1,148
Views
47
CrossRef citations to date
0
Altmetric
Review Articles

Silicon in mitigation of abiotic stress-induced oxidative damage in plants

, , , , , & show all
Pages 918-934 | Received 25 Aug 2020, Accepted 03 Jan 2021, Published online: 30 Mar 2021

References

  • Chaiwong N, Prom-U-Thai C, Bouain N, et al. Rouached H: individual versus combinatorial effects of silicon, phosphate, and iron deficiency on the growth of lowland and upland rice varieties. Int J Mol Sci. 2018;19(3):899.
  • Hussain S, Khalid MF, Hussain M, Ali MA, et al. Role of micronutrients in salt stress tolerance to plants. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B, editors. Plant nutrients and abiotic stress tolerance. Singapore (Singapore): Springer Singapore; 2018. p. 363–376.
  • Tripathi DK, Singh VP, Chauhan DK, et al. Role of macronutrients in plant growth and acclimation: recent advances and future prospective. In: Ahmad P, Wani MR, Azooz MM, Phan Tran L-S, editors. Improvement of crops in the era of climatic changes. Vol 2. New York (NY): Springer; 2014. p. 197–216.
  • Frew A, Weston LA, Reynolds OL, et al. The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot. 2018;121(7):1265–1273.
  • Zargar SM, Mahajan R, Bhat JA, et al. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech. 2019;9(3):73.
  • Zhang W, Xie Z, Lang D, et al. Beneficial effects of silicon on abiotic stress tolerance in legumes. J Plant Nutr. 2017;40(15):2224–2236.
  • Javaid T, Farooq MA, Akhtar J, et al. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions. Plant Physiol Biochem. 2019;141:291–299.
  • Muneer S, Park YG, Kim S, et al. Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins. J Plant Growth Regul. 2017;36(4):836–845.
  • Yan G-c, Nikolic M, Ye M-j, et al. Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric. 2018;17(10):2138–2150.
  • Epstein E. Silicon in plants: facts vs. concepts. In: Datnoff LE, Snyder GH, Korndörfer GH, editors. Studies in plant science. Vol. 8. Amsterdam (The Netherlands): Elsevier; 2001. p. 1–15.
  • Deshmukh R, Sonah H, Belanger R. New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. J Exp Bot. 2020;71(21):6775–6788.
  • Ma JF, Yamaji N. A cooperative system of silicon transport in plants. Trends Plant Sci. 2015;20(7):435–442.
  • Ma JF. Silicon transporters in higher plants. In: Jahn TP, Bienert GP, editors. MIPs and their role in the exchange of metalloids. New York (NY): Springer; 2010. p. 99–109.
  • Mitani N, Ma JF. Uptake system of silicon in different plant species. J Exp Bot. 2005;56(414):1255–1261.
  • Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006;11(8):392–397.
  • Mandlik R, Thakral V, Raturi G, et al. Significance of silicon uptake, transport, and deposition in plants. J Exp Bot. 2020;71(21):6703–6718.
  • Coskun D, Deshmukh R, Sonah H, et al. The controversies of silicon’s role in plant biology. New Phytol. 2019;221(1):67–85.
  • Debona D, Rodrigues FA, Datnoff LE. Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol. 2017;55:85–107.
  • Alzahrani Y, Kuşvuran A, Alharby HF, et al. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf. 2018;154:187–196.
  • Liu D, Liu M, Liu X-L, et al. Silicon priming created an enhanced tolerance in alfalfa (Medicago sativa L.) seedlings in response to high alkaline stress. Front Plant Sci. 2018;9:716.
  • Abd_Allah EF, Hashem A, Alam P, et al. Silicon alleviates nickel-induced oxidative stress by regulating antioxidant defense and glyoxalase systems in mustard plants. J Plant Growth Regul. 2019;38(4):1260–1273.
  • Abdel Latef AA, Tran L-SP. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci. 2016;7:243.
  • Bosnić D, Nikolić D, Timotijević G, et al. Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. Plant Soil. 2019;441(1–2):629–641.
  • Hasanuzzaman M, Nahar K, Anee TI, et al. Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S Afr J Bot. 2018;115:50–57.
  • Hassanvand F, Rezaei Nejad A, Fanourakis D. Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Ind Crops Prod. 2019;134:19–25.
  • Hussain I, Parveen A, Rasheed R, et al. Exogenous silicon modulates growth, physio-chemicals and antioxidants in barley (Hordeum vulgare L.) exposed to different temperature regimes. Silicon. 2019;11(6):2753–2762.
  • Tripathi DK, Singh S, Singh VP, et al. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem. 2017;110:70–81.
  • Alamri S, Hu Y, Mukherjee S, et al. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem. 2020;157:47–59.
