1,055
Views
25
CrossRef citations to date
0
Altmetric
Review Articles

How do biocatalysis and biotransformation affect Citrus dietary flavonoids chemistry and bioactivity? A review

, &
Pages 689-714 | Received 06 Oct 2019, Accepted 28 Mar 2020, Published online: 26 Apr 2020

References

  • Mabberley D. Citrus (Rutaceae): a review of recent advances in etymology, systematics and medical applications. Blumea-Biodiversity. Blum – J Plant Tax and Plant Geog. 2004;49(2):481–498.
  • García-Salas P, Gómez-Caravaca AM, Arráez-Román D, et al. Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chem. 2013;141(2):869–878.
  • He D, Shan Y, Wu Y, et al. Simultaneous determination of flavanones, hydroxycinnamic acids and alkaloids in citrus fruits by HPLC-DAD–ESI/MS. Food Chem. 2011;127(2):880–885.
  • Lv X, Zhao S, Ning Z, et al. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J. 2015;9(1):68.
  • Wang L, Wang J, Fang L, et al. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. BioMed Res Int. 2014;2014:1–10.
  • Manthey JA, Grohmann K. Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agric Food Chem. 2001;49(7):3268–3273.
  • Ejaz S, Ejaz A, Matsuda K, et al. Limonoids as cancer chemopreventive agents. J Sci Food Agric. 2006;86(3):339–345.
  • Tripoli E, Guardia ML, Giammanco S, et al. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem. 2007;104(2):466–479.
  • Horowitz R, Gentili B. Dihydrochalcone sweeteners from citrus flavanones in “Alternative Sweetners., Nabors LO and Gelardi RC, eds. 1986. New York (NY): Marcel Dekker, Inc.
  • Hultin PG. Bioactive C-glycosides from bacterial secondary metabolism. Curr Topic Med Chem. 2005;5(14):1299–1331.
  • Frydman A, Liberman R, Huhman DV, et al. The molecular and enzymatic basis of bitter/non‐bitter flavor of citrus fruit: evolution of branch‐forming rhamnosyltransferases under domestication. Plant J. 2013;73(1):166–178.
  • Sharma K, Mahato N, Lee YR. Extraction, characterization and biological activity of citrus flavonoids. Reviews Chem Eng. 2019;35(2):265–284.
  • Li S, Lo C-Y, Ho C-T. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem. 2006;54(12):4176–4185.
  • Londoño-Londoño J, Lima V. R d, Lara O, et al. Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 2010;119(1):81–87.
  • Walle T. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int J Mol Sci. 2009;10(11):5002–5019.
  • Tumbas V, Cetkovic G, Djilas S, et al. Antioxidant activity of mandarin (Citrus reticulata) peel. Acta per Tech. 2010;41(41):195–203.,
  • Hayat K. Citrus molecular phylogeny antioxidant properties and medicinal uses. Nova Sci. 2014;3:235.
  • Gattuso G, Barreca D, Gargiulli C, et al. Flavonoid composition of citrus juices. Molecules. 2007;12(8):1641–1673.
  • Panche A, Diwan A, Chandra S. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
  • Ruiz-Cruz S, Chaparro-Hernández S, Hernández-Ruiz KL, et al. Flavonoids: important biocompounds in food. Flavonoids-From Biosynthesis Human Health. 2017;16:353–364.
  • Benavente-García O, Castillo J, Marin FR, et al. Uses and properties of citrus flavonoids. J Agric Food Chem. 1997;45(12):4505–4515.
  • Dontas AS, Zerefos NS, Panagiotakos DB, et al. Mediterranean diet and prevention of coronary heart disease in the elderly. Clin Inter Aging. 2007;2(1):109–109.
  • Cao H, Chen X, Jassbi AR, et al. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv. 2015;33(1):214–223.
  • Hollman PCH, Katan MB. Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol. 1999;37(9–10):937–942.
  • Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:1–16.
  • Liu X, Lin C, Ma X, et al. Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). Front Plant Sci. 2018;9:166.
  • Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 2000;5(9):380–386.
  • Li Y, Baldauf S, Lim E-K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem. 2001;276(6):4338–4343.
  • Chang T-S, Wu J-Y, Wang T-Y, et al. Uridine diphosphate-dependent glycosyltransferases from Bacillus subtilis ATCC 6633 catalyze the 15-O-glycosylation of ganoderic acid A. Int J Mol Sci. 2018;19(11):3469.
  • Lewinsohn E, Berman E, Mazur Y, et al. (7) Glucosylation and (1–6) Rhamnosylation of exogenous flavanones by undifferentiated Citrus cell cultures. Plant Sci. 1989;61(1):23–28.
  • Frydman A, Weisshaus O, Bar-Peled M, et al. Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1, 2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 2004;40(1):88–100.
  • Plaza M, Pozzo T, Liu J, et al. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J Agric Food Chem. 2014;62(15):3321–3333.
  • Rao SR, Ravishankar G. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv. 2002;20(2):101–153.
  • Suman S. Plant tissue culture: a promising tool of quality material production with special reference to micropropagation of banana. Biochem. Cell. Arch. 2017;17(1):1–26.
  • Ochoa-Villarreal M, Howat S, Hong SMi, et al. Plant cell culture strategies for the production of natural products. BMB Reports. 2016;49(3):149–158.
  • Shimoda K, Kubota N, Taniuchi K, et al. Biotransformation of naringin and naringenin by cultured Eucalyptus perriniana cells. Phytochemistry. 2010;71(2–3):201–205.
  • Hamada H, Tanaka T, Furuya T, et al. Hydroxylation of benzylic and allylic sites by plant cultured suspension cells. Tetrahedron Lett. 2001;42(5):909–911.
  • Hussain MB, Hassan S, Waheed M, et al. Bioavailability and metabolic pathway of phenolic compounds. In plant physiological aspects of phenolic compounds. IntechOpen; 2019. p. 1–18.
  • Mansell R, McIntosh C. Citrus spp.: in vitro culture and the production of naringin and limonin, in Medicinal and Aromatic Plants III. McIntosh: Springer; 1991. p. 193–210.
  • Gerolino EF, Chierrito TPC, Filho AS, et al. Evaluation of limonoid production in suspension cell culture of Citrus sinensis. Revista Brasileira de Farmacognosia. 2015;25(5):455–461.
  • Del Río J, Ortuño A. Citrus paradisi Macf.(Grapefruit): in vitro culture and the bioproduction of sesquiterpenes nootkatone, valencene, and other secondary metabolites, in Medicinal and Aromatic Plants VII. McIntosh: Springer; 1994. p. 123–138.
  • Shimoda K, Hamada H, Hamada H. Glycosylation of hesperetin by plant cell cultures. Phytochemistry. 2008;69(5):1135–1140.
  • Shimoda K, Sato N, Kobayashi T, et al. Glycosylation of daidzein by the Eucalyptus cell cultures. Phytochemistry. 2008;69(12):2303–2306.
  • Hosoda R, Horio Y, Shimoda K, et al. Regioselective hydroxylation and glucosylation of flavanones with cultured plant cells of Eucalyptus perriniana. Nat Prod Commun. 2013;8(7):1934578X1300800.
  • Salehi B, Fokou P, Sharifi-Rad M, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019;12(1):11.
  • Walle T, Browning AM, Steed LL, et al. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J Nutri. 2005;135(1):48–52.
  • Kottra G, Daniel H. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. J Pharmacol Exp Ther. 2007;322(2):829–835.
  • Chen Y, Wang J, Jia X, et al. Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Molecules. 2011;16(2):1336–1348.
  • Xiao J. Dietary flavonoid aglycones and their glycosides: which show better biological significance? Crit Rev Food Sci Nutr. 2015;57(9):1874–1905.
  • Day AJ, Cañada FJ, Dı́az JC, et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468(2–3):166–170. p.
  • Gee JM, DuPont MS, Day AJ, et al. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutri. 2000;130(11):2765–2771.
