1,126
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology

ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1180-1212 | Received 26 Feb 2021, Accepted 15 Jun 2021, Published online: 25 Nov 2021

References

  • GBD. 2016. Data Resources|GHDx n.d. [cited accessed 2020 Oct 7]. Available from: http://ghdx.healthdata.org/gbd-2016
  • Feigin VL, Roth GA, Naghavi M, et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15(9):913–924.
  • Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1204–1222.
  • Medicines in Development for Neurological Disorders 2018. Report|PhRMA n.d. [cited 2021 May 24]. Available from: https://www.phrma.org/en/Report/Medicines-in-Development-for-Neurological-Disorders-2018-Report
  • Olesen J, Gustavsson A, Svensson M, et al. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19(1):155–162.
  • Medicines in Development for Neurological Disorders 2018 Report|PhRMA n.d. [cited 2021 May 20]. Available from: https://www.phrma.org/en/Report/Medicines-in-Development-for-Neurological-Disorders-2018-Report
  • Medicines in development for neurological disorders a report on disorders of the brain, spinal cord and nerves biopharmaceutical researchers are developing more than 400 medicines for wide range of neurological disorders. n.d.
  • Medicines in Development for Neurological Disorders 2018 Report|PