216
Views
137
CrossRef citations to date
0
Altmetric
Research Article

Managing Insect Resistance to Plants Producing Bacillus thuringiensis Toxins

, &
Pages 227-276 | Published online: 29 Sep 2008

REFERENCES

  • Adang, M. J., Brody, M. S., Cardineau, G., Eagan, N., Roush, R. T., Shewmaker, C. K., Jones, A., Oakes, J. V., and McBride, K. E. 1993. The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol. Biol. 21: 1131–1145.
  • Agaisse, H. and Lereclus, D. 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J. Bacteriol. 177: 6027–6032.
  • Alam, M. F., Datta, K., Abrigo, E., Vasquez, A., Senadhira, D., and Datta, S. K. 1998. Production of transgenic deepwater indica rice plants expressing a synthetic Bacillus thuringiensis cryIA(b) gene with enhanced resistance to yellow stem borer. Plant Sci. 135: 25–30.
  • Alstad, D. N. and Andow, D. A. 1995. Managing the evolution of insect resistance to transgenic plants. Science 268: 1894–1896.
  • Andow, D. A., Alstad, D. N., Pang, Y. H., Bolin, P. C., and Hutchison, W. D. 1998. Using a F2 screen for resistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 91: 579–584.
  • Andow, D. A., and Alstad, D. N. 1998. F2 screenfor rare resistance alleles. J. Econ. Entomol. 91: 572–578.
  • APHIS. 1999. http://www.aphis.usda.gov.bbep/bp/
  • Arencibia, A., Vazquez, R. I., Prieto, D., Tellez, P., Carmona, E. R., Coego, A., Hernandez, L., De la Riva, G. A., and Selman-Housein G. 1997. Transgenic sugarcane plants resistant to stem borer attack. Mol. Breeding 3: 247–255.
  • Armstrong, C. L., Parker, G. B., Pershing, J. C., Brown, S. M., Sanders, P. R., Duncan, D. R., Stone, T., Dean, D. A., Deboer, D. L., Hart, J., Howe, A. R., Monish, F. M., Pajeau, M. E., Petersen, W. L., Reich, B. J., Rodriguez, R., Santino, C. G., Sate, S. J., Schuler, W., Sims, S. R., Stehling, S., Tarochione, L. J., and Fromm, M. E. 1995. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 35: 550–557.
  • Aronson A. I. 1993. The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival. Mol. Microbiol. 7: 489–496.
  • Arpaia, S., Chiriatti, K., and Gioro, G. 1998. Predicting the adaptation of Colorado potato beetle (Coleoptera: Chrysomelidae) to transgenic eggplants expressing CryIII toxin: the role of gene dominance, migration and fitness cost. J. Econ. Entomol. 91: 21–29.
  • Arpaia, S., Gould, F., and Kennedy, G. 1997a. Potential impact of Coleomegilla maculata predation on adaptation of Leptinotarsa decemlineata to Bt-transgenic potatoes. Entomol. Exp. Appl. 82: 91–100.
  • Arpaia, S., Mennella, G., Onofaro, V., Perri, E., Sunseri, F., and Rotino, G. L. 1997b. Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado potato beetle (Leptinotarsa decemlineata Say). Theor. Appl. Genet. 95: 329–334.
  • Ballester, V., Escriche, B., Mensua, J. L., Riethmacher, G. W., and Ferre, J. 1994. Lack of cross-resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistant to CrylA(b). Biocontrol Sci. Technol. 4: 437–443.
  • Barloy, F., Delécluse, A., Nicolas, L., and Lecadet, M. M. 1996. Cloning and expression of the first anerobic toxin gene from Clostridium bifermentans subsp. malaisva, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J. Bacteriol. 178: 3099–3105.
  • Barloy, F., Lecadet, M. M., and Delécluse, A. 1998. Distribution of clostridial crv-like genes among Bacillus thuringiensis and Clostridium strains. Curr. Microbiol. 36: 232–237.
  • Barton, K. A., Whiteley, H. R., and Yang, N. S. 1987. Bacillus thuringiensis Delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103–1109.
  • Bauer, L. S., Miller, D. L., Koller, C. N., and Hollingworth, R. M. 1994. Resistance of cottonwood leaf beetle, Chrysomela scripta, to Bacillus thuringensis var. tenebrionis δ-endotoxin. 6th International Colloquium on Invertebrate Pathology, Aug. 28–Sept. 2, Montpellier, France.
  • Baur, M., Kaya, H. K., Tabashnik, B. E., and Chilcutt, C. F. 1998. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steimematidae) and Bacillus thuringiensis Berliner. J. Econ. Entomol. 91: 1089–1095.
  • Benedict, J. H., Sachs, E. S., Altman D. W., Ring, D. R., Stone, T. B., and Sims, S., 1993. Impact of dendotoxin-producing transgenic cotton on insect-plant interactions with Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). Environ. Entomol. 22: 1–9.
  • Benson, R. L. 1971. On the necessity of controlling the level of insecticide resistance in insect populations. BioScience 21: 1160–1165.
  • Bietlot, H. P. L., Vishnubhatla, I., Carey, P. R., and Pozsgay, M. 1990. Characterization of the cysteine residues and disulfide linkages in the protein crystal of Bacillus thuringiensis. Biochem. J. 267: 309–315.
  • Blackburn M., Golubeva, E., Bowen, D., and French-Constant, R. H. 1998. A novel toxin from Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the inidgut of Manduca sexta. Appl. Environ. Microbiol. 64: 3036–3041.
  • Bolin, P. C., Hutchison, W. D., and Andow, D. A. 1995. Selection for resistance to Bacillus thuringiensis CryIA(c) endotoxin in a Minnesota population of European corn borer with limited genetic diversity. 28th Annual meeting of the Society for Invertebrate Pathology, July 16–21, Ithaca, NY, U.S.
  • Bolin, P. C., Hutchison, W. D., Andow, D. A., and Ostlie, K. R. 1998. Monitoring for European corn borer (Lepidoptera: Crambidae) resistance to Bacillus thuringiensis: logistical considerations when sampling larvae. J. Agric. Entomol. 15: 231–238.
  • Bolter, C. and Jongsma, M. 1995. Colorado potato beetles (Leptinotarsa decemlineatd) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate. J. Insect. Physiol. 41: 1071–1078.
  • Bosch, D., Schipper, B., Van der Kleij, H., de Maagd, R. A., and Stiekema, W. J. 1994. Recombinant Bacillus thuringiensis crystal proteins with new properties; possibilities for resistance management. Bio/Technology 12: 915–918.
  • Bottreil, D. G., Barbosa, P., and Gould, F. 1997. Manipulating naturtal enemies by plant variety selection and modification: a realistic strategy? Annu. Rev. Entomol. 43: 347–367.
  • Bradfisch, G., Schnepf, H. E., and Kim, L. 1998. Bacillus thuringiensis isolates active against weevils. US Patent No. 5 707 619.
  • Bravo, A., Jansens, S., and Peferoen, M. 1992a. Iminu-nocytochemical localization of Bacillus thuringiensis crystal proteins in intoxicated insects. J. Invert. Pathol. 60: 237–246.
  • Bravo, A., Hendrickx, K., Jansens, S., and Peferoen M. 1992b. Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. J. Invert. Pathol. 60: 247–253.
  • Brewer, G. J. 1991. Resistance to Bacillus thuringiensis subsp. kurstaki in the sunflower moth (Lepidoptera: Pyralidae). Environ. Entomol. 20: 316–322.
  • Brunke, K. J. and Meeusen, R. L. 1991. Insect control with genetically engineered crops. Trends Biotechnol. 9: 197–200.
  • Butko, P., Huang, F., Pusztai-Carey, M., and Surewicz, W. K. 1997. Interaction of the δ-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membrane. Biochemistry 36: 12862–12868.
  • Caprio, M. A. 1994. Bacillus thuringiensis gene deployment and resistance management in single- and multi-tactic enviromnents. Biocontrol Sci. Technol. 4: 487–497.
  • Caprio, M. A. 1998. Evaluating resistance management strategies for multiple toxins in the presence of external refuges. J. Econ. Entomol. 91: 1021–1031.
  • Caprio, M. A. and Tabashnik, B. E. 1992. Gene flow accelerates local adaptation among finite populations: simulating the evolution of insecticide resistance. J. Econ. Entomol. 85: 611–620.
  • Caroll, J. and Ellar, D. J. 1997. Analysis of large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-border-membrane vesicles. Eur. J. Biochem. 245: 797–804.
  • Cavalieri, A., Czapla, T., Howard, J., and Rao, G. 1995. Larvicidal lectins and plant insect resistance based thereon. US Patent No. 5 407 454.
