.; Thulstrup, P. W.; Mu, H.; Hansen, S. H.; van de Weert, M.; Rantanen, J.; Yang, M. Effect of Ethanol as a Co-Solvent on the Aerosol Performance and Stability of Spray-Dried Lysozyme. Int. J. Pharm. 2016, 513, 175–182. DOI: 10.1016/j.ijpharm.2016.09.025.
  • Grohganz, H.; Lee, Y. Y.; Rantanen, J.; Yang, M. The Influence of Lysozyme on Mannitol Polymorphism in Freeze-Dried and Spray-Dried Formulations Depends on the Selection of the Drying Process. Int. J. Pharm. 2013, 447, 224–230. DOI: 10.1016/j.ijpharm.2013.03.003.
  • Lorenzen, E.; Lee, G. Anomalous Redispersibility Behavior of Glycerophosphate Deyhydrogenase Microparticles Dried in an Acoustic Levitator or Bench-Top Spray Dryer. Int. J. Pharm. 2016, 498, 316–317. DOI: 10.1016/j.ijpharm.2015.12.039.
  • Schaefer, J.; Lee, G. Arrhenius Activation Energy of Damage to Catalase during Spray-Drying. Int. J. Pharm. 2015, 489, 124–130. DOI: 10.1016/j.ijpharm.2015.04.078.
  • Ehrhardt, C. Inhalation Biopharmaceutics: Progress towards Comprehending the Fate of Inhaled Medicines. Pharm. Res. 2017, 34, 2451–2453. DOI: 10.1007/s11095-017-2304-2.
  • Forbes, R. T.; Barry, B. W.; Elkordy, A. A. Preparation and Characterisation of Spray-Dried and Crystallised Trypsin: FT-Raman Study to Detect Protein Denaturation after Thermal Stress. Eur. J. Pharm. Sci. 2007, 30, 315–323. DOI: 10.1016/j.ejps.2006.11.019.
  • Elkordy, A. A.; Forbes, R. T.; Barry, B. W. Integrity of Crystalline Lysozyme Exceeds That of a Spray-Dried Form. Int. J. Pharm. 2002, 247, 79–90. DOI: 10.1016/S0378-5173(02)00379-4.
  • Suihko, E. J.; Forbes, R. T.; Apperley, D. C. A Solid-State NMR Study of Molecular Mobility and Phase Separation in Co-Spray-Dried Protein-Sugar Particles. Eur. J. Pharm. Sci. 2005, 25, 105–112. DOI: 10.1016/j.ejps.2005.02.002.
  • Hulse, W. L.; Forbes, R. T.; Bonner, M. C.; Getrost, M. Influence of Protein on Mannitol Polymorphic Form Produced during Co-Spray Drying. Int. J. Pharm. 2009, 382, 67–72. DOI: 10.1016/j.ijpharm.2009.08.007.
  • Grasmeijer, N.; Tiraboschi, V.; Woerdenbag, H. J.; Frijlink, H. W.; Hinrichs, W. L. J. Identifying Critical Process Steps to Protein Stability during Spray Drying Using a Vibrating Mesh or a Two-Fluid Nozzle. Eur. J. Pharm. Sci. 2019, 128, 152–157. DOI: 10.1016/j.ejps.2018.11.027.
  • Ajmera, A.; Scherließ, R. Stabilisation of Proteins via Mixtures of Amino Acids during Spray Drying. Int. J. Pharm. 2014, 463, 98–107. DOI: 10.1016/j.ijpharm.2014.01.002.
  • Ógáin, O. N.; Li, J.; Tajber, L.; Corrigan, O. I.; Healy, A. M. Particle Engineering of Materials for Oral Inhalation by Dry Powder Inhalers. I-Particles of Sugar Excipients (Trehalose and Raffinose) for Protein Delivery. Int. J. Pharm. 2011, 405, 23–35. DOI: 10.1016/j.ijpharm.2010.11.039.
  • Adler, M.; Lee, G. Stability and Surface Activity of Lactate Dehydrogenase in Spray-Dried Trehalose. J. Pharm. Sci. 1999, 88, 199–208. DOI: 10.1021/js980321x.
  • Chan, H. K.; Clark, A.; Gonda, I.; Mumenthaler, M.; Hsu, C. Spray Dried Powders and Powder Blends of Recombinant Human Deoxyribonuclease (ase) for Aerosol Delivery. Pharm. Res. 1997, 14, 431–437. DOI: 10.1023/A:1012035113276.
  • Yoshii, H.; Buche, F.; Takeuchi, N.; Terrol, C.; Ohgawara, M.; Furuta, T. Effects of Protein on Retention of ADH Enzyme Activity Encapsulated in Trehalose Matrices by Spray Drying. J. Food Eng. 2008, 87, 34–39. DOI: 10.1016/j.jfoodeng.2007.03.014.
  • Hyman, P.; Kelner, P. Pharmacotherapeutic Uses of Hormones. Nurs. Clin. North Am. 2007, 42, 1–18. DOI: 10.1016/j.cnur.2006.11.002.
  • Edwards, C. M. B.; Cohen, M. A.; Bloom, S. R. Peptides as Drugs. QJM. 1999, 92, 1–4. DOI: 10.1093/qjmed/92.1.1.
  • Lechuga-Ballesteros, D.; Charan, C.; Stults, C. L. M.; Stevenson, C. L.; Miller, D. P.; Vehring, R.; Tep, V.; Kuo, M. C. Trileucine Improves Aerosol Performance and Stability of Spray-Dried Powders for Inhalation. J. Pharm. Sci. 2008, 97, 287–302. DOI: 10.1002/jps.21078.
  • Maa, Y. F.; Nguyen, P. A. T.; Hsu, S. W. Spray-Drying of Air-Liquid Interface Sensitive Recombinant Human Growth Hormone. J. Pharm. Sci. 1998, 87, 152–159. DOI: 10.1021/js970308x.