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.
  • Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493(7430):45–50.
  • Valentová K, Vrba J, Bancířová M, et al. Isoquercitrin: pharmacology, toxicology, and metabolism. Food Chem Toxicol. 2014;68:267–282.
  • Manach C, Morand C, Texier O, et al. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J Nutri. 1995;125(7):1911–1922.
  • Hollman P, Katan M. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother. 1997;51(8):305–310.
  • Amaretti A, Raimondi S, Leonardi A, et al. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients. 2015;7(4):2788–2800.
  • Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016;7(3):216–234.
  • Braune A, Gutschow M, Engst W, et al. Degradation of quercetin and luteolin byEubacterium ramulus. Appl Environ Microbiol. 2001;67(12):5558–5567.
  • Schoefer L, Mohan R, Schwiertz A, et al. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol. 2003;69(10):5849–5854.
  • Pereira-Caro G, Ludwig IA, Polyviou T, et al. Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly) phenols: analysis by high-performance liquid chromatography–high-resolution mass spectrometry. J Agric Food Chem. 2016;64(28):5724–5735.
  • Zeng X, Su W, Zheng Y, et al. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front Pharmacol. 2019;10:34.
  • Slámová K, Kapešová J, Valentová K. “Sweet flavonoids”: glycosidase-catalyzed modifications. Int J Mol Sci. 2018;19(7):2126.
  • Chanet A, Milenkovic D, Claude S, et al. Flavanone metabolites decrease monocyte adhesion to TNF-α-activated endothelial cells by modulating expression of atherosclerosis-related genes. Br J Nutr. 2013;110(4):587–598.
  • Yamamoto M, Jokura H, Hashizume K, et al. Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Funct. 2013;4(9):1346–1351.
  • Giménez-Bastida JA, González-Sarrías A, Vallejo F, et al. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels. Food Funct. 2016;7(1):118–126.
  • Mullen W, Archeveque M-A, Edwards CA, et al. Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt. J Agric Food Chem. 2008;56(23):11157–11164.
  • Bredsdorff L, Nielsen ILF, Rasmussen SE, et al. Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from α-rhamnosidase-treated orange juice in human subjects. Br J Nutr. 2010;103(11):1602–1609.
  • Pereira-Caro G, Borges G, van der Hooft J, et al. Orange juice (poly)phenols are highly bioavailable in humans. Am J Clin Nutri. 2014;100(5):1378–1384.
  • Pereira-Caro G, Oliver CM, Weerakkody R, et al. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radical Biol Med. 2015;84:206–214.
  • Stevens Y, Rymenant EV, Grootaert C, et al. The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients. 2019;11(7):1464.
  • Takumi H, Nakamura H, Simizu T, et al. Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Funct. 2012;3(4):389–398.
  • Gamo K, Shiraki T, Matsuura N, et al. Mechanism of peroxisome proliferator-activated receptor gamma (PPARγ) transactivation by hesperetin glucuronides is distinct from that by a thiazolidine-2, 4-dione agent. Chem Pharm Bull. 2014;62(5):491–493.
  • Manach C, Morand C, Gil-Izquierdo A, et al. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr. 2003;57(2):235–242.
  • Brett GM, Hollands W, Needs PW, et al. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br J Nutr. 2008;101(5):664–675.
  • Felgines C, Texier O, Morand C, et al. Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Phys-Gastr Liver Physiol. 2000;279(6):G1148–G1154.
  • Benković G, Bojić M, Maleš Ž, et al. Screening of flavonoid aglycons’ metabolism mediated by the human liver cytochromes P450. Acta Pharmaceutica. 2019;69(4):541–562.
  • Nielsen SE, Breinholt V, Cornett C, et al. Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus. Food Chem Toxicol. 2000;38(9):739–746.
  • Wei G-J, Chao Y-H, Tung Y-C, et al. A tangeretin derivative inhibits the growth of human prostate cancer LNCaP cells by epigenetically restoring p21 gene expression and inhibiting cancer stem-like cell proliferation. Aaps J. 2019;21(5):86.