  • Cheng, X. Y., Sardana, R., Kaplan, H., and Altosaar, I. 1998. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95: 2767–2772.
  • Cheong, H., Dhesi, R. K, and Gill, S. S. 1997. Marginal cross-resistance to mosquitocidal Bacillus thuringiensis strains in Cry11A-resistant larvae: presence of Cry11A-like toxins in these strains. FEMS Microbiol. Lett. 153: 419–424.
  • Chilcutt, C. E. and Tabashnik, B. E. 1997. Independent and combined effects of Bacillus thuringiensis and the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) on susceptible and resistant diamond-back moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 90: 397–403.
  • Choma, C. T. and Kaplan, H. 1990. Folding and unfolding of the protoxin from Bacillus thuringiensis: evidence for a two domain structure of the minimal toxic fragment. Biochemistry 29:10971–10977.
  • Chrispeels, M. J. 1997. Transfer of bruchid resistance from the common bean to other starchy grain legumes by genetic engineering with the α-amylase inhibitor gene. In: Advances in Insect Ccontrol, the Role of Transgenic Plants, Carozzi, N. and Koziel, M., Eds., Taylor & Francis, London UK, 139–156.
  • Cloutier, C. and Jean, C. 1998. Synergism between natural enemies and biopesticides: a test case using the stinkbug Perillus bioculatus (Hemiptera: Pentatomidae) and Bacillus thuringiensis tenebrionis against Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 91: 1096–1108.
  • Comins, H. N. 1977a. The development of insecticide resistance in the presence of migration. J. Theor. Biol. 64: 177–197.
  • Comins, H. N. 1977b. The management of pesticide resistance. J. Theor. Biol. 65: 399–420.
  • Convents, D., Houssier, C., Lasters, I., and Lauwereys, M. 1990. The Bacillus thuringiensis δ-endotoxin. Evidence for a two domain structure of the minimal toxic fragment. J. Biol. Chem. 265: 1369–1375.
  • Corbin, D. R., Greenplate, J. T., Wong, E. Y., and Purcell, J. P. 1994. Cloning of an insecticidal cholesterol oxidase gene and its expression inbacteria and in plant protoplasts. Appl. Environ. Microbiol. 60: 4239–4244.
  • Corbin, D. R., Greenplate, J. T., Wong, E. Y., and Purcell, J. P. 1995. Method of controlling insects. World Intellectual Patent Organization Application No. WO 95/01098.
  • Crickmore, N. 1999. http://epunix.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/list.html
  • Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., van Rie, J., Lereclus, D., Baum, J., and Dean, D. H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal proteins. Microbiol. Mol. Biol. Rev. 62: 807–813.
  • Cummings, C. E., Armstrong, G., Hodgman, T. C., and Ellar, D. J. 1994. Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis δ-endotoxin. Mol. Memb. Biol. 11: 87–92.
  • Curtis, C. F. 1985. Theoretical models of the use of insecticide mixtures for the management of resistance. Bull. Entomol. Res. 75: 259–265.
  • Curtis, C. F., Cook, L. M., and Wood, R. J. 1978. Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecol. Entomol. 3: 273–287.
  • Czapla, T. H. 1997. Plant lectins as insect control proteins in transgenic plants. In: Advances in Insect Control, the Role of Transgenic Plants, Carozzi, N. and Koziel, M., Eds., Taylor & Francis, London UK, 123–138.
  • Dai, S. M. and Gill, S. S. 1993. In-vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. is-raelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases. Insect Biochem. Mol. Biol. 23: 273–283.
  • Daly, J. C. 1994. Ecology and resistance management for Bacillus thuringiensis transgenic plants. Biocontrol Sci. Technol. 4: 563–571.
  • Dandekar, A. M., McGranalian G. H., Vail, P. V., Uratsu, S. L., Leslie, C. A., and Tebbets, J. S. 1998. High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci. 131: 181–193.
  • Datta, K., Vasquez, A., Tu, J., Torrizo, L., Alam, M. F., Oliva, N., Abrigo, E., Khush, G. S., and Datta, S. K. 1998. Constitutive and tissue-specific diffrential expression of the cryIA(b) gene in transgenic rice conferring resistance to rice insect pests. Theor. Appl. Genet. 97: 20–30.
  • De Maagd, R. A., van der Klei, H., Bakker, P. L., Stiekema, W. J., and Bosch D. 1996a. Different domains of Bacillus thuringiensis delta-endotoxins can bind to insect midgut membrane proteins on ligand blots. Appl. Environ. Microbiol. 62: 2753–2757.
  • De Maagd, R. A., Kwa, M. S. G., van der Klei, H., Yamamoto, T., Schipper, B., Vlak, J. M., Stiekema, W. J., and Bosch, D. 1996b. Domain III substitution mBacillus thuringiensis delta-endotoxin CrylA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62: 1537–1543.
  • Delannay, X., LaVallee, B. J., Proksch, R. K, Fuchs, R. L., Sims, S. R., Greenplate, J. T., Marrone, P. G., Dodson, R. B., Augustine, J. J., Layton, J. G., and Fischhoff, D. A. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology 7: 1265–1269.
  • Deluca-Flaherty, C., Chang, V. J., Scarafia, L., and Brunke, K. 1997. Thiol-Protease Inhibitor. US Patent No. 5 629 469.
  • Denholm, I. and Rowland, M. W. 1992. Tactics for managing resistance in arthropods: theory and practice. Annu. Rev. Entomol. 22: 91–112.
  • Denolf, P., Hendrickx, K., van Damme, J., Jansens, S., Peferoen, M., Degheele, D., and van Rie, J. 1997. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur. J. Biochem. 248: 748–761.
  • Denolf, P., Jansens, S., Peferoen M., Degheele, D. and van Rie, J. 1993. Two different Bacillus thuringiensis δ-endotoxin receptors in the midgut brush border membrane of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae). Appl. Environ. Microbiol. 59: 1828–1837.
  • Du, C., Martin, P. A. W., and Nickerson, K. W. 1994. Comparison of disulphide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl. Environ. Microbiol. 60: 3847–3853.
  • Ellis, D. D., McCAbe, D. E., Mclnnis, S., Ramachandran R., Russel, D. R., Wallace, K. M., Martineil, B. J., Roberts, D. R., Raffa, K. F., and McCown, B. H. 1993. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11: 84–89.
  • Endo, Y. and Nishiitsutsuji-Uwo, J. 1980. Mode of action of Bacillus thuringiensis δ-endotoxin: histopathological changes in the silkworm midgut. J. Invertebr. Pathol. 36: 90–113.
  • Ensign, J. C., Bowen, D. J., Petell, J., Fatig, R., Schoonover, S., Ffrench-Constant R. H., Rocheleau, T. A., Blackburn, M. B., Hey, T. D., Merlo, D. J., Orr, G. L., Roberts, J. L., Strickland, J., Guo, L., and Ciche, T. A. 1997. Insecticidal protein toxins from Photorhabdus. World Intellectual Patent Organization Application No. WO 9717432.
  • Escriche, B., Ferre, J., and Silva, F. J. 1997. Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Insect Biochem. Molec. Biol. 27: 651–656.
  • Escriche, B., Tabashnik, B., Finson, N., and Ferre, J. 1995. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella. Biochem. Biophys. Res. Commun. 212: 388–395.
  • Estada, U. and Ferre, J. 1994. Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins. Appl. Environ. Microbiol. 60: 3840–3846.
  • Estruch, J. J., Carozzi, N. B., Desai, N., Duck, N. B., Warren, G. W., and Koziel, M. 1997. Transgenic plant: an emerging approach to pest control. Nat. Biotechnol. 15: 137–141.
  • Estruch, J. J., Warren, G., Mullins, M., Nye, G., Craig, J., and Koziel, M. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93: 5389–5394.
  • Federici, B. A. and Bauer, L. S. 1998. CytlAa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrvsomela scripta, and suppresses high levels of resistance to Cry3 Aa. Appl. Environ. Microbiol. 64: 4368–4371.
  • Feitelson, J. S., Payne, J., and Kim, L. 1992. Bacillus thuringiensis: insects and beyond. Bio/Technology 10: 271–275.
  • Ferre, J., Escriche, B., Bel, Y., and van Rie, J. 1995. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal protein. FEMS Microbiol. Lett. 132: 1–7.
  • Ferre, J., Real, M. D., van Rie, J., Jansens, S., and Peferoen, M. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88: 5119–5123.
  • Fischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedenneyer, J. G., Dean, D. A., Kusano-Kretzmer, K., Mayer, E. J., Rochester, D. E., Rogers, S. G., and Fraley, R. T. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807–813.