  • Jalalipour, M.; Gilani, K.; Tajerzadeh, H.; Najafabadi, A. R.; Barghi, M. Characterization and Aerodynamic Evaluation of Spray Dried Recombinant Human Growth Hormone Using Protein Stabilizing Agents. Int. J. Pharm. 2008, 352, 209–216. DOI: 10.1016/j.ijpharm.2007.10.053.
  • Jalalipour, M.; Najafabadi, A. R.; Gilani, K.; Esmaily, H.; Tajerzadeh, H. Effect of Dimethyl-Beta-Cyclodextrin Concentrations on the Pulmonary Delivery of Recombinant Human Growth Hormone Dry Powder in Rats. J. Pharm. Sci. 2008, 97, 5176–5185. DOI: 10.1002/jps.21353.
  • Hahn, S. K.; Kim, S. J.; Kim, M. J.; Kim, D. H. Characterization and in Vivo Study of Sustained-Release Formulation of Human Growth Hormone Using Sodium Hyaluronate. Pharm. Res. 2004, 21, 1374–1381. DOI: 10.1023/B:PHAM.0000036910.41224.de.
  • Bosquillon, C.; Préat, V.; Vanbever, R. Pulmonary Delivery of Growth Hormone Using Dry Powders and Visualization of its Local Fate in Rats. J. Control Release. 2004, 96, 233–244. DOI: 10.1016/j.jconrel.2004.01.027.
  • Bosquillon, C.; Rouxhet, P. G.; Ahimou, F.; Simon, D.; Culot, C.; Préat, V.; Vanbever, R. Aerosolization Properties, Surface Composition and Physical State of Spray-Dried Protein Powders. J. Control Release. 2004, 99, 357–367. DOI: 10.1016/j.jconrel.2004.07.022.
  • Hou, A.; Li, L.; Huang, Y.; Singh, V.; Zhu, C.; Pan, X.; Quan, G.; Wu, C. Fragmented Particles Containing Octreotide Acetate Prepared by Spray Drying Technique for Dry Powder Inhalation. Drug Deliv. Transl. Res. 2018, 8, 693–701. DOI: 10.1007/s13346-018-0515-7.
  • Codrons, V.; Vanderbist, F.; Verbeeck, R. K.; Arras, M.; Lison, D.; Préat, V.; Vanbever, R. Systemic Delivery of Parathyroid Hormone (1–34) Using Inhalation Dry Powders in Rats. J. Pharm. Sci. 2003, 92, 938–950. DOI: 10.1002/jps.10346.
  • Shoyele, S. A.; Sivadas, N.; Cryan, S. A. The Effects of Excipients and Particle Engineering on the Biophysical Stability and Aerosol Performance of Parathyroid Hormone (1-34) Prepared as a Dry Powder for Inhalation. AAPS PharmSciTech. 2011, 12, 304–311. DOI: 10.1208/s12249-011-9585-2.
  • Chan, H. K.; Clark, A. R.; Feeley, J. C.; Kuo, M. C.; Lehrman, S. R.; Pikal-Cleland, K.; Miller, D. P.; Vehring, R.; Lechuga-Ballesteros, D. Physical Stability of Salmon Calcitonin Spray-Dried Powders for Inhalation. J. Pharm. Sci. 2004, 93, 792–804. DOI: 10.1002/jps.10594.
  • Yang, M.; Velaga, S.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y.; Hovgaard, L.; van de Weert, M.; Frokjaer, S. Characterisation of Salmon Calcitonin in Spray-Dried Powder for Inhalation. Effect of Chitosan. Int. J. Pharm. 2007, 331, 176–181. DOI: 10.1016/j.ijpharm.2006.10.030.
  • Irngartinger, M.; Camuglia, V.; Damm, M.; Goede, J.; Frijlink, H. W. Pulmonary Delivery of Therapeutic Peptides via Dry Powder Inhalation: Effects of Micronisation and Manufacturing. Eur. J. Pharm. Biopharm. 2004, 58, 7–14. DOI: 10.1016/j.ejpb.2004.03.016.
  • Guevara, T.; Yiallouros, I.; Kappelhoff, R.; Bissdorf, S.; Stöcker, W.; Gomis-Rüth, F. X. Proenzyme Structure and Activation of Astacin Metallopeptidase. J. Biol. Chem. 2010, 285, 13958–13965. DOI: 10.1074/jbc.M109.097436.
  • Tzannis, S. T.; Prestrelski, S. J. Activity-Stability Considerations of Trypsinogen during Spray Drying: Effects of Sucrose. J. Pharm. Sci. 1999, 88, 351–359. DOI: 10.1021/js980011e.
  • Li, X. Protein Structure and Modification of FGFs. In Fibroblast Growth Factors, 1st ed.; Li, X. B. T.-F. G. F., Ed.; Academic Press, 2018; pp 385–476. DOI: 10.1016/B978-0-12-816142-5.00007-2.
  • Ibrahim, B. M.; Jun, S. W.; Lee, M. Y.; Kang, S. H.; Yeo, Y. Development of Inhalable Dry Powder Formulation of Basic Fibroblast Growth Factor. Int. J. Pharm. 2010, 385, 66–72. DOI: 10.1016/j.ijpharm.2009.10.029.
  • Schaller, J.; Gerber, S.; Kämpfer, U.; Lejon, S.; Trachsel, C. Transport and Storage. In Human Blood Plasma Proteins: Structure and Function; Schaller, J., Gerber, S., Kämpfer, U., Lejon, S., Trachsel, C., Eds.; John Wiley & Sons, Ltd., 2008; pp 451–486.
  • Burmester, T. Evolution of Respiratory Proteins across the Pancrustacea. Integr. Comp. Biol. 2015, 55, 792–801. DOI: 10.1093/icb/icv079.
  • Labrude, P.; Rasolomanana, M.; Vigneron, C.; Thirion, C.; Chaillot, B. Protective Effect of Sucrose on Spray Drying of Oxyhemoglobin. J. Pharm. Sci. 1989, 78, 223–229. DOI: 10.1002/jps.2600780311.
  • Wilson, N. E.; Mutukuri, T. T.; Zemlyanov, D. Y.; Taylor, L. S.; Topp, E. M.; Zhou, Q. T. Surface Composition and Formulation Heterogeneity of Protein Solids Produced by Spray Drying. Pharm. Res. 2019, 37, 14. DOI: 10.1007/s11095-019-2738-9.
  • Chablani, L.; Tawde, S. A.; D'Souza, M. J. Spray-Dried Microparticles: A Potential Vehicle for Oral Delivery of Vaccines. J. Microencapsul. 2012, 29, 388–397. DOI: 10.3109/02652048.2011.651503.
  • Möbus, K.; Siepmann, J.; Bodmeier, R. Zinc-Alginate Microparticles for Controlled Pulmonary Delivery of Proteins Prepared by Spray-Drying. Eur. J. Pharm. Biopharm. 2012, 81, 121–130. DOI: 10.1016/j.ejpb.2012.01.018.
  • Cho, H. J.; Oh, D.; Kim, D. D. Polysaccharides-Based Spray-Dried Microspheres for Maintained Stability and Controlled Release of Protein. J. Pharm. Investig. 2012, 42, 83–88. DOI: 10.1007/s40005-012-0013-8.
  • Kusonwiriyawong, C.; Pichayakorn, W.; Lipipun, V.; Ritthidej, G. C. Retained Integrity of Protein Encapsulated in Spray-Dried Chitosan Microparticles. J. Microencapsul. 2009, 26, 111–121. DOI: 10.1080/02652040802190937.
  • Salama, R. O.; Traini, D.; Chan, H. K.; Sung, A.; Ammit, A. J.; Young, P. M. Preparation and Evaluation of Controlled Release Microparticles for Respiratory Protein Therapy. J. Pharm. Sci. 2009, 98, 2709–2717. DOI: 10.1002/jps.21653.
  • Sivadas, N.; O'Rourke, D.; Tobin, A.; Buckley, V.; Ramtoola, Z.; Kelly, J. G.; Hickey, A. J.; Cryan, S.-A. A Comparative Study of a Range of Polymeric Microspheres as Potential Carriers for the Inhalation of Proteins. Int. J. Pharm. 2008, 358, 159–167. DOI: 10.1016/j.ijpharm.2008.03.024.
  • Jalalipour, M.; Rouholamini Najafabadi, A.; Tajerzadeh, H.; Gilani, K.; Barghi, M. The Effect of Protein Stabilizers on the Physical State and Aerosol Performance of Spray-Dried Albumin Microparticles. J. Drug Deliv. Sci. Technol. 2007, 17, 149–153. DOI: 10.1016/S1773-2247(07)50023-7.
  • Elversson, J.; Millqvist-Fureby, A. In Situ Coating-An Approach for Particle Modification and Encapsulation of Proteins during Spray-Drying. Int. J. Pharm. 2006, 323, 52–63. DOI: 10.1016/j.ijpharm.2006.05.066.
  • Chew, N. Y. K.; Chan, H. K. Use of Solid Corrugated Particles to Enhance Powder Aerosol Performance. Pharm. Res. 2001, 18, 1570–1577. DOI: 10.1023/A:1013082531394.
  • Adi, S.; Adi, H.; Chan, H. K.; Tong, Z.; Yang, R.; Yu, A. Effects of Mechanical Impaction on Aerosol Performance of Particles with Different Surface Roughness. Powder Technol. 2013, 236, 164–170. DOI: 10.1016/j.powtec.2012.02.051.
  • Adler, M.; Unger, M.; Lee, G. Surface Composition of Spray-Dried Particles of Bovine Serum Albumin/Trehalose/Surfactant. Pharm. Res. 2000, 17, 863–870. DOI: 10.1023/A:1007568511399.
  • Landström, K.; Alsins, J.; Bergenståhl, B. Competitive Protein Adsorption between Bovine Serum Albumin and β-Lactoglobulin during Spray-Drying. Food Hydrocoll. 2000, 14, 75–82. DOI: 10.1016/S0268-005X(99)00047-8.
  • Fäldt, P.; Bergenståhl, B. The Surface Composition of Spray-Dried Protein-Lactose Powders. Colloids Surf. A Physicochem. Eng. Asp. 1994, 90, 183–190. DOI: 10.1016/0927-7757(94)02914-8.
  • Shmool, T. A.; Batens, M.; Massant, J.; Van den Mooter, G.; Zeitler, J. A. Tracking Solid State Dynamics in Spray-Dried Protein Powders at Infrared and Terahertz Frequencies. Eur. J. Pharm. Biopharm. 2019, 144, 244–251. DOI: 10.1016/j.ejpb.2019.09.013.
  • Reslan, M.; Demir, Y. K.; Trout, B. L.; Chan, H. K.; Kayser, V. Lack of a Synergistic Effect of Arginine-Glutamic Acid on the Physical Stability of Spray-Dried Bovine Serum Albumin. Pharm. Dev. Technol. 2017, 22, 785–791. DOI: 10.1080/10837450.2016.1185116.
  • Wan, F.; Maltesen, M. J.; Andersen, S. K.; Bjerregaard, S.; Baldursdottir, S. G.; Foged, C.; Rantanen, J.; Yang, M. Modulating Protein Release Profiles by Incorporating Hyaluronic Acid into PLGA Microparticles via a Spray Dryer Equipped with a 3-Fluid Nozzle. Pharm. Res. 2014, 31, 2940–2951. DOI: 10.1007/s11095-014-1387-2.
  • Shastri, P. N.; Ubale, R. V.; D’Souza, M. J. Implementation of Mixture Design for Formulation of Albumin Containing Enteric-Coated Spray-Dried Microparticles. Drug Dev. Ind. Pharm. 2013, 39, 164–175. DOI: 10.3109/03639045.2012.664148.
  • Greenwood, B. The Contribution of Vaccination to Global Health: Past, Present and Future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130433. DOI: 10.1098/rstb.2013.0433.
  • Saluja, V.; Amorij, J. P.; Kapteyn, J. C.; de Boer, A. H.; Frijlink, H. W.; Hinrichs, W. L. J. A Comparison between Spray Drying and Spray Freeze Drying to Produce an Influenza Subunit Vaccine Powder for Inhalation. J. Control Release. 2010, 144, 127–133. DOI: 10.1016/j.jconrel.2010.02.025.
  • Jin, T. H.; Tsao, E.; Goudsmit, J.; Dheenadhayalan, V.; Sadoff, J. Stabilizing Formulations for Inhalable Powders of an Adenovirus 35-Vectored Tuberculosis (TB) Vaccine (AERAS-402). Vaccine. 2010, 28, 4369–4375. DOI: 10.1016/j.vaccine.2010.04.059.
  • Wong, Y. L.; Sampson, S.; Germishuizen, W. A.; Goonesekera, S.; Caponetti, G.; Sadoff, J.; Bloom, B. R.; Edwards, D. Drying a Tuberculosis Vaccine without Freezing. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2591–2595. DOI: 10.1073/pnas.0611430104.
  • Kunda, N. K.; Peabody, J.; Zhai, L.; Price, D. N.; Chackerian, B.; Tumban, E.; Muttil, P. Evaluation of the Thermal Stability and the Protective Efficacy of Spray-Dried HPV Vaccine, Gardasil® 9. Hum. Vaccin. Immunother. 2019, 15, 1995–2002. DOI: 10.1080/21645515.2019.1593727.
  • López, Y.; Pastor, M.; Infante, J. F.; Díaz, D.; Oliva, R.; Fernández, S.; Cedré, B.; Hernández, T.; Campos, L.; Esquisabel, A.; et al. Repeated Dose Toxicity Study of Vibrio cholerae-Loaded Gastro-Resistant Microparticles. J. Microencapsul. 2014, 31, 86–92. DOI: 10.3109/02652048.2013.808278.
  • Bhowmik, T.; D'Souza, B.; Shashidharamurthy, R.; Oettinger, C.; Selvaraj, P.; D'Souza, M. J. A Novel Microparticulate Vaccine for Melanoma Cancer Using Transdermal Delivery. J. Microencapsul. 2011, 28, 294–300. DOI: 10.3109/02652048.2011.559287.
  • Lai, Y. H.; D'Souza, M. J. Formulation and Evaluation of an Oral Melanoma Vaccine. J. Microencapsul. 2007, 24, 235–252. DOI: 10.1080/02652040601162608.
  • Liao, C. W.; Cheng, I. C.; Yeh, K. S.; Lin, F. Y.; Weng, C. N. Release Characteristics of Microspheres Prepared by Co-Spray Drying Actinobacillus Pleuropneumoniae Antigens and Aqueous Ethyl-Cellulose Dispersion. J. Microencapsul. 2001, 18, 285–297. DOI: 10.1080/02652040010019442.
  • Garcea, R. L.; Meinerz, N. M.; Dong, M.; Funke, H.; Ghazvini, S.; Randolph, T. W. Single-Administration, Thermostable Human Papillomavirus Vaccines Prepared with Atomic Layer Deposition Technology. NPJ Vaccines. 2020, 5, 45. DOI: 10.1038/s41541-020-0195-4.
  • Abdul-Fattah, A. M.; Truong-Le, V.; Yee, L.; Pan, E.; Ao, Y.; Kalonia, D. S.; Pikal, M. J. Drying-Induced Variations in Physico-Chemical Properties of Amorphous Pharmaceuticals and Their Impact on Stability II: Stability of a Vaccine. Pharm. Res. 2007, 24, 715–727. DOI: 10.1007/s11095-006-9191-2.
  • Kanojia, G.; Raeven, R. H. M.; van der Maas, L.; Bindels, T. H. E.; van Riet, E.; Metz, B.; Soema, P. C.; Ten Have, R.; Frijlink, H. W.; Amorij, J.-P.; et al. A. Development of a Thermostable Spray Dried Outer Membrane Vesicle Pertussis Vaccine for Pulmonary Immunization. J. Control. Release. 2018, 286, 167–178. DOI: 10.1016/j.jconrel.2018.07.035.
  • Morgan, B. A.; Xing, Z.; Cranston, E. D.; Thompson, M. R. Acoustic Levitation as a Screening Method for Excipient Selection in the Development of Dry Powder Vaccines. Int. J. Pharm. 2019, 563, 71–78. DOI: 10.1016/j.ijpharm.2019.03.026.
  • Sou, T.; Morton, D. A. V.; Williamson, M.; Meeusen, E. N.; Kaminskas, L. M.; McIntosh, M. P. Spray-Dried Influenza Antigen with Trehalose and Leucine Produces an Aerosolizable Powder Vaccine Formulation That Induces Strong Systemic and Mucosal Immunity after Pulmonary Administration. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 361–371. DOI: 10.1089/jamp.2014.1176.
  • LeClair, D. A.; Cranston, E. D.; Xing, Z.; Thompson, M. R. Optimization of Spray Drying Conditions for Yield, Particle Size and Biological Activity of Thermally Stable Viral Vectors. Pharm. Res. 2016, 33, 2763–2776. DOI: 10.1007/s11095-016-2003-4.