  • Koga N, Ohta C, Kato Y, et al. In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450. Xenobiotica. 2011;41(11):927–933.
  • Li S, Wang Z, Sang S, et al. Identification of nobiletin metabolites in mouse urine. Mol Nutr Food Res. 2006;50(3):291–299.
  • Murakami A, Koshimizu K, Ohigashi H, et al. Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin. Biofactors. 2002;16(3–4):73–82.
  • Yasuda T, Yoshimura Y, Yabuki H, et al. Urinary metabolites of nobiletin orally administered to rats. Chem Pharm Bull. 2003;51(12):1426–1428.
  • Li B, Smith B, Hossain MM. Extraction of phenolics from citrus peels: II. Enzyme-Assisted Extract Method. Separat Purificat Technol. 2006;48(2):189–196.
  • Koga N, Matsuo M, Ohta C, et al. Comparative study on nobiletin metabolism with liver microsomes from rats, guinea pigs and hamsters and rat cytochrome P450. Biol Pharm Bull. 2007;30(12):2317–2323.
  • Zheng J, Bi J, Johnson D, et al. Analysis of 10 metabolites of polymethoxyflavones with high sensitivity by electrochemical detection in high-performance liquid chromatography. J Agric Food Chem. 2015;63(2):509–516.
  • Zheng J, Song M, Dong P, et al. Identification of novel bioactive metabolites of 5‐demethylnobiletin in mice. Mol Nutr Food Res. 2013;57(11):1999–2007.
  • Song M, Charoensinphon N, Wu X, et al. Inhibitory effects of metabolites of 5-demethylnobiletin on human nonsmall cell lung cancer cells. J Agric Food Chem. 2016;64(24):4943–4949.
  • Macer DR. Perception of risks and benefits of in vitro fertilization, genetic engineering and biotechnology. Soc Sci Med. 1994;38(1):23–33.
  • Ravindran S, Basu S, Surve P, et al. In vitro biotransformation in drug discovery. Concepts to Market. 2018;1:1–13.
  • Pereira-Caro G, Fernández-Quirós B, Ludwig IA, et al. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur J Nutr. 2018;57(1):231–242.
  • Kim M, Kim N, Han J. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1. J Agric Food Chem. 2014;62(51):12377–12383.
  • Burapan S, Kim M, Han J. Demethylation of polymethoxyflavones by human gut bacterium, Blautia sp. MRG-PMF1. J Agric Food Chem. 2017;65(8):1620–1629.
  • Kay CD, Pereira-Caro G, Ludwig IA, et al. Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annu Rev Food Sci Technol. 2017;8(1):155–180.,
  • Kim D-H, Jung E-A, Sohng I-S, et al. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 1998;21(1):17–23.
  • Lin S, Zhu Q, Wen L, et al. Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori. Food Chem. 2014;145:220–227.
  • Hosny M, Dhar K, Rosazza JP. Hydroxylations and Methylations of Quercetin, Fisetin, and Catechin by Streptomyces g riseus. J Nat Prod. 2001;64(4):462–465.
  • Wang Y-y, Liu J-h, Yu B-y. Biotransformation of Flavonoids by Streptomyces griseus ATCC 13273. Pharm Biotechnol-Beijing. 2005;12(5):308.
  • Walle T. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass. Seminars Cancer Biol. 2007;17(5):354–362.
  • Bernini R, Crisante F, Ginnasi MC. A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules. 2011;16(2):1418–1425.
  • You HJ, Ahn HJ, Ji GE. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger. J Agric Food Chem. 2010;58(20):10886–10892.
  • Okuno Y, Miyazawa M. Biotransformation of Nobiletin by Aspergillus n iger and the Antimutagenic Activity of a Metabolite, 4′-Hydroxy-5, 6, 7, 8, 3′-pentamethoxyflavone. J Nat Prod. 2004;67(11):1876–1878.