  • Ali S, Rizwan M, Ullah N, et al. Physiological and biochemical mechanisms of silicon-induced copper stress tolerance in cotton (Gossypium hirsutum L.). Acta Physiol Plant. 2016;38(11):262.
  • Adrees M, Ali S, Rizwan M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf. 2015;119:186–197.
  • Yan G, Fan X, Tan L, et al. Root silicon deposition and its resultant reduction of sodium bypass flow is modulated by OsLsi1 and OsLsi2 in rice. Plant Physiol Biochem. 2021;158:219–227.
  • Kim Y-H, Khan AL, Waqas M, et al. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci. 2017;8:510.
  • Howladar SM, Al-Robai SA, Al-Zahrani FS, et al. Silicon and its application method effects on modulation of cadmium stress responses in Triticum aestivum (L.) through improving the antioxidative defense system and polyamine gene expression. Ecotoxicol Environ Saf. 2018;159:143–152.
  • Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med. 2018;122:4–20.
  • Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: roots in plant development. Plant Divers. 2020;42(1):33–43.
  • Ahmad P, Jaleel CA, Salem MA, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30(3):161–175.
  • Zhang W, Yu X, Li M, et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 2018;107:1–11.
  • Parveen A, Liu W, Hussain S, et al. Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants. 2019;8(10):431.
  • Ahmad P, Ahanger MA, Alam P, et al. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul. 2019;38(1):70–82.
  • Kim Y-H, Khan AL, Lee I-J. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions. Crit Rev Biotechnol. 2016;36(6):1099–1109.
  • Yin J, Jia J, Lian Z, et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol Environ Saf. 2019;169:8–17.
  • Kaya C, Akram NA, Ashraf M, et al. Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. J Biotechnol. 2020;316:35–45.
  • Tripathi DK, Rai P, Guerriero G, et al. Silicon induces adventitious root formation in rice (Oryza sativa L.) under arsenate stress with the involvement of nitric oxide and indole-3-acetic acid. J Exp Bot. 2020:eraa488. doi:10.1093/jxb/eraa488
  • Li Z, Feng S, Zhan W, et al. Lsi1 plays an active role in enhancing the chilling tolerance of rice roots. Plant Growth Regul. 2020;90(3):529–543.
  • Ma D, Sun D, Wang C, et al. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul. 2016;35(1):1–10.
  • Khan A, Bilal S, Khan AL, et al. Silicon and gibberellins: synergistic function in harnessing ABA signaling and heat stress tolerance in date palm (Phoenix dactylifera L.). Plants. 2020;9(5):620.
  • Helaly MN, El-Hoseiny H, El-Sheery NI, et al. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol Biochem. 2017;118:31–44.
  • Meena VD, Dotaniya ML, Coumar V, et al. Case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci, India Sect B: Biol Sci. 2014;84:505–518.
  • Kaur H, Greger M. A review on si uptake and transport system. Plants. 2019;8(4):81.
  • Ma JF, Yamaji N, Mitani N, et al. An efflux transporter of silicon in rice. Nature. 2007;448(7150):209–212.
  • Chaiwong N, Bouain N, Prom-U-Thai C, et al. Interplay between silicon and iron signaling pathways to regulate silicon transporter lsi1 expression in rice. Front Plant Sci. 2020;11:1065.
  • Ma JF, Tamai K, Yamaji N, et al. A silicon transporter in rice. Nature. 2006;440(7084):688–691.
  • Yamaji N, Sakurai G, Mitani-Ueno N, et al. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proc Natl Acad Sci USA. 2015;112(36):11401–11406.
  • Yamaji N, Ma JF. A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell. 2009;21(9):2878–2883.
  • Yamaji N, Mitatni N, Ma JF. A transporter regulating silicon distribution in rice shoots. Plant Cell. 2008;20(5):1381–1389.
  • Yamaji N, Ma JF. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci. 2014;19(9):556–563.
  • Exley C. A possible mechanism of biological silicification in plants. Front Plant Sci. 2015;6:853.
  • Zhang C, Wang L, Zhang W, et al. Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis? Plant Soil. 2013;372(1–2):137–149.
  • Sangster AG, Hodson MJ, Tubb HJ. Silicon deposition in higher plants. In: Datnoff LE, Snyder GH, Korndörfer GH, editors. Studies in plant science. vol. 8. Amsterdam (The Netherlands): Elsevier; 2001. p. 85–113.
  • Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–19.
  • Janků M, Luhová L, Petřivalský M. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants. 2019;8:105.
  • Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot. 2018;154:134–142.
  • Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141(2):391–396.
  • Choudhury FK, Rivero RM, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–867.