  • Fitt, G. P., Mares, C. L., and Llewellyn D. J. 1994. Field evaluation and potential ecological impact of transgenic cottons (Gossvpium hirsutum) in Australia. Biocontrol Sci. Technol. 4: 535–548.
  • Fiuza, L. M., Nielsen-Leroux, C., Gozé, E., Frutos, R., and Charles, J. F. 1996. Binding of Bacillus thuringiensis Cryl toxins to the midgut brush border membrane vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): evidence of shared binding sites. Appl. Environ. Microbiol. 62: 1544–1549.
  • Forcada, C., Alcacer, E., Garcera, M. D., and Martinez, R. 1996. Differences in the inidgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch. Insect Biochem. Phvsiol. 31: 257–272.
  • Forrester, N. W. 1994. Resistance management options for conventional Bacillus thuringiensis and transgenic plants in Australian summer field crops. Biocontrol Sci. Technol. 4: 549–553.
  • Fox, J. L. 1998. Science panel urges EPA to mandate Bt resistance management. ASM News 64: 379–380.
  • Frutos R., Jacquemard, P., and Amargier, A. 1987. Activité comparée de différentes variétés de Bacillus thuringiensis Berl. chez deux Lépidoptères ravageurs du cotonnier, Earias biplaga Wlk. et Earias insulana (Boisd.). Cot. Fib. Trop. XLII: 5–21.
  • Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J., and Shimamoto, K. 1993. Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis . Bio/Technology 11: 1151–1155.
  • Gatehouse, A. M. R., Dewey, F. M., Dove, J., Fenton K. A., and Pusztai, A. 1984. Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus: mechanism of toxicity. J. Sci. Food Agric. 55: 63–74.
  • Gazit, E., Bach, D., Kerr, I. D., Mamson, M. S. P., Chejanovsky, N., and Shai, Y. 1994. The alpha-5 segment of Bacillus thuringiensis δ-endotoxin in vitro activity, ion-chanel formation and molecular modelling. Biochem. J. 304: 895–902.
  • Gazit, E., la Rocca, P., Sansom, M. S. P., and Shai, Y. 1998. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis δ-endotoxin are consistent with an “umbrella-like” structure of the pore. Proc. Natl Acad. Sci. USA 95: 12289–12294.
  • Ge, A. Z., Rivers, D., Milne, R., and Dean, D. H. 1991. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. J. Biol. Chem. 266: 17954–17958.
  • Ge, A. Z., Shivarova, N. I., and Dean, D. H. 1989. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. Proc. Natl Acad. Sci. USA 86: 4037–4041.
  • Georghiou, G. P. and Taylor, C. E. 1977. Operational influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 653–658.
  • Georghiou, G. P. and Wirth, M. C. 1997. Influence of exposure to single vs. multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 63: 1095–1101.
  • Ghareyazie, B., Alinia, F., Menguito, C. A., Rubia, L. G., de Palma, J. M., Liwanag, E. A., Cohen, M. B., Khush, G. S., and Bennett, J. 1997. Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol. Breeding 3: 401–414.
  • Gill, S. S., Cowles, E. A., and Francis, V. 1995. Identification, isolation and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from midgut of the lepidopteran insects Heliothis virescens. J. Biol. Chem. 270: 27277–27282.
  • Gill, S. S., Cowles, E. A., and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Ann. Rev. Entomol. 37: 615–636.
  • Giroux, S., Côté, J. C., Vincent, C., Martel, P., and Coderre, D. 1994. Bacteriological insecticide M-One effects on predation efficiency and mortality of adult Coleomegilla maculata lengi (Coleoptera: Coccinellidae). J. Econ. Entomol. 87: 39–43.
  • Gleave, A. P., Mitra, D. S., Markwick, N. P., Morris, B. A. M., and Beuning, L. L. 1998. Enhanced expression of the Bacillus thuringiensis cry9Aa2 gene in transgenic plants by nucleotide sequence modification confers resistance to potato tuber moth. Mol. Breeding 4: 459–472.
  • Gould, F. 1986a. Simulation models for predicting durability of insect-resistant germ plasm: a deterministic diploid, two-locus model. Environ. Entomol. 15: 1–10.
  • Gould, F. 1986b. Simulation models for predicting durability of insect-resistant germ plasm: a Hessian fly (Diptera: Cecydomyiidae)-resistant winter wheat. Environ. Entomol. 15: 11–23.
  • Gould, F. 1988. Evolutionnary biology and genetically engineered crops. BioScience 38: 26–33.
  • Gould, F. 1991. The evolutionnary potential of crop pests. Am. Sci. 79: 496–507.
  • Gould, F. 1994. Potential and problems with high-dose strategies for pesticidal engineered crops. Biocontrol Sci. Technol. 4: 451–461.
  • Gould, F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43: 701–726.
  • Gould, F. and Anderson, A. 1991. Effects of Bacillus thuringiensis and HD-73 delta-endotoxin on growth, behavior and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environ. Entomol. 20: 30–38.
  • Gould, F., Anderson, A., Jones, A., Suinerford, D., Heckel, D. G., Lopez, J., Micinski, S., Leonard, R., and Laster, M. 1997. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. USA 94: 3519–3523.
  • Gould, F., Anderson, A., Landis, D., and van Mellaert, H. 1991. Feeding behavior and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins. Entomol. Exp. Appl. 58: 199–210.
  • Gould, F., Anderson, A., Reynolds, A., Bumgarner, L., and Moar, W. J. 1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88: 1545–1559.
  • Gould, F., Kennedy, G. G., and Johnson M. T. 1991. Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomol. Exp. Appl. 58: 1–14.
  • Gould, F., Martinez-Ramirez, A., Anderson, A., Ferre, J., Silva, F. J., and Moar, W. J. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 89: 7986–7990.
  • Granero, F., Ballester, V., and Ferre, J. 1996. Bacillus thuringiensis crystal proteins Cry1Ab and Cry1Fa share a high affinity binding site in Plutella xylostella (L). Biochem. Biophys. Res. Commun. 224: 779–783.
  • Granero, F., Ballester, V., and Ferre, J. 1996. Bacillus thuringiensis crystal proteins Cry1Ab and Cry1Fa share a high-affinity binding site in Plutella xylostella (L.). Biochem. Biophys. Res. Com. 224: 779–783.
  • Greenplate, J. T., Duck, N. B., Pershing, J. C., and Purcell, J. P. 1995. Cholesterol oxidase: anoostatic and larvicidal agent active against the cotton boll weevil, Anthonomus grandis. Entomol. Exp. Appl. 74: 253–258.
  • Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R., and Cygler, M. 1995. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254: 447–464.
  • Groeters, F. R., Tabashnik, B. E., Finson, N., and Johnson, M. W. 1992. Oviposiiton preference of the diamondback moth (Plutella xylostella) unaffected by the presence of conspecific eggs or Bacillus thuringiensis. J. Chem. Ecol. 18: 2353–2362.
  • Groeters, F. R., Tabashnik, B. E., Finson, N., and Johnson M. W. 1993. Resistance to Bacillus thuringiensis affects mating success of the diamond-back moth (Lepidoptera, Plutellidae). J. Econ. Entomol. 86: 1035–1039.
  • Groeters, F. R., Tabashnik, B. E., Finson, N., and Johnson M. W. 1994. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution 48: 197–201.
  • Hama, H., Suzuki, K., and Tanada, H. 1992. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth Plutella xylostella Linneus (Lepidoptera: Ypono-meutidae). Appl. Environ. Zool. 27: 355–362.
  • Hardee, D. D. and Bryan, W. W. 1997. Influence of Bacillus thuringiensis-transgenic and nectariless cotton on insect populations with emphasis on the tarnished plant bug (Heteroptera: Miridae). J. Econ. Entomol. 90: 663–668.
  • Harvey, W. R., Cioffi, M., and Wolfersberger, M. G. 1986. Transport physiology of lepidopteran midgut in relation to the action of Bacillus thuringiensis delta-endotoxin. In: Fundamental and Applied Aspects of Invertebrate Pathology, Vlak, J. M., Peters, D., and Samson, R. A., Eds. Grafisch bedriijf ponsen and loijen, Wageningen, The Netherlands, 11–14.
  • Heckel, D. G. 1994. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Sci. Technol. 4: 405–417.
  • Heckel, D. G., Gahan, L. C., Gould, F., and Anderson, A. 1997. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budwonn (Lepidoptera: Noctuidae). J. Econ. Entomol. 90: 75–86.
  • Heckel, D. G., Galian, L. J., Tabashnik, B. E., and Johnson M. W. 1995. Randomly amplified polymorphic DNA differences between strains of diamondback moth (Lepidoptera: Plutellidae) susceptible or resistant to Bacillus thuringiensis. Ann. Entomol. Soc. Am. 88: 531–537.