  • Okuno Y, Miyazawa M. Microbial O‐demethylation of sinesetin and antimutagenic activity of the metabolite. J Chem Technol Biotechnol. 2006;81(1):29–33.
  • Buisson D, Quintin J, Lewin G. Biotransformation of polymethoxylated flavonoids: access to their 4′-O-demethylated metabolites. J Nat Prod. 2007;70(6):1035–1038.
  • Ibrahim A-RS, Galal AM, Ahmed MS, et al. O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans. Chem Pharmaceut Bulletin. 2003;51(2):203–206.
  • Kimura J, Nemoto K, Yokosuka A, et al. 6-Demethoxynobiletin, a nobiletin-analog citrus flavonoid, enhances extracellular signal-regulated kinase phosphorylation in PC12D cells. Biolog Pharmaceut Bulletin. 2013;36(10):1646–1649.
  • Esaki H, Watanabe R, Onozaki H, et al. Formation mechanism for potent antioxidative o-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi. Biosci Biotechno Biochem. 1999;63(5):851–858.
  • Miyake Y, Minato K, Fukumoto S, et al. New potent antioxidative hydroxyflavanones produced with Aspergillus saitoi from flavanone glycoside in citrus fruit. Biosci Biotechnol Biochem. 2003;67(7):1443–1450.
  • Osawa T, Minato K, Miyake Y. Flavonoid compound and process for producing the same. 2009. Google Patents.
  • Miyake Y, Minato K-I, Fukumoto S, et al. Radical-scavenging activity in vitro of lemon peel fermented with Aspergillus saitoi and its suppressive effect against exercise-induced oxidative damage in rat liver. Food Sci Techno Res. 2004;10(1):70–74.
  • Kim G-N, Shin J-G, Jang H-D. Antioxidant and antidiabetic activity of Dangyuja (Citrus grandis Osbeck) extract treated with Aspergillus saitoi. Food Chem. 2009;117(1):35–41.
  • Ruviaro AR, Barbosa PdPM, Macedo GA. Enzyme-assisted biotransformation increases hesperetin content in citrus juice by-products. Food Res Int. 2019;124:213–221.
  • HöLker U, HöFer M, Lenz J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol. 2004;64(2):175–186.
  • Johannes TW, Zhao H. Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol. 2006;9(3):261–267.
  • Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol. 2013;33(4):365–378.
  • Carboué Q. Production of microbial enzymes by solid state fermentation for food applications. Microbial Enzyme Technol Food App. 2017;24:437–451.
  • Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008;269(2):315–325.
  • Mazzaferro LS, Breccia JD. Quantification of hesperidin in citrus-based foods using a fungal diglycosidase. Food Chem. 2012;134(4):2338–2344.
  • Piñuel L, Breccia JD, Guisán JM, et al. Production of hesperetin using a covalently multipoint immobilized diglycosidase from Acremonium sp. DSM24697. J Mol Microbiol Biotechnol. 2013;23(6):410–417.
  • Zhu Y, Jia H, Xi M, et al. Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chem. 2017;214:39–46.
  • Busto MD, Meza V, Ortega N, et al. Immobilization of naringinase from Aspergillus niger CECT 2088 in poly (vinyl alcohol) cryogels for the debittering of juices. Food Chem. 2007;104(3):1177–1182.
  • Lee Y-S, Huh J-Y, Nam S-H, et al. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae Naringinase: enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Food Chem. 2012;135(4):2253–2259.
  • Nielsen ILF, Chee WSS, Poulsen L, et al. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr. 2006;136(2):404–408.
  • Madeira JV, Nakajima VM, Macedo JA, et al. Rich bioactive phenolic extract production by microbial biotransformation of Brazilian Citrus residues. Chem Eng Res Des. 2014;92(10):1802–1810.
  • Ferreira LR, Macedo JA, Ribeiro ML, et al. Improving the chemopreventive potential of orange juice by enzymatic biotransformation. Food Res Int. 2013;51(2):526–535.
  • da Silva CMG, Contesini FJ, Sawaya ACHF, et al. Enhancement of the antioxidant activity of orange and lime juices by flavonoid enzymatic de-glycosylation. Food Res Int. 2013;52(1):308–314.
  • Kaur A, Singh S, Singh RS, et al. Hydrolysis of citrus peel naringin by recombinant α‐L‐rhamnosidase from Clostridium stercorarium. J Chem Technol Biotechnol. 2010;85(10):1419–1422.
  • Alvarenga AE, Romero CM, Castro GR. A novel α-L-rhamnosidase with potential applications in citrus juice industry and in winemaking. Eur Food Res Technol. 2013;237(6):977–985.
  • Yadav S. Orange peel naringin hydrolyzed by αLrhamnosidase from Aspergillus flavipus MTCC4644. Int J Biolog Med Res. 2018;9(3):6400–6405.
  • Li L, Gong J, Wang S, et al. Heterologous expression and characterization of a new clade of aspergillus α-L-Rhamnosidase suitable for citrus juice processing. J Agric Food Chem. 2019;67(10):2926–2935.
  • Mandalari G, Bennett RN, Kirby AR, et al. Enzymatic hydrolysis of flavonoids and pectic oligosaccharides from bergamot (Citrus bergamia Risso) peel. J Agric Food Chem. 2006;54(21):8307–8313.
  • Madeira JV, Jr, Macedo JA, Macedo GA, et al. Efficient tannase production using Brazilian citrus residues and potential application for orange juice valorization. Biocatal Agric Biotechnol. 2015;4(1):91–97.
  • Madeira JV, Speranza P, Macedo GA. Phenolic compounds and tannase production by solid-state fermentation in orange pomace. New Biotechnol. 2012;29:S94.
  • Madeira JV, Macedo JA, Macedo GA. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioprocess Biosyst Eng. 2012;35(3):477–482.
  • Li Y-m, Li X-m, Li G-m, et al. In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts. J Agric Food Chem. 2008;56(14):5550–5557.
  • Shin K-C, Nam H-K, Oh D-K. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. J Agric Food Chem. 2013;61(47):11532–11540.
  • Muzna S, Divya D, Kamat SD, et al. Antifungal activity of lipase modified flavonoids from citrus limetta. Int J Pharm Pharm Sci. 2014;6:116–118.
  • Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutri Biochem. 2002;13(10):572–584.
  • Nakajima VM, Madeira JV, Macedo GA, et al. Biotransformation effects on anti lipogenic activity of citrus extracts. Food Chem. 2016;197:1046–1053.
  • Farag MA, Huhman DV, Dixon RA, et al. Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 2008;146(2):387–402.
  • Sahota P, Kaur N. Characterization of enzyme naringinase and the production of debittered low alcoholic kinnow (Citrus raticulata blanco) beverage. Int J Adv Res. 2015;36:1220–1233.
  • Chen Y, Ni H, Chen F, et al. Purification and characterization of a naringinase from Aspergillus aculeatus JMUdb058. J Agric Food Chem. 2013;61(4):931–938.
  • Kuivanen J, Richard P. Engineering a filamentous fungus for L-rhamnose extraction. AMB Expr. 2016;6(1):27.
  • Celiz G, Audisio MC, Daz M. Antimicrobial properties of prunin, a citric flavanone glucoside, and its prunin 6 ″‐O‐lauroyl ester. J App Microbiol. 2010;109(4):1450–1457.
  • Madeira Junior JV. Tannase production and phenolic compounds obtainment by biotransformation of Paecilomyces variotii from Citrus residues = Produção de tanase e obtenção de compostos fenólicos através da biotransformação por Paecilomyces variotii a partir de resíduos de Citrus. 2014.
  • Yang Y, Bai L, Li X, et al. Transport of active flavonoids, based on cytotoxicity and lipophilicity: an evaluation using the blood–brain barrier cell and Caco-2 cell models. Toxicol in Vitro. 2014;28(3):388–396.
  • Veleva RK, Moskova-Doumanova V, Todorova M, et al. Cytotoxicity of flavonoid glycosides, flavonoids and phenolic acids from Inula oculus-christi on mammalian cell lines. J BioSci Biotechno. 2016;5(3):219–224.
  • Katsoura MH, Polydera AC, Katapodis P, et al. Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids. Process Biochem. 2007;42(9):1326–1334.
  • Breinholt VM, Rasmussen SE, Brosen K, et al. In vitro metabolism of genistein and tangeretin by human and murine cytochrome P450s. Pharmacol Toxicol. 2003;93(1):14–22.
  • Nielsen SE, Breinholt V, Justesen U, et al. In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica. 1998;28(4):389–401.
  • Breinholt VM, Offord EA, Brouwer C, et al. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food Chem Toxicol. 2002;40(5):609–616.
  • Rafiq S, Kaul R, Sofi SA, et al. Citrus peel as a source of functional ingredient: a review. J Saudi Soc Agric Sci. 2018;17(4):351–358.
  • Almeida JR, Modig T, Petersson A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82(4):340–349.
  • Koutinas M, Patsalou M, Stavrinou S, et al. High temperature alcoholic fermentation of orange peel by the newly isolated thermotolerant Pichia kudriavzevii KVMP 10. Lett Appl Microbiol. 2016;62(1):75–83.
  • Patsalou M, Samanides CG, Protopapa E, et al. A citrus peel waste biorefinery for ethanol and methane production. Molecules. 2019;24(13):2451.
  • Siles JA, Vargas F, Gutiérrez MC, et al. Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies. Bioresour Technol. 2016;211:173–182.
  • Mishra D, Shukla AK, Dixit AK, et al. Aqueous enzymatic extraction of oil from mandarin peels. J Oleo Sci. 2005;54(6):355–359.
  • Chávez-González ML, López-López LI, Rodríguez-Herrera R, et al. Enzyme-assisted extraction of citrus essential oil. Chemical Papers. 2016;70(4):412–417.
  • Ahmed I, Zia MA, Hussain MA, et al. Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger;its purification and characterization. J Radiat Res Appl Sci. 2016;9(2):148–154.
  • Kroeze JHA. Neohesperidin dihydrochalcone is not a taste enhancer in aqueous sucrose solutions. Chemical Senses. 2000;25(5):555–559.
  • Janvier S, Goscinny S, Donne CL, et al. Low-calorie sweeteners in food and food supplements on the Italian market. Food Addit Contam: Part B. 2015;8(4):150925162021009–150925162021308.
  • Frydman A, Weisshaus O, Huhman DV, et al. Metabolic engineering of plant cells for biotransformation of hesperedin into neohesperidin, a substrate for production of the low-calorie sweetener and flavor enhancer NHDC. J Agric Food Chem. 2005;53(25):9708–9712.
  • Houlmont J-P, Vercruysse K, Perez E, et al. Cosmetic use formulations containing pentyl rhamnoside and cetyl rhamnoside. Int J Cosmet Sci. 2001;23(6):363–368.
  • Vila-Real H, Alfaia AJ, Bronze MR, et al. Enzymatic synthesis of the flavone glucosides, prunin and isoquercetin, and the aglycones, naringenin and quercetin, with selective-l-rhamnosidase and-d-glucosidase activities of naringinase. Enzyme Res. 2011;2011:1–11.
  • Puri M, Kaur A, Singh RS, et al. Immobilized enzyme technology for debittering citrus fruit juices. Food Enzymes: App New Techno. 2008;5:91–103.
  • Salas MP, Céliz G, Geronazzo H, et al. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem. 2011;124(4):1411–1415.
  • Wu X, Song M, Qiu P, et al. Nobiletin and atorvastatin synergistically inhibit azoxymethane (AOM)-induced colon carcinogenesis in rats. The FASEB J. 2015;29(1_supplement):271–272.
  • Wu X, Song M, Qiu P, et al. A metabolite of nobiletin, 4′-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis. Food Funct. 2018;9(1):87–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.