  • Podgórska A, Burian M, Szal B. Extra-cellular but extra-ordinarily important for cells: apoplastic reactive oxygen species metabolism. Front Plant Sci. 2017;8:1353.
  • Sankaranarayanan S, Ju Y, Kessler SA. Reactive oxygen species as mediators of gametophyte development and double fertilization in flowering plants. Front Plant Sci. 2020;11:1199.
  • Mostofa MG, Rahman MM, Ansary MMU, et al. Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. Int J Mol Sci. 2019;20(22):5798.
  • Mostofa MG, Rahman MM, Siddiqui MN, et al. Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. J Hazard Mater. 2020;394:122572.
  • Soares C, Carvalho MEA, Azevedo RA, et al. Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot. 2019;161:4–25.
  • Xu L, Islam F, Ali B, et al. Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.). 3 Biotech. 2017;7(4):273.
  • Osakabe Y, Osakabe K, Shinozaki K, et al. Response of plants to water stress. Front Plant Sci. 2014;5:86.
  • Merwad A-R, Desoky E-SM, Rady MM. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci Hortic. 2018;228:132–144.
  • Bezerra BKL, Lima GPP, dos Reis AR, et al. Physiological and biochemical impacts of silicon against water deficit in sugarcane. Acta Physiol Plant. 2019;41(12):189.
  • Ghorbanpour M, Mohammadi H, Kariman K. Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci: Nano. 2020;7(2):443–461.
  • Zargar SM, Nagar P, Deshmukh R, et al. Aquaporins as potential drought tolerance inducing proteins: towards instigating stress tolerance. J Proteomics. 2017;169:233–238.
  • Tao Y, Ran Z, Jing Z, et al. Transgenic Petunia hybrida with silicon transporter protein OsLsi1 and OsLsi2 genes and Its drought resistance analysis. J Northeast Agri University. 2014;21(3):30–38.
  • Abiala MA, Abdelrahman M, Burritt DJ, et al. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad Dev. 2018;29(10):3812–3822.
  • Munns R, Gilliham M. Salinity tolerance of crops - what is the cost? New Phytol. 2015;208(3):668–673.
  • Zörb C, Geilfus C-M, Dietz K-J. Salinity and crop yield. Plant Biol J. 2019;21(S1):31–38.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681.
  • Hasanuzzaman M, Nahar K, Rohman MM, et al. Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems. Gesunde Pflanz. 2018;70(4):185–194.
  • Das P, Manna I, Biswas AK, et al. Exogenous silicon alters ascorbate-glutathione cycle in two salt-stressed indica rice cultivars (MTU 1010 and Nonabokra). Environ Sci Pollut Res Int. 2018;25(26):26625–26642.
  • Farhangi-Abriz S, Torabian S. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma. 2018;255(3):953–962.
  • Abdel-Haliem MEF, Hegazy HS, Hassan NS, et al. Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng. 2017;99:282–289.
  • Chung YS, Kim K-S, Hamayun M, et al. Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Front Plant Sci. 2019;10:1725.
  • Islam MM, Karim MR, Zheng X, et al. Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: a critical review. Int J Env Res Public Health. 2018;15(12):2825.
  • Kalaivanan D, Ganeshamurthy AN. Mechanisms of heavy metal toxicity in plants. In: Rao NKS, Shivashankara KS, Laxman RH, editors. Abiotic stress physiology of horticultural crops. New Delhi (India): Springer; 2016. p. 85–102.
  • Das S, Majumder B, Biswas AK. Modulation of growth, ascorbate-glutathione cycle and thiol metabolism in rice (Oryza sativa L. cv. MTU-1010) seedlings by arsenic and silicon. Ecotoxicology. 2018;27(10):1387–1403.
  • Garg N, Kashyap L. Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress. Environ Sci Pollut Res Int. 2019;26(8):7821–7839.
  • Pereira TS, Pereira TS, Souza C, et al. Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiol Mol Biol Plants. 2018;24(1):99–114.
  • Javed MT, Saleem MH, Aslam S, et al. Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (Trachyspermum ammi L.). Plant Physiol Biochem. 2020;157:23–37.
  • Hasanuzzaman M, Alam MM, Nahar K, et al. Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. Ecotoxicology. 2019;28(3):261–276.
  • Naeem A, Saifullah Zia-Ur-Rehman M, Akhtar T, et al. Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes. Environ Pollut. 2018;242:126–135.
  • Rizwan M, Ali S, Ur Rehman MZ, et al. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol Plant. 2019;41(3):35.
  • Singh S, Singh VP, Prasad SM, et al. Interactive effect of silicon (Si) and salicylic acid (SA) in maize seedlings and their mechanisms of cadmium (Cd) toxicity alleviation. J Plant Growth Regul. 2019;38(4):1587–1597.