  • Hendrickx, K., de Loof, A., and van Mellaert, H. 1990. Effects of Bacillus thuringiensis delta-endotoxin on the permeability of brushborder membrane vesicles from tobacco homwonn (Manduca sexta) midgut. Comp. Biochem. Physiol. C. 95: 241–245.
  • Hilder, V. A., Gatehouse, A. M. R., Gatehouse, J. A., Boulter, D., Barker, R. F., and Bevan, M. 1994. Transformed Plant Which Expresses an Insecticidally Effective Amount of a Bowman-Birk Trypsin Inhibitor from Vigna unguiculaia in Leaves. Stems or Roots, and a Method for the Production Thereof. US Patent No. 5 306 863.
  • Hilder, V. A., Gatehouse, A. M. R., Powell, K. S., and Boulter, D. 1993. Proteins with insecticidal properties against homopteran insects and their use in plant protection. World Intellectual Patent Organization Application No. WO 93/04177.
  • Hilder, V. A., Powell, K. S., Gatehouse, A. M. R, Gatehouse, J. A., Gatehouse, L. N, Shi, Y., Hamilton W. D. O., Merryweather, A., Newell, C. A., and Timans, J. C. 1995. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgen. Res. 4: 18–25.
  • Hofmann, C., Luthy, P., Hutter, R., and Pliska, V. 1988b. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173: 85–91.
  • Hofmann, C., Vanderbruggen, H., Höfte, H., van Rie, J., Jansens, S., and Van Mellaert, H. 1988a. Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush-border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844–7848.
  • Höfte, H. and Whiteley, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242–255.
  • Hokkanen, H. M. T. and Wearing, C. H. 1994. The safe and rational deployment of Bacillus thuringiensis genes in crop plants: conclusions and recommendations of OECD workshop on ecological implications of transgenic crops containing Bt toxin genes. Biocontrol Sci. Technol. 4: 399–403.
  • Hokkanen, H. M. T. and Wearing, C. H. 1995. Assessing the risk of pest resistance evolution to Bacillus thuringiensis engineered into crop plants: a case study of oilseed rape. Field Crop Res. 45: 171–179.
  • Hoy, C. W. and Head, G. 1995. Correlation between behavioral and physiological responses transgenic potatoes containing Bacillus thuringiensis delta-endotoxin in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J. Econ. Entomol. 88: 480–486.
  • Hoy, M. A. 1998. Myths: models and mitigation of resistance to pesticides. Phil. Trans. R. Soc. Lond. 353: 1787–1795.
  • Huang, F., Higgins, R. A., and Busclunan, L. L. 1997. Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis susbp. kurstaki under selection pressure in European corn borer. J. Econ. Entomol 90: 1137–1143.
  • Huang, F., Busclunan, L. L., Higgins, R. A., and McGaughey, W. H. 1999. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science 284: 965–967.
  • Huesing, J. E., Shade, R. E., Chrispeels, M. J., and Murdock, L. L. 1991. α-Amylase inhibitor, not phytohemagglutinin explains resistance of common bean seeds to cowpea weevil. Plant Physiol. 96: 993–996.
  • Iannacone, R., Grieco, P. D., and Cellini, F. 1997. Specific sequence modifications of a crv3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol. 34: 485–496.
  • Inbar, J. and Chet, I. 1997. Lectins and biocontrol. Crit. Rev. Biotechnol. 17: 1–20.
  • Ives, A. R. 1996. Evolution of insect-resistance to Bacillus thuringiensis-transsformed plants. Science 273: 1412–1413.
  • James, C. 1997. Global status of transgenic crops in 1997. ISAAA Briefs No.5. ISAAA Ithaca, NY.
  • James, C. and Krattiger, A. F. 1996. Global review of the field testing and commercialization of transgenic plants, 1986 to 1995. ISAAA Briefs No.4. ISAAA Ithaca, NY.
  • Jenkins, J. N., Parrott, W. L., McCarthy, J. C. J., Callahan, F. E., Berberich, S. A., and Deaton, W. R. 1993. Growth and survival of Heliothis virescens (Lepidoptera, Noctuidae) on transgenic cotton containing a truncated form of the delta-endotoxin gene from Bacillus thuringiensis. J. Econ. Entomol 86: 181–185.
  • Johnson D. E. and McGaughey, W. H. 1996. Contribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards Indiamneal moth larvae. Curr. Microbiol. 33: 54–59.
  • Johnson D. E., Brookhart, G. L., Kramer, K. J., Barnett, B. D., and McGaughey, W. H. 1990. Resistance to Bacillus thuringiensis by the Indian mealmoth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. J. Invert. Pathol. 55: 235–244.
  • Johnson M. T. 1997. Interaction of resistant plants and wasp parasitoids of tobacco budwonn (Lepidoptera: Noctuidae). Environ. Entomol. 26: 207–214.
  • Johnson, M. T. and Gould, F. 1992. Interaction of genetically engineered host plant resistance and natural enemies of Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environ. Entomol. 21: 586–597.
  • Johnson M. T., Gould, F., and Kennedy, G. G. 1997a. Effect of natural enemies on relative fitness of Heliothis virescens genotypes adapted and no adapted to resistant host plants. Entomol. Exp. Appl. 82: 219–230.
  • Johnson M. T., Gould, F., and Kennedy, G. G. 1997b. Effect of an entomopathogen on adaptation of Heliothis virescens populations to transgenic host plants. Entomol. Exp. Appl. 83: 121–135.
  • Jongsma, M., Bakker, P., Peters, D., Bosch, D., and Stiekema, W. 1995. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc. Natl. Acad. Sci. USA 92: 8041–8045.
  • Keller, M., Sneh, B., Strizhov, N., Prudovsky, E., Regev, A., Koncz, C., Schell, J., and Zilberstein, A. 1996. Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect. Biochem. Molec. Biol. 26: 365–373.
  • Kennedy, G. G. and Whalon, M. E. 1995. Managing pest resistance to Bacillus thuringiensis endotoxins: constraints and incentives to implementation. J. Econ. Entomol. 88: 454–460.
  • Kinsinger, R. A. and McGaughey, W. H. Susceptibility of populations of Indiamneal moth and almond moth to Bacillus thuringiensis. J. Econ. Entomol. 72: 346–349.
  • Klepetka, B. and Gould, F. 1996. Effects of age and size on mating in Heliothis virescens (Lepidoptera: Noctuidae): implications for resistance management. Environ. Entomol. 25: 993–1001.
  • Knight, P. J. K, Crickmore, N., and Ellar, D. J. 1994. The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol. 11: 429–436.
  • Knowles, B. H. 1994. Mechanism of action of Bacillus thuringiensis insecticidal proteins. Adv. Insect Physiol. 24: 275–308.
  • Knowles, B. H. and Ellar, D. J. 1987. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim. Biophys. Acta 924: 509–518.
  • Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland L., Dawson J., Desai, N, Hill, M., Kadwell, S., Launis, K, Lewis, K, Maddox, D., McPherson K, Meghji, M. R, Merlin E., Rhodes, R., Warren, G. W., Wright, M., and Evola, S. V. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200.
  • Krattiger, A. F. 1997. Insect resistance in crops: a case study of Bacillus thuringiensis. ISAAA Briefs No.2. ISAAA Ithaca, NY.
  • Kumar, P. A., Mandaokar, A., Sreenivasu K, Cliakrabarti, S. K., Bisaria. S., Sharrna, S. R, Kaur, S., and Sliarma. R. P. 1998. Insect-resistant transgenic brinjal plants. Mol. Breeding 4: 33–37.
  • Lee, M. K., Aguda, R. M., Cohen, M. B., Gould, F. L., and Dean, D. H. 1997. Determination of binding of Bacillus thuringiensis δ-endotoxin receptors to rice stem borer midguts. Appl. Environ. Microbiol. 63: 1453–1459.
  • Lee, M. K., Rajamohan F., Gould, F., and Dean, D. H. 1995. Resistance to Bacillus thuringiensis CrylA δ-endotoxins in a laboratory-sclcctcd Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol. 61: 3836–3842.
  • Li, J., Carroll, J., and Ellar, D. J. 1991. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353: 815–821.
  • Li, J., Koni, P. A., and Ellar, D. J. 1996. Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kvushuensis and implications for membrane pore formation. J. Mol. Biol. 257: 129–152.
  • Li, X. B., Mao, H. Z., and Bai, Y. Y. 1995. Transgenic plants of rutabaga (Brassica napobrassica) tolerant to pest insects. Plant Cell Rep. 15: 97–101.
  • Liu, Y. B. and Tabashnik, B. E. 1997a. Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microbiol. 63: 2218–2223.
  • Liu, Y. B. and Tabashnik, B. E. 1997b. Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc. R. Soc. Lond. 264:605–610.
  • Liu, Y. B. and Tabashnik, B. E. 1998. Elimination of a recessive allele conferring resistance to Bacillus thuringiensis from a heterogeneous strain of dia-mondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 91: 1032–1037.
  • Liu, Y. ES., Tabashnik, B. E., and Johnson M. W. 1995. Larval age affects resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 88: 788–792.
  • Liu, Y. B., Tabashnik, B. E., and Pusztai-Carey, M. 1996. Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 89: 798–804.
  • Liu, Y. B., Tabashnik, B. E., Moar, W. J., and Smith, R. A. 1998. Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Appl. Environ. Microbiol. 64: 1385–1389.
  • Lorence, A., Darszon, A., Diaz, C., Lievano, A., Quintero, R., and Bravo, A. 1995. Delta-endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Lett. 360: 217–222.
  • Losey, J. E., Rayor, L. S., and Carter, M. E. 1999. Transgenic pollen harms monarch larvae. Nature 399: 214.
  • Luo, K., Banks, D., and Adang, M. J. 1998. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 δ-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65: 457–464.
  • Macintosh S. C., Stone, T. B., Jokerst, R. S., and Fuchs, R. L. 1991. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc. Natl. Acad. Sci. USA 88: 8930–8933.
  • Macintosh S. C., Kishore, G. M., Perlak, F. J., Marrone, P. G., Stone, T. B., Sims, S. R., and Fuchs, R. L. 1990. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J. Agr. Food Chem. 38: 1145–1152.
  • Mallet, J. and Porter, P. 1992. Preventing insect adaptation to insect resistance crops: are seed mixtures or refugia the best strategy? Proc. R. Soc. Lond. 250: 165–169.
  • Marrone, P. G. 1994. Present and future use of Bacillus thuringiensis in integrated pest management systems: an industrial perspective. Biocontrol Sci. Technol. 4: 517–526.
  • Marrone, P. G. and Macintosh, S. C. 1993. Resistance to Bacillus thuringiensis and resistance management. In: Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, Entwistle, P. F., Cory, J. S., Bailey, M. J., and Higgs, S., Eds., John Wiley and Sons, Chichester, UK, 221–235.
  • Masson, L., Luo, K., Mazza, A., Brousseau, R., and Adang, M. 1995b. The Cry1A(c) receptor purified from Manduca sexta displays multiple specificities. J. Biol. Chem. 270: 20309–20315.
  • Masson, L., Mazza, A., Gringorten, J. L., Baines, D., Anelunias, V., and Brousseau, R. 1994. Specificity domain localization of Bacillus thuringiensis insecticidal CryIA toxins is highly dependent on the bioassay system. Mol. Microbiol. 14: 851–860.
  • Masson, L., Mazza, A., R. Brousseau, R., and Tabashnik, B. 1995a. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J. Biol. Chem. 270: 11887–11896.
  • McCown, B. H., McCabe, D. E., Russell, D. R., Robinson, D. J., Barton, K. A., and Raffa, K. F. 1991. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep. 9: 590–594.
  • McGaughey, W. H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195.
  • McGaughey, W. H. 1994. Implication of cross-resistance among Bacillus thuringinesis toxins in resistance management. Biocontrol Sci. Technol. 4: 427–435.
  • McGaughey, W. H. and Beeman, R. W. 1988. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 81: 28–33.
  • McGaughey, W. H. and Johnson D. E. 1987. Toxicity of different serotypes and toxins of Bacillus thuringiensis to resistant and susceptible indiamneal moths (Lepidoptera: Pyralidae). J. Econ. Entomol. 80: 1122–1126.
  • McGaughey, W. H. and Johnson, D. E. 1992. Indianmeal moth (Lepidoptera: Pyralidae) resistance to different strains and mixtures of Bacillus thuringiensis. J. Econ. Entomol. 85: 1594–1600.
  • McGaughey, W. H. and Johnson, D. E. 1994. Influence of crystal protein composition of Bacillus thuringiensis strains on cross-resistance in Indianmeal moths (Lepidoptera: Pyralidae). J. Econ. Entomol. 87:535–540.
  • McGaughey, W. H. and Whalon, M. E. 1992. Managing insect resistance to Bacillus thuringiensis toxins. Science 258: 1451–1455.
  • McGaughey, W. H., Gould, F., and Gelernter, W. 1998. Bt resistance management. Nature Biotech. 16: 144–146.
  • Meade, T. and Hare, J. D. 1995. Integration of host plant resistance and Bacillus thuringiensis insecticides in the management of lepidopterous pests of celery. J. Econ. Entomol. 88: 1787–1794.
  • Metz, T. D., Roush, R. T., Tang, J. D., Shelton, A. M., and Earle, E. D. 1995. Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implication for pest resistance management strategies. Mol. Breeding 1: 309–317.
  • Milne, R. E., and Kaplan, H. 1993. Purification and characterization of a trypsin-like digestive enzyme from spruce budwonn (Choristoneurafumiferana) responsible for the activation of δ-endotoxins from Bacillus thuringiensis. Insect Biochem. Mol Biol. 23: 663–673.
  • Milne, R. E., Pang, A. S. D., and Kaplan, H. 1995. A protein complex from Choristoneura fumiferana gut-juice involved in the precipitation of δ-endotoxins from Bacillus thuringiensis subsp. sotto. Insect Biochem. Molec. Biol. 25: 1101–1114.
  • Moar, W. J., Pusztai-Carey, M., vanFaassen H., Bosch D., Frutos, R., Rang, C., Luo, K, and Adang, M. J. 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61: 2086–2092.
  • Mohamed, S. I., Johnson D. E., and Aronson A. I. 1996. Altered binding of the Cry1Ac toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates. Appl. Environ. Microbiol 62: 4168–4173.
  • Müller-Cohn, J., Chaufaux, J., Buisson, C., Gilois, N., Sanchis, V., and Lereclus, D. 1996. Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to Cry IC and cross-resistance to other Bacillus turingiensis crystal toxins. J. Econ. Entomol. 89: 791–797.
  • Nayak, P., Basu, D., Das, S., Basu, A., Ghosh, D., Ramakrishnan, N. A., Ghosh M., and Sen, S. K. 1997. Transgenic elite indica rice plants expressing CryIAc delta-endotoxin of Bacillus thuringiensis are resistant againstyellow stem borer (Scirpophaga incertulas). Proc. Natl. Acad. Sci. USA 94: 2111–2116.
  • Oddou, P., Hartmann, H., Radecke, F., and Geiser, M. 1993. Immunologically unrelated Heliothis sp. and Spodoptera sp. midgut membrane-proteins bind Bacillus thuringiensis CryIA(b) δ-endotoxin. Eur. J. Biochem. 212: 145–150.
  • Omer, A. D., Granett, J., Dandekar, A. M., Driver, J. A., Uratsu S. L., and Tang, F. A. 1997. Effects of transgenic petunia expressing Bacillus thuringiensis toxin on selected lepidopteran pests. Biocontrol Sci. Technol. 7: 437–448.
  • Onstad, D. W. and Gould, F. 1998a. Do dynamics of crop maturation and herbivorous insect life cycle influence the risk of adaptation to toxins in transgenic host plants? Environ. Entomol. 27: 517–522.
  • Onstad, D.W., and Gould, F. 1998b. Modeling the dynamics of adaptation to transgenic maize by European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 91: 585–593.
  • Oppert, B., Kramer, K. J., Beeman R. W., Johnson D., and McGaughey, W. H. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473–23476.
  • Oppert, B., Kramer, K. J., Johnson D., Upton S. J., and McGaughey, W. H. 1996. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. Insect Biochem Molec Biol. 26: 571–583.
  • Oppert, B., Kramer, K. J., Johnson, D. E., Macintosh, S. C., and McGaughey, W. H. 1994. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Commun. 198: 940–947.
  • Parker, C. D. and Luttrell, R. G. 1998. Oviposition of tobacco budworm (Lepidoptera: Noctuidae) in mixed plantings of nontransgenic and transgenic cottons expressing δ-endotoxin protein of Bacillus thuringiensis (Berliner). Southwestern Entomol. 23: 247–257.
  • Parker, M. W., Pattus, F. Tucker, A. D., and Tsemoglou, D. 1989. Structure of the membrane-pore-forming fragment of Colicin A. Nature 337: 93–96.
  • Payne, J. M., Kennedy, M. K, Randall, J. B., Brower, D. O., and Schnepf, H. E. 1996. Bacillus thuringiensis Isolates Active Against Cockroaches and Genes Encoding Cockroach-Active Toxins. US Patent No. 5 489 432.