  • Leclair, D. A.; Cranston, E. D.; Xing, Z.; Thompson, M. R. Evaluation of Excipients for Enhanced Thermal Stabilization of a Human Type 5 Adenoviral Vector through Spray Drying. Int. J. Pharm. 2016, 506, 289–301. DOI: 10.1016/j.ijpharm.2016.04.067.
  • Ohtake, S.; Martin, R. A.; Yee, L.; Chen, D.; Kristensen, D. D.; Lechuga-Ballesteros, D.; Truong-Le, V. Heat-Stable Measles Vaccine Produced by Spray Drying. Vaccine. 2010, 28, 1275–1284. DOI: 10.1016/j.vaccine.2009.11.024.
  • Año, G.; Esquisabel, A.; Pastor, M.; Talavera, A.; Cedré, B.; Fernández, S.; Sifontes, S.; Aranguren, Y.; Falero, G.; García, L.; et al. A New Oral Vaccine Candidate Based on the Microencapsulation by Spray-Drying of Inactivated Vibrio cholerae. Vaccine. 2011, 29, 5758–5764. DOI: 10.1016/j.vaccine.2011.05.098.
  • Saboo, S.; Tumban, E.; Peabody, J.; Wafula, D.; Peabody, D. S.; Chackerian, B.; Muttil, P. Optimized Formulation of a Thermostable Spray-Dried Virus-Like Particle Vaccine against Human Papillomavirus. Mol. Pharm. 2016, 13, 1646–1655. DOI: 10.1021/acs.molpharmaceut.6b00072.
  • Kunda, N. K.; Wafula, D.; Tram, M.; Wu, T. H.; Muttil, P. A Stable Live Bacterial Vaccine. Eur. J. Pharm. Biopharm. 2016, 103, 109–117. DOI: 10.1016/j.ejpb.2016.03.027.
  • Mensink, M. A.; Frijlink, H. W.; van der Voort Maarschalk, K.; Hinrichs, W. L. J. How Sugars Protect Proteins in the Solid State and during Drying (Review): Mechanisms of Stabilization in Relation to Stress Conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. DOI: 10.1016/j.ejpb.2017.01.024.
  • Ubbink, J. Structural and Thermodynamic Aspects of Plasticization and Antiplasticization in Glassy Encapsulation and Biostabilization Matrices. Adv. Drug Deliv. Rev. 2016, 100, 10–26. DOI: 10.1016/j.addr.2015.12.019.
  • Carpenter, J. F.; Crowe, J. H. An Infrared Spectroscopic Study of the Interactions of Carbohydrates with Dried Proteins. Biochemistry. 1989, 28, 3916–3922. DOI: 10.1021/bi00435a044.
  • Batens, M.; Shmool, T. A.; Massant, J.; Zeitler, J. A.; Van Den Mooter, G. Advancing Predictions of Protein Stability in the Solid State. Phys. Chem. Chem. Phys. 2020, 22, 17247–17254. DOI: 10.1039/d0cp00341g.
  • Livesey, G. Health Potential of Polyols as Sugar Replacers, with Emphasis on Low Glycaemic Properties. Nutr. Res. Rev. 2003, 16, 163–191. DOI: 10.1079/NRR200371.
  • Ionova, Y.; Wilson, L. Biologic Excipients: Importance of Clinical Awareness of Inactive Ingredients. PLoS One. 2020, 15, e0235076. DOI: 10.1371/journal.pone.0235076.
  • Razavi Rohani, S. S.; Abnous, K.; Tafaghodi, M. Preparation and Characterization of Spray-dried powders intended for Pulmonary Delivery of Insulin with Regard to the Selection of Excipients. Int. J. Pharm. 2014, 465, 464–478. DOI: 10.1016/j.ijpharm.2014.02.030.
  • Kulkarni, S. S.; Patel, S. M.; Bogner, R. H. Reconstitution Time for Highly Concentrated Lyophilized Proteins: Role of Formulation and Protein. J. Pharm. Sci. 2020, 109, 2975–2985. DOI: 10.1016/j.xphs.2020.05.029.
  • Chen, D.; Kapre, S.; Goel, A.; Suresh, K.; Beri, S.; Hickling, J.; Jensen, J.; Lal, M.; Preaud, J. M.; Laforce, M.; et al. Thermostable Formulations of a Hepatitis B Vaccine and a Meningitis a Polysaccharide Conjugate Vaccine Produced by a Spray Drying Method. Vaccine. 2010, 28, 5093–5099. DOI: 10.1016/j.vaccine.2010.04.112.
  • Malferrari, M.; Savitsky, A.; Lubitz, W.; Möbius, K.; Venturoli, G. Protein Immobilization Capabilities of Sucrose and Trehalose Glasses: The Effect of Protein/Sugar Concentration Unraveled by High-Field EPR. J. Phys. Chem. Lett. 2016, 7, 4871–4877. DOI: 10.1021/acs.jpclett.6b02449.
  • Serno, T.; Geidobler, R.; Winter, G. Protein Stabilization by Cyclodextrins in the Liquid and Dried State. Adv. Drug Deliv. Rev. 2011, 63, 1086–1106. DOI: 10.1016/j.addr.2011.08.003.
  • De Rosa, G.; Larobina, D.; Immacolata La Rotonda, M.; Musto, P.; Quaglia, F.; Ungaro, F. How Cyclodextrin Incorporation Affects the Properties of Protein-Loaded PLGA-Based Microspheres: The Case of Insulin/Hydroxypropyl-Beta-Cyclodextrin System. J. Control. Release. 2005, 102, 71–83. DOI: 10.1016/j.jconrel.2004.09.030.