  • Khan E, Gupta M. Arsenic-silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep. 2018;8(1):10301.
  • Khandekar S, Leisner S. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol. 2011;168(7):699–705.
  • Pontigo S, Godoy K, Jiménez H, et al. Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front Plant Sci. 2017;8:642.
  • Khodarahmi S, Khoshgoftarmanesh AH, Mobli M. Effect of silicon nutrition on alleviating cadmium toxicity-induced damage on cucumber (Cucumis sativus L.) at vegetative stage. J Sci Tech Greenhouse Cult. 2012;3:103–110.
  • Geng A, Wang X, Wu L, et al. Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure. Ecotoxicol Environ Saf. 2018;158:266–273.
  • Hussain A, Rizwan M, Ali Q, et al. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res Int. 2019;26(8):7579–7588.
  • Liu J, Zhang H, Zhang Y, et al. Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiol Biochem. 2013;68:1–7.
  • Masarovič D, Slováková Ľ, Bokor B, et al. Effect of silicon application on Sorghum bicolor exposed to toxic concentration of zinc. Biologia. 2012;67(4):706–712.
  • Vaculíková M, Vaculík M, Šimková L, et al. Influence of silicon on maize roots exposed to antimony - growth and antioxidative response. Plant Physiol Biochem. 2014;83:279–284.
  • Tripathi DK, Singh S, Singh VP, et al. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci. 2016;4:46.
  • Khaliq A, Ali S, Hameed A, et al. Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Arch Agron Soil Sci. 2016;62(5):633–647.
  • Nwugo CC, Huerta AJ. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res. 2011;10(2):518–528.
  • Li L, Ai S, Li Y, et al. Exogenous silicon mediates alleviation of cadmium stress by promoting photosynthetic activity and activities of antioxidative enzymes in rice. J Plant Growth Regul. 2018;37(2):602–611.
  • Cui J, Li Y, Jin Q, et al. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environ Sci: Nano. 2020;7(1):162–171.
  • Khan A, Kamran M, Imran M, et al. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep. 2019;9(1):19788.
  • Joudmand A, Hajiboland R. Silicon mitigates cold stress in barley plants via modifying the activity of apoplasmic enzymes and concentration of metabolites. Acta Physiol Plant. 2019;41(2):29.
  • Chen D, Cao B, Qi L, et al. Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum. Ann Bot. 2016;118(2):305–315.
  • Fang C, Li L, Zhang P, et al. Lsi1 modulates the antioxidant capacity of rice and protects against ultraviolet-B radiation. Plant Sci. 2019;278:96–106.
  • Azeem S, Li Z, Zheng H, et al. Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance. Plant Growth Regul. 2016;78(3):307–323.
  • Khan A, Bilal S, Khan AL, et al. Silicon-mediated alleviation of combined salinity and cadmium stress in date palm (Phoenix dactylifera L.) by regulating physio-hormonal alteration. Ecotoxicol Environ Saf. 2020;188:109885.
  • Gupta A, Sinha R, Fernandes JL, et al. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol. 2020;40(3):320–340.
  • Maillard A, Ali N, Schwarzenberg A, et al. Silicon transcriptionally regulates sulfur and ABA metabolism and delays leaf senescence in barley under combined sulfur deficiency and osmotic stress. Environ Exp Bot. 2018;155:394–410.
  • Yin L, Wang S, Liu P, et al. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem. 2014;80:268–277.
  • Flora C, Khandekar S, Boldt J, et al. Silicon alleviates long-term copper toxicity and influences gene expression in Nicotiana tabacum. J Plant Nutr. 2019;42(8):864–878.
  • Sequera-Mutiozabal M, Antoniou C, Tiburcio AF, et al. Polyamines: emerging hubs promoting drought and salt stress tolerance in plants. Curr Mol Bio Rep. 2017;3(1):28–36.
  • Jan S, Alyemeni MN, Wijaya L, et al. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol. 2018;18(1):146.
  • Siddiqui H, Yusuf M, Faraz A, et al. 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. S Afr J Bot. 2018;118:120–128.
  • Rady MM, Elrys AS, Abo El-Maati MF, et al. Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiol Biochem. 2019;139:558–568.
  • Khattab HI, Emam MA, Emam MM, et al. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biologia Plant. 2014;58(2):265–273.
  • Singh S, Prasad SM, Sharma S, et al. Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. Physiol Plant. 2021. doi:10.1111/ppl.13065
  • Liang Y, Su Y, Li L, et al. Quick selenium accumulation in the selenium-rich rice and its physiological responses in changing selenium environments. BMC Plant Biol. 2019;19(1):559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.