  • Payne, J. M., Narva, K. E., Uyeda, K. A., Stalder, C. J. and Michaels, T. E. 1994. Bacillus thuringiensis isolates and toxins. World Intellectual Patent Organization Application No. WO 9502693.
  • Peferoen, M. 1997a. Insect Control with transgenic plants expressing Bacillus thuringiensis crystal proteins. In: Advances in Insect Control: The Role of Transgenic Plants, Carozzi, N. and Koziel, M., Eds., Taylor & Francis, London, UK, 21–48.
  • Peferoen, M. 1997b. Progress and prospects for field use ofBt genes in crops. Trends Biotechnol. 15:173–177.
  • Perez, C. and Shelton, A. M. 1997. Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. J. Econ. Entomol. 90: 87–93.
  • Perez, C. J., Shelton, A. M., and Derksen, R. C. 1995. Effect of application technology and Bacillus thuringiensis subspecies on management of B. thuringiensis subsp. kurstaki-resistant diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 88: 1113–1119.
  • Perlak, F. J., Deaton, W. R., Armstrong, T. A., Fuchs, R. I., Sims, S. R., Greenplate, J. T., and Fischhoff, D. A. 1990. Insect resistant cotton plants. Bio/Technology 939–943.
  • Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L., and Fischhoff, D. A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324–3328.
  • Perlak, F. J., Stone, T. B., Muskopf, Y. M., Petersen L. J., Parker, G. B., McPherson, S. A., Wyman, J., Love, S., Reed, G., Biever, D., and Fischhoff, D. A. 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22: 313–321.
  • Peyronnet, O., Vachon, V., Brousseau, R., Baines, D., Schwartz, J. L., and Laprade, R. 1997. Effect of Bacillus thuringiensis on the membrane potential of lepidopteran insect midgut cells. Appl. Environ. Microbiol. 63: 1679–1684.
  • Purcell, J. P. 1997. Cholesterol oxidase for the control of boll weevil. In: Advances in Insect Control, the Role of Transgenic Plants, Carozzi, N. and Koziel, M., Eds., Taylor & Francis, London, UK, 95–108.
  • Pusztai, A. Ewen S. W. B., Grant, G., Brown, S. D., Stewart, J. C., Peumans, W. J., Van Damme, E. J. M., and Bardocz, S. 1993. Antinutritive effects of wheatgenn agglutinin and other N-acetylglucosamine-specific lectins. Br. J. Nutr. 70: 313–321.
  • Raffa, K. F. 1989. Genetic engineering of trees to enhance resistance to insects. BioScience 39:524–534.
  • Rahardja, U. and Whalon, M. E. 1995. Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA delta-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 88: 21–26.
  • Rajamohan, F., Alcantara, E., Lee, M. K., Chen, X. J., Curtiss, A., and Dean, D. H. 1995. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J. Bacteriol. 177: 2276–2282.
  • Rajamohan F., Cotrill, J. A., Gould, F., and Dean D. H. 1996. Role of domain II, loop 2 residues of Bacillus thuringiensis CryIAb δ-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens. J. Biol. Chem. 271: 2390–2396.
  • Rajamohan, F., Lee, M. K., and Dean D. H. 1998. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Prog. Nucl. Acid Res. Mol. Biol. 60: 1–27.
  • Ramachandran, S., Buntin, G. D., All, J. N., Raymer, P. L., and Stewart, C. N. 1998a. Movement and survival of diamondback moth (Lepidoptera: Plutellidae) larvae in mixtures of nontransgenic and transgenic canola containing a cryIA(c) gene of Bacillus thuringiensis. Environ. Entomol. 27: 649–656.
  • Ramachandran S., Buntin G. D., All, J. N., Tabashnik, B. E., Raymer, P. L., Adang, M. J., Pulliam, D. A., and Stewart, C. N. 1998b. Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J. Econ. Entomol. 91: 1239–1244.
  • Rang, C., Vachon, V., de Maagd, R. A., Villalon, M., Schwartz, J. L., Bosch, D., Frutos, R., and Laprade, R. 1999. Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins. Appl. Environ. Microbiol. 65: 2918–2925.
  • Reeck, G. R., Kramer, K. J., Baker, J. E., Kanost, M. R., Fabrick, J. A., and Behnke, C. A. 1997. Proteinase inhibitors and resistance of transgenic plants to insects. In: Advances in Insect Control: The Role of Transgenic Plants, Carozzi, N. and Koziel, M., Eds., Taylor & Francis, London, UK, 157–183.
  • Rico, E., Ballester, V., and Mensua, J. L. 1998. Survival of two strains of Phthorimea operculella (Lepidioptera: Gelechiidae) reared on transgenic potatoes expressing a Bacillus thuringiensis crystal protein. Agronomie 18: 151–155.
  • Riggin-Bucci, T. M. and Gould, F. 1997. Impact of intraplot mixtures of toxic and nontoxic plants on population dynamics of diamondback moth (Lepi-doptera: Plutellidae) and its natural enemies. J. Econ. Entomol. 90: 241–251.
  • Rossiter, M., Yendol, W. G., and Dubois, N. R. 1990. Resistance to Bacillus thuringiensis in gypsy moth (Lepidoptera: Lymantriidae): genetic and environmental causes. J. Econ. Entomol. 83: 2211–2218.
  • Roush. R. T. 1989. Designing resistance management programs: how can you choose? Pestic. Sci. 26:423–441.
  • Roush, R. T. 1994. Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol Sci. Technol. 4:501–516.
  • Roush R. T. 1996. Can we slow adaptation by pests to insect transgenic crops? In: Biotechnology and Integrated Pest Management, Persley, G. J., Ed., CAB Int. Oxon, UK, 242–263.
  • Roush R. T. 1997a. Managing resistance to transgenic crops. In: Advances in Insect Control: the Role of Transgenic Plants. Carozzi, N. and Koziel, M., Eds., Taylor & Francis, London, UK, 271–294.
  • Roush R. T. 1997b. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management ? Pestic. Sci. 51: 328–334.
  • Roush, R. T. 1997c. Managing risk of resistance in pests to insect-tolerant transgenic crops. In: Commercialization of Transgenic Crops: Risk, Benefit and Trade Considerations, Waterhouse, P. M., Evans, G., and Gibbs, M. J., Eds., Cooperative Research Center for Plant Science and Bureau of Statistics, Canberra, Australia, 259–271.
  • Roush R. T. 1998. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond. 353: 1777–1786.
  • Roush R. T. and McKenzie, J. A. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32: 361–380.
  • Roush R T. and Shelton A. M. 1997. Assessing the odds: the emergence of resistance to Bt transgenic plants. Nature Biotechnology 15: 816–817.
  • Sacchi, V. F., Parenti, P., Hanozet, G. M., Giordana, B., Lüthy, P., and Wolfersberger, M. G. 1986. Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brushborder membrane of Pieris brassicae midgut cells. FEBS Lett. 204: 213–218.
  • Sangadala, S., Walters, F. W., English L. H., and Adang, M. J. 1994. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CiyIA(c) toxin binding and 86Rb+-K+ efflux in vitro. J. Biol. Chem. 269: 10088–10092.
  • Schnepf, E., Crickmore, N., van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775–806.
  • Schroeder, H. E., Gollasch, S., Moore, A., Tabe, L. M., Craig, S., Hardie, D. C., Chrispeels, M. J., Spencer, D., and Higgins, T. J. V. 1995 Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiology 107: 1233–1239.
  • Schwartz, J. L., Gameau, L., Masson L., and Brousseau, R. 1991. Early response of cultured lepidopteran cells to exposure to δ-endotoxin from Bacillus thuringiensis: involvement of calcium and cationic channels. Biochem. Biophys. Acta 1065:250–260.
  • Schwartz, J. L., Gameau, L., Savaria, D., Masson, L., Brousseau, R, and Rousseau, E. 1993. Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers. J. Memb. Biol. 132: 53–62.
  • Schwartz, J. L., Juteau, M., Grochulski, P., Cygler, M., Préfontaine, G., Brousseau, R., and Masson L. 1997. Restriction of intramolecular movements within the Cry 1 Aa toxin molecules of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410: 397–402.
  • Schwartz, J. M., Tabashnik, B. E., and Johnson, M. W. 1990. Behavioral and physiological repsonses of susceptible and resistant diamondback moth larvae to Bacillus thuringiensis. Entomol. Exp. Appl. 61: 179–187.
  • Shelton, A. M., Robertson, J. L., Tang, J. D., Perez, C., Eigenbrode, S. D., Preisler, H. K., Wilsey, W. T., and Cooley, R. J. 1993. Resistance of diamond-back moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86: 697–705.
  • Shelton A. M., Tabg, J. T., Earle, E. D., and Roush R. T. 1998. Can we manage resistance to Bt-engineered plants? Results of greenhouse and field tests. Proceedings of the Fifth Australian Applied Entomological Research Conference. Brisbane, Australia, 258–266.
  • Sims, S. R. and Ream, J. E. 1997. Soil inactivation of the Bacillus thuringiensis subsp kurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies. J. Agric. Food Chem. 45: 1502–1505.
  • Sims, S. R. and Stone, T. B. 1991. Genetic basis of tobacco budwonn resistance to an engineered Pseudomonas fluorescens expressing the δ-endotoxin of Bacillus thuringiensis kurstaid. J. Invertebr. Pathol. 57: 206–210.
  • Singsit, C., Adang, M. J., Lynch R. E., Anderson W. F., Wang, A. M., Cardineau, G., and Ozias-Akins, P. 1997. Expression of a Bacillus thuringiensis crvIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res. 6: 169–176.
  • Slatin S. L., Abrams, C. K., and English L. 1990. Delta-endotoxins form cation-selective channels in planar lipid bilayers. Biochem. Biophys. Res. Commun. 169: 765–772.
  • Smith, R. H. 1997. An extension entomologist’s 1996 observation of Bollgard (Bt) technology. In: Proceedings of 1997 beltwide cotton conference, National Cotton Council, Memphis, Tenn., 856–861.
  • Stewart, C. N., Adang, M. J., All, J. N., Raymer, P. L., Ramachandran, S., and Parrott, W. A. 1996a. Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis crv1Ac gene. Plant Physiol. 112: 115–120.
  • Stewart, C. N., Adang, M. J., All, J. N., Boenna, H. R., Cardineau, G., Tucker, D., and Parrott, W. A. 1996b. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis crv1Ac gene. Plant Physiol. 112: 121–129.
  • Stewart C. N, All, J. N, Raymer, P. L., and Ramachandran, S. 1997. Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol. Ecol. 6: 773–779.
  • Stockhoff, B. and Conlan C. 1998. Controlling Hemipteran Insect Pests with Bacillus thuringiensis. US Patent No. 5 723 440.
  • Stone, T. B. and Sims, S. R. 1993. Geographic susceptibility of Heliothis virescens and Helicoverpa zea (Lepidoptera, Noctuidae) to Bacillus thuringiensis. J. Econ. Entomol. 86: 989–994.
  • Stone, T., Sims, S. R., and Marrone, P. G. 1989. Selection of tobacco budwonn for resistance to a genetically engineered Pseudomonas fluorescens containing the delta-endotoxin of Bacillus thuringiensis subsp. kurstaki. J. Invertebr. Pathol. 53: 228–234.
  • Tabashnik, B. E. 1997. Seeking the root of insect resistance to transgenic plants. Proc. Natl. Acad. Sci. USA 94: 3488–3490.
  • Tabashnik, B. E. 1989. Managing resistance with multiple pesticide tactics: theory, evidence and recommendations. J. Econ. Entomol. 82: 1263–1269.
  • Tabashnik, B. E. 1990. Modeling and evaluation of resistance management tactics. In: Pesticide resistance in arthropods, Roush, R. T. and Tabashnik, B. E., Eds., Chapman and Hall, New York, 153–182.
  • Tabashnik, B. E. 1992. Resistance risk assessment: Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budwonn (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 85: 1551–1559.
  • Tabashnik, B. E. 1998. Trangenic crops for the Pacific Basin: prospects and problems. In: Proceedings of the Australian Applied Entomology Research Conference, Vol. 1, University of Queensland, Australia, 161–161.
  • Tabashnik, B. E. 1994a. Evolution of resistance to bacillus thuringiensis. Annu. Rev. Entomol. 39: 47–79.
  • Tabashnik, B. E. 1994b. Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered. Proc. R. Soc. Lond. 255: 7–12.
  • Tabashnik, B. E. and Croft, B. A. 1982. Managing pesticide resistance in crop-arthropods complexes: interactions between biological and operational factors. Environ. Entomol. 11: 1137–1144.
  • Tabashnik, B. E. and McGaughey, W. H. 1994. Resistance risk assessment for single and multiple insecticides: responses of Indianmeal moth (Lepidoptera: Pyrallidae) to Bacillus thuringiensis. J. Econ. Entomol. 87: 834–841.
  • Tabashnik, B. E., Cushing, N. L., Finson, N., and Johnson M. W. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83: 1671–1676.
  • Tabashnik, B. E., Finson, N., and Johnson M. W. 1991. Managing resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 84: 49–53.
  • Tabashnik, B. E., Finson N, and Johnson M. W. 1992a. Two protease inhibitors fail to synergize Bacillus thuringiensis in diamondback moth (Lepidoptera Plutellidae). J. Econ. Entomol. 85: 2082–2087.
  • Tabashnik, B. E., Schwartz, J. M., Finson, N., and Johnson, M. W. 1992b. Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 85: 1046–1055.
  • Tabashnik, B. E., Finson, N., Chilcutt, C. F., Cushing, N. L., and Johnson, M. W. 1993a. Increasing efficiency of bioassays: evaluating resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera, Plutellidae). J. Econ. Entomol. 86: 635–644.
  • Tabashnik, B. E., Finson N., Johnson M. W., and Moar, W. J. 1993b. Resistance to toxins from Bacillus thuringiensis subsp. kurstaki causes minimal crossresistance to Bacillus thuringiensis subsp. aizawai in the diamondback moth (Lepidoptera: Plutcllidae). Appl. Environ. Microbiol. 59: 1332–1335.
  • Tabashnik, B. E., Finson N., Groeters, F. R., Moar, W. J., Johnson M. W., Luo, K., and Adang, M. J. 1994a. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci USA 91: 4120–4124.
  • Tabashnik, B. E., Groeters, F. R., Finson N., and Johnson M. W. 1994b. Instability of resistance to Bacillus thuringiensis. Biocontrol Sci. Technol. 4: 419–426.
  • Tabashnik, B. E., Finson N., Johnson M. W., and Heckel, D. G. 1994c. Cross-resistance to Bacillus thuringiensis toxin Cry IF in the diamondback moth (Plutella xylostella). Appl. Environ. Entomol. 60: 4627–4629.
  • Tabashnik, B. E., Finson N., Johnson M. W., and Heckel, D. G. 1995. Prolonged selection affects stability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 88: 219–224.
  • Tabashnik, B. E., Malvar, T., Liu, Y. B., Finson, N., Borthakur, D., Shin B. S., Park, S. H., Masson L., de Maagd, R., and Bosch, D. 1996. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62: 2839–2844.
  • Tabashnik, B. E., Liu, Y. B., Finson, N., Masson L., and Heckel, D. G. 1997a. One gene in diamond-back moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci USA 94: 1640–1644.
  • Tabashnik, B. E., Liu, Y. B., Malvar, T., Heckel, D. G., Masson L., Ballester, V., Granero, F., Mcnsua. J. L., and Ferre, J. 1997b. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci USA 94: 12780–12785.
  • Tabashnik, B. E., Liu, Y. B., Malvar, T., Heckel, D. G., Masson, L. and Ferre, J. 1998. Insect resistance to Bacillus thuringiensis: uniform or diverse? Phil. Trans. R. Soc. Lond. 353: 1751–1756.
  • Tang, J. D., Gilboa, S., Roush R. T., and Shelton, A. M. 1997. Inheritance, stability, and lack-of-fitness cost of field selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J. Econ. Entomol. 90: 732–741.
  • Tang, J. D., Collins, H. L., Roush, R. T., Metz, T. D., Earle, E. D., and Shelton A. M. 1999. Survival, weight gain, and oviposition of resistant and susceptible Plutella xylostella (Lepidoptera: Plutellidae) onbro-colli expressing Cry1Ac toxin of Bacillus thuringiensis. J. Econ. Entomol. 92: 47–55.
  • Tang, J. D., Shelton, A. M., van Rie, J., de Roeck, S., Moar, W. J., Roush, R. T., and Peferoen, M. 1996. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 62: 564–569.
  • Thomas, W. E. and Ellar, D. J. 1983. Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal δ-endotoxin. FEBS Lett. 154: 362–368.
  • Trumble, J. T., Carson, W. G., and White, K. K. 1994. Economic analysis of a Bacillus thuringiensis-based integrated pest-management program in fresh-market tomatoes. J. Econ. Entomol. 87:1463–1469.
  • Vachon V., Paradis, M. J., Marsolais, M., Schwartz, J. L., and Laprade, R. 1995. Endogenous K+/H+ exchange activity in the Sf9 insect cell line. Biochemistry 34: 15157–15164.
  • Vadlamudi, R. K., Ji, T. H., and Bulla, L. A. 1993. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J. Biol. Chem. 268: 12334–12340.
  • Vadlamudi, R. K., Weber, E., Ji, I., Ji, T. H., and Bulla, L. A. 1995. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem. 270: 5490–5494.
  • Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean C., Zabeau, M., Van Montagu, M., and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.
  • Valaitis A. P., Lee, R., Rajamohan, F., and Dean D. H. 1995. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) δ-endotoxin of Bacillus thuringiensis. Biochem. Mol. Biol. 25: 1143–1151.
  • van Emden, H. F. 1966. Plant insect relationships and pest control. World Rev. Pest Control 5: 115–123.
  • van Frankenhuyzen, K., and Fast, P. G. 1989. Susceptibility of three coniferophagous Choristoneura species (Lepidoptera: Tortricidae) to Bacillus thuringiensis var. kurstaki. J. Econ. Entomol. 82: 193–196.
  • van Frankenhuyzen K., Nystrom, C. W., and Tabashnik, B. E. 1995. Variation intolerance to Bacillus thuringiensis among and within populations of the spruce budwonn (Lepidoptera: Tortricidae) in Ontario. J. Econ. Entomol. 88: 97–105.
  • van Mellaert, H., Bottennan J., and van Rie, J. 1991. Prevention of Bt Resistance Development. European Patent No. EP 0 408 403.
  • van Rie, J. 1991. Insect control with transgenic plants: resistance proof? Trends Biotechnol. 9: 177–179.
  • van Rie, J., Jansens, S., Höfte, H., Degheele, D., and van Mellaert, H. 1989. Specificity of Bacillus thuringiensis δ-endotoxins. Importance of specific receptors on the brush-border membrane of the mid-gut of target insects. Eur. J. Biochem. 186: 239–247.
  • van Rie, J., McGaughey, W. H., Johnson, D. E., Barnett, B. D., and van Mellaert, H. 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247: 72–74.
  • Voisey, C. R., White, D. W. R., Wigley, P. J., Chilcott, C. N, McGregor, P. G., and Woodfield, D. R. 1994. Release of transgenic white clover plants expressing Bacillus thuringiensis genes: an ecological perspective. Biocontrol Sci. Technol. 4: 475–481.
  • von Tersch, M. A., Slatin S. K., Kulesza, C. A., and English, L. H. 1994. Membrane-penneabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIBb and CryIIIBc domain I peptide. Appl. Environ. Microbiol. 60: 3711–3717.
  • Waalwijk, C., Dullemans, A. M., Van Workum, M. E. S., and Visser, B. 1985. Molecular cloning and the nucleotide sequence of the M, 28000 crystal protein gene of Bacillus thuringiensis subsp. israelensis. Nucl. Acids Res. 13: 8207–8217.
  • Walters, F. S., Slatin S. K., Kulesza, C. A., and English, L. H. 1993. Ion-channel activity of N-tenninal fragments from CryIA(c) delta-endotoxin. Biochem. Biophys. Res. Commun. 196: 921–926.
  • Wang, G. J., Castiglione, S., Chen Y., Li, L., Han Y. F., Tian Y. C., Gabriel, D. W., Han Y. N, Mang, K. Q., and Sala, F. 1996. Poplar (Populus nigra L) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res. 5: 289–301.
  • Warren, G. W. 1997. Vegetative insectcidal proteins: novel proteins for control of corn pests. In: Advances in Insect Control, the Role of Transgenic Plants, Carozzi, N. and Koziel, M., Eds., Taylor & Francis, London, UK, 109–121.
  • Warren, G. W., Koziel, M. G., Mullins, M. J., Desai, N. K, and Carr, B. 1994. Novel pesticidal proteins and Bacillus strains — e.g., useful for control of Diabrotica virgifera virgifera. World Intellectual Patent Organization ApplicationNo. WO 9421795.
  • Wearing, C. H. and Hokkanen, H. M. T. 1994. Pest resistance to Bacillus thuringiensis: case studies of ecological crop assessment for Bt gene incorporation and strategies of management. Biocontrol Sci. Technol. 4: 573–590.
  • Weiser, J. 1986. Impact of Bacillus thuringiensis on applied entomology in eastern Europe and in the Soviet Union. In: Mitteilungen aus der Biologischen Bundesanstalt Fürland-und Forstwirtschaft Berlin-Dahlem, Krieg, A. and Huger, A. M., Eds., Paul Parey, Berlin, Germany, 37–50.
  • Whalon, M. E. and McGaughey, W. H. 1998. Bacillus thuringiensis: use and resistance management. In: Insecticides with Novel Modes of Action, Ishaaya, I. and Degheele, D., Eds., Springer-Verlag, Berlin, Germany, 106–137.
  • Whalon, M. E. and Wierenga, J. M. 1994. Bacillus thuringiensis resistant Colorado potato beetle and transgenic plants: some operational and ecological implication for deployment. Biocontrol Sci. Technol. 4: 555–561.
  • Whalon, M. E., Miller, D. L., Hollingworth, R. M., Grafius, E. J., and Miller, J. R. 1993. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol. 86: 226–233.
  • Wigley, P. J., Chilcott, C. N., and Broadwell, A. H. 1994. Conservation of Bacillus thuringiensis efficacy in New Zealand through the planned deployment of Bt genes in transgenic crops. Biocontrol Sci. Technol. 4: 527–534.
  • Williams, S., Friedrich, L., Dincher, S., Carozzi, N., Kessman, H., Ward, E., and Ryals, J. 1992. Chemical regulation of Bacillus thuringiensis delta-endotoxin expression in transgenic plants. Bio/Technology 10: 540–543.
  • Williams, W. P., Sagers, J. B., Hauten. J. A., Davis, F. M., and Buckley, P. M. 1997. Transgenic corn evaluated for resistance to fall armyworm and Southwestern corn borer. Crop Sci. 37: 957–962.
  • Wilson, F. D., Flint, H. M., Deaton, W. R., Fischhoff, D. A., Perlak, F. J., Annstron, T. A., Fuchs, R. L., Berberich, S. A., Parks, N. J., and Stapp, B. R. 1992. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollwonn (Lepidoptera: Gelechiidae) and other insects. J. Econ. Entomol. 85: 1516–1521.
  • Wirth, M. C. and Georghiou, G. P. 1997. Cross-resistance among CryIV toxins of Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus (Diptera: Culicidae). Insect Resistance and Resistance Management 90: 1471–1477.
  • Wirth, M. C., Delécluse, A., Federici, B. A., and Walton, W. A. 1998. Variable cross-resistance to Cry11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringiensis susbp. israelensis. Appl. Environ. Microbiol. 64: 4174–4179.
  • Wirth M. C., Georghiou, G. P., and Federici, B. A. 1997. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94: 10536–10540.
  • Wolfersberger, M. G. 1989. Neither barium nor calcium prevents the inhibition by Bacillus thuringiensis of sodium- or potassium-gradient-dependent amino acid accumulationby tobacco homwonn midgut brush border membrane vesicles. Arch. Insect Biochem. Phys. 12: 267–277.
  • Wolfersberger, M. G. 1990. The toxicity of two Bacillus thuringiensis δ-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia 46: 475–477.
  • Wright, D. J., Iqbal, M., Granero, F., and Ferre, J. 1997. A change in a single midgut receptor in the diamond-back moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp kurstaki and B. thuringiensis subsp aizawai. Appl. Environ. Microbiol. 63:1814–1819.
  • Wu, C., Fan, Y., Zhang, C., Oliva, N., and Datta, S. K. 1997. Transgenic fertile japonica rice plants expressing a modified crylA(b) gene resistant to yellow stem borer. Plant Cell Rep. 17: 129–132.
  • Wünn, J., Kloti, A., Burkhardt, P. K., Biswas, G. C. G., Launis, K., Iglesias, V. A., and Potrykus, I. 1996. Transgenic indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technology 14: 171–176.
  • Yu, C. G., Mullins, M. A., Warren, G. W., Koziel, M. G. and Estruch, J. J. 1997. The Bacillus thuringiensis vegetative insecticidal protein Vip3a lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 63: 532–536.
  • Zhang, J. B., Hodgman, T. C., Krieger, L., Shnetter, W., and Chairer, H. U. 1997. Cloning and analysis of the first cry gene from B. popiliae. J. Bacteriol. 179: 4336–4341.
  • Zhu, Y. C., Oppert, B., Kramer, K. J., McGaughey, W. H., and Dowdy, A. K. 1997. cDNAs for a chymotrypsi-nogen-like protein from two strains of Plodia interpunctella. Insect Biochem. Mol. Biol. 27:1027–1037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.