  • Abdul-Fattah, A. M.; Lechuga-Ballesteros, D.; Kalonia, D. S.; Pikal, M. J. The Impact of Drying Method and Formulation on the Physical Properties and Stability of Methionyl Human Growth Hormone in the Amorphous Solid State. J. Pharm. Sci. 2008, 97, 163–184. DOI: 10.1002/jps.21085.
  • Mollmann, S. H.; Bukrinsky, J. T.; Elofsson, U.; Elversson, J.; Frokjaer, S.; Thalberg, K.; Millqvist-Fureby, A. The Stability of Insulin in Solid Formulations Containing Melezitose and Starch. Effects of Processing and Excipients. Drug Dev. Ind. Pharm. 2006, 32, 765–778. DOI: 10.1080/03639040600712458.
  • Tonnis, W. F.; Mensink, M. A.; De Jager, A.; Van Der Voort Maarschalk, K.; Frijlink, H. W.; Hinrichs, W. L. J. Size and Molecular Flexibility of Sugars Determine the Storage Stability of Freeze-Dried Proteins. Mol. Pharm. 2015, 12, 684–694. DOI: 10.1021/mp500423z.
  • Song, E.-H.; Shang, J.; Ratner, D. M. Polysaccharides. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M. B. T.-P. S. A. C. R., Eds.; Elsevier: Amsterdam, 2012; pp 137–155. DOI: 10.1016/B978-0-444-53349-4.00246-6.
  • Kuehl, P. J.; Boyden, T.; Dobry, D. E.; Doyle-Eisele, M.; Friesen, D. T.; McDonald, J. D.; Murri, B. G.; Vodak, D. T.; Lyon, D. K. Inhaled PYY(3-36) Dry-Powder Formulation for Appetite Suppression. Drug Dev. Ind. Pharm. 2016, 42, 150–156. DOI: 10.3109/03639045.2015.1036067.
  • Mensink, M. A.; Frijlink, H. W.; Van Der Voort Maarschalk, K.; Hinrichs, W. L. J. Inulin, a Flexible Oligosaccharide I: Review of Its Physicochemical Characteristics. Carbohydr. Polym. 2015, 130, 405–419. DOI: 10.1016/j.carbpol.2015.05.026.
  • Zijlstra, G. S.; Ponsioen, B. J.; Hummel, S. A.; Sanders, N.; Hinrichs, W. L. J.; De Boer, A. H.; Frijlink, H. W. Formulation and Process Development of (Recombinant Human) Deoxyribonuclease I as a Powder for Inhalation. Pharm. Dev. Technol. 2009, 14, 358–368. DOI: 10.1080/10837450802662820.
  • Ravi Kumar, M. N. V. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 1–27. DOI: 10.1016/S1381-5148(00)00038-9.
  • Rinaudo, M. Biomaterials Based on a Natural Polysaccharide: Alginate. TIP. 2014, 17, 92–96. DOI: 10.1016/S1405-888X(14)70322-5.
  • Bowey, K.; Swift, B. E.; Flynn, L. E.; Neufeld, R. J. Characterization of Biologically Active Insulin-Loaded Alginate Microparticles Prepared by Spray Drying. Drug Dev. Ind. Pharm. 2013, 39, 457–465. DOI: 10.3109/03639045.2012.662985.
  • Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic Acid: A Key Molecule in Skin Aging. Dermatoendocrinology. 2012, 4, 253–258. DOI: 10.4161/derm.21923.
  • Kennelly, P. J.; Rodwell, V. W. 3 – Amino Acids & Peptides. In Harper’s Illustrated Biochemistry, 31st ed.; Rodwell, V. W., Bender, D. A., Botham, K. M., Kennelly, P. J., Weil, A. P., Eds.; McGraw-Hill Education: New York, 2018; pp 14–22.
  • Forney-Stevens, K. M.; Bogner, R. H.; Pikal, M. J. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins. J. Pharm. Sci. 2016, 105, 697–704. DOI: 10.1002/jps.24655.
  • Lechanteur, A.; Evrard, B. Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A Review. Pharmaceutics. 2020, 12, 55. DOI: 10.3390/pharmaceutics12010055.
  • Liu, J.; Shire, S. High Concentration Antibody and Protein Formulations. U.S. Patent 2004/0197324 A1, Oct 7, 2004.
  • Dave, N.; Joshi, T. A Concise Review on Surfactants and its Significance. Int. J. Appl. Chem. 2017, 13, 663–672.
  • Abdul-Fattah, A. M.; Kalonia, D. S.; Pikal, M. J. The Challenge of Drying Method Selection for Protein Pharmaceuticals: Product Quality Implications. J. Pharm. Sci. 2007, 96, 1886–1916. DOI: 10.1002/jps.20842.
  • Khan, T. A.; Mahler, H. C.; Kishore, R. S. K. Key Interactions of Surfactants in Therapeutic Protein Formulations: A Review. Eur. J. Pharm. Biopharm. 2015, 97, 60–67. DOI: 10.1016/j.ejpb.2015.09.016.
  • Korang-Yeboah, M.; Rahman, Z.; Shah, D.; Mohammad, A.; Wu, S.; Siddiqui, A.; Khan, M. A. Impact of Formulation and Process Variables on Solid-State Stability of Theophylline in Controlled Release Formulations. Int. J. Pharm. 2016, 499, 20–28. DOI: 10.1016/j.ijpharm.2015.11.046.
  • Momoh, M. A.; Kenechukwu, F. C.; Nnamani, P. O.; Umetiti, J. C. Influence of Magnesium Stearate on the Physicochemical and Pharmacodynamic Characteristics of Insulin-Loaded Eudragit Entrapped Mucoadhesive Microspheres. Drug Deliv. 2015, 22, 837–848. DOI: 10.3109/10717544.2014.898108.
  • Tewes, F.; Tajber, L.; Corrigan, O. I.; Ehrhardt, C.; Healy, A. M. Development and Characterisation of Soluble Polymeric Particles for Pulmonary Peptide Delivery. Eur. J. Pharm. Sci. 2010, 41, 337–352. DOI: 10.1016/j.ejps.2010.07.001.
  • Kohane, D. S.; Anderson, D. G.; Yu, C.; Langer, R. PH-Triggered Release of Macromolecules from Spray-Dried Polymethacrylate Microparticles. Pharm. Res. 2003, 20, 1533–1538. DOI: 10.1023/A:1026162628965.
  • Cicerone, M. T.; Soles, C. L. Fast Dynamics and Stabilization of Proteins: Binary Glasses of Trehalose and Glycerol. Biophys. J. 2004, 86, 3836–3845. DOI: 10.1529/biophysj.103.035519.
  • Talley, K.; Alexov, E. On the PH-Optimum of Activity and Stability of Proteins. Proteins. 2010, 78, 2699–2706. DOI: 10.1002/prot.22786.
  • Zbacnik, T. J.; Holcomb, R. E.; Katayama, D. S.; Murphy, B. M.; Payne, R. W.; Coccaro, R. C.; Evans, G. J.; Matsuura, J. E.; Henry, C. S.; Manning, M. C. Role of Buffers in Protein Formulations. J. Pharm. Sci. 2017, 106, 713–733. DOI: 10.1016/j.xphs.2016.11.014.
  • Sek, D. Breaking Old Habits: Moving Away From Commonly Used Buffers in Pharmaceuticals. https://www.europeanpharmaceuticalreview.com/article/13699/breaking-old-habits-moving-away-from-commonly-used-buffers-in-pharmaceuticals/ (accessed Nov 27, 2020).
  • Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catal. 2013, 3, 2823–2836. DOI: 10.1021/cs400684x.
  • Sass, A.; Lee, G. Evaluation of Some Water-Miscible Organic Solvents for Spray-Drying Enzymes and Carbohydrates. Drug Dev. Ind. Pharm. 2014, 40, 749–757. DOI: 10.3109/03639045.2013.782554.
  • Griebenow, K.; Klibanov, A. M. On Protein Denaturation in Aqueous-Organic Mixtures but Not in Pure Organic Solvents. J. Am. Chem. Soc. 1996, 118, 11695–11700. DOI: 10.1021/ja961869d.
  • Vehring, R. Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 2008, 25, 999–1022. DOI: 10.1007/s11095-007-9475-1.
  • Boel, E.; Koekoekx, R.; Dedroog, S.; Babkin, I.; Vetrano, M. R.; Clasen, C.; Van den Mooter, G. Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying. Pharmaceutics. 2020, 12, 625. DOI: 10.3390/pharmaceutics12070625.
  • Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D. Particle Formation in Spray Drying. J. Aerosol Sci. 2007, 38, 728–746. DOI: 10.1016/j.jaerosci.2007.04.005.
  • Ung, K. T.; Rao, N.; Weers, J. G.; Huang, D.; Chan, H. K. Design of Spray Dried Insulin Microparticles to Bypass Deposition in the Extrathoracic Region and Maximize Total Lung Dose. Int. J. Pharm. 2016, 511, 1070–1079. DOI: 10.1016/j.ijpharm.2016.07.073.
  • Stetten, A. Z.; Iasella, S. V.; Corcoran, T. E.; Garoff, S.; Przybycien, T. M.; Tilton, R. D. Surfactant-Induced Marangoni Transport of Lipids and Therapeutics within the Lung. Curr. Opin. Colloid Interf. Sci. 2018, 36, 58–69. DOI: 10.1016/j.cocis.2018.01.001.
  • Nguyen, D. a.; Rhodes, M. J. Producing Fine Drops of Water by Twin-Fluid Atomisation. Powder Technol. 1998, 99, 285–292. DOI: 10.1016/S0032-5910(98)00125-9.
  • Lefebvre, A. H. Some Recent Developments in Twin-Fluid Atomization. Part. Part. Syst. Charact. 1996, 13, 205–216. DOI: 10.1002/ppsc.19960130307.
  • Duerkop, M.; Berger, E.; Dürauer, A.; Jungbauer, A. Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation. Biotechnol. J. 2018, 13, DOI: 10.1002/biot.201800062.
  • Sovani, S. D.; Chou, E.; Sojka, P. E.; Gore, J. P.; Eckerle, W. A.; Crofts, J. D. High Pressure Effervescent Atomization: Effect of Ambient Pressure on Spray Cone Angle. Fuel. 2001, 80, 427–435. DOI: 10.1016/S0016-2361(00)00105-8.
  • Truong-Le, V.; Scherer, T. High Pressure Spray-Dry of Bioactive Materials. U.S. Patent US7378110B2, May 27, 2008.
  • Sunderland, T.; Kelly, J. G.; Ramtoola, Z. Application of a Novel 3-Fluid Nozzle Spray Drying Process for the Microencapsulation of Therapeutic Agents Using Incompatible Drug-Polymer Solutions. Arch. Pharm. Res. 2015, 38, 566–573. DOI: 10.1007/s12272-013-0261-9.
  • Gaspar, F.; Vicente, J.; Neves, F.; Authelin, J.-R. Spray-Drying: Scale-up and Manufacturing. In Amorphous Solid Dispersions.Advances in Delivery Science and Technology;Shah, N., Sandhu, H., Choi, D. S., Chokshi, H., Malick, A. W., Eds.; Springer: New York, NY, 2014; pp 261–302.DOI: 10.1007/978-1-4939-1598-9_8
  • Cal, K.; Sollohub, K. Spray Drying Technique. I: Hardware and Process Parameters. J. Pharm. Sci. 2010, 99, 575–586. DOI: 10.1002/jps.21886.
  • Truong-Le, V.; Ohtake, S.; Martin, R. A.; Pham, B. V.; Yee, L. Sonic Low Pressure Spray Drying. U.S. Patent US8673357B2, March 18, 2014.
  • Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S. M. Nano Spray Drying for Encapsulation of Pharmaceuticals. Int. J. Pharm. 2018, 546, 194–214. DOI: 10.1016/j.ijpharm.2018.05.037.
  • Wu, W. D.; Patel, K. C.; Rogers, S.; Chen, X. D. Monodisperse Droplet Generators as Potential Atomizers for Spray Drying Technology. Dry Technol. 2007, 25, 1907–1916. DOI: 10.1080/07373930701727176.
  • Lin, S. P.; Reitz, R. D. Drop and Spray Formation from a Liquid Jet. Annu. Rev. Fluid Mech. 1998, 30, 85–105. DOI: 10.1146/annurev.fluid.30.1.85.
  • Poozesh, S.; Bilgili, E. Scale-up of Pharmaceutical Spray Drying Using Scale-up Rules: A Review. Int. J. Pharm. 2019, 562, 271–292. DOI: 10.1016/j.ijpharm.2019.03.047.
  • Ziaee, A.; Albadarin, A. B.; Padrela, L.; Femmer, T.; O'Reilly, E.; Walker, G. Spray Drying of Pharmaceuticals and Biopharmaceuticals: Critical Parameters and Experimental Process Optimization Approaches. Eur. J. Pharm. Sci. 2019, 127, 300–318. DOI: 10.1016/j.ejps.2018.10.026.
  • Ståhl, K.; Claesson, M.; Lilliehorn, P.; Lindén, H.; Bäckström, K. The Effect of Process Variables on the Degradation and Physical Properties of Spray Dried Insulin Intended for Inhalation. Int. J. Pharm. 2002, 233, 227–237. DOI: 10.1016/S0378-5173(01)00945-0.
  • Rajagopal, K.; Chang, D.; Nayak, P.; Izadi, S.; Patapoff, T.; Zhang, J.; Kelley, R.; Sreedhara, A. Trehalose Limits Fragment Antibody Aggregation and Influences Charge Variant Formation in Spray-Dried Formulations at Elevated Temperatures. Mol. Pharm. 2019, 16, 349–358. DOI: 10.1021/acs.molpharmaceut.8b01002.
  • Maltesen, M. J.; Bjerregaard, S.; Hovgaard, L.; Havelund, S.; van de Weert, M. Quality by Design – Spray Drying of Insulin Intended for Inhalation. Eur. J. Pharm. Biopharm. 2008, 70, 828–838. DOI: 10.1016/j.ejpb.2008.07.015.
  • Wahl, V.; Khinast, J.; Paudel, A. Lyophilized Protein Powders: A Review of Analytical Tools for Root Cause Analysis of Lot-to-Lot Variability. TrAC – Trends Anal. Chem. 2016, 82, 468–491. DOI: 10.1016/j.trac.2016.05.012.
  • Lai, M. C.; Topp, E. M. Solid-State Chemical Stability of Proteins and Peptides. J. Pharm. Sci. 1999, 88, 489–500. DOI: 10.1021/js980374e.
  • Chang, L. L.; Pikal, M. J. Mechanisms of Protein Stabilization in the Solid State. J. Pharm. Sci. 2009, 98, 2886–2908. DOI: 10.1002/jps.21825.
  • Eon-Duval, A.; Broly, H.; Gleixner, R. Quality Attributes of Recombinant Therapeutic Proteins: An Assessment of Impact on Safety and Efficacy as Part of a Quality by Design Development Approach. Biotechnol. Prog. 2012, 28, 608–622. DOI: 10.1002/btpr.1548.
  • Eon-Duval, A.; Valax, P.; Solacroup, T.; Broly, H.; Gleixner, R.; L. E.; Strat, C.; Sutter, J. Application of the Quality by Design Approach to the Drug Substance Manufacturing Process of an Fc Fusion Protein: Towards a Global Multi-Step Design Space. J. Pharm. Sci. 2012, 101, 3604–3618. DOI: 10.1002/jps.23273.
  • Thorat, B. N.; Sett, A.; Mujumdar, A. S. Drying of Vaccines and Biomolecules. Dry. Technol. 2020, DOI: 10.1080/07373937.2020.1825293.
  • Malafronte, L.; Ruoff, D.; Gunes, D. Z.; Lequeux, F.; Schmitt, C.; Windhab, E. J. Morphology Development in Single Drop Drying for Native and Aggregated Whey Protein Dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 1235549. DOI: 10.1016/j.colsurfa.2019.06.015.
  • Both, E. M.; Tersteeg, S. M. B.; Boom, R. M.; Schutyser, M. A. I. Drying Kinetics and Viscoelastic Properties of Concentrated Thin Films as a Model System for Spray Drying. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124075. DOI: 10.1016/j.colsurfa.2019.124075.
  • Doerr, F. J. S.; Burns, L. J.; Lee, B.; Hinds, J.; Davis-Harrison, R. L.; Frank, S. A.; Florence, A. J. Peptide Isolation via Spray Drying: Particle Formation, Process Design and Implementation for the Production of Spray Dried Glucagon. Pharm. Res. 2020, 37, 255. DOI: 10.1007/s11095-020-02942-5.
  • Dohrn, S.; Reimer, P.; Luebbert, C.; Lehmkemper, K.; Kyeremateng, S. O.; Degenhardt, M.; Sadowski, G. Thermodynamic Modeling of Solvent-Impact on Phase Separation in Amorphous Solid Dispersions during Drying. Mol. Pharm. 2020, 17, 2721–2733. DOI: 10.1021/acs.molpharmaceut.0c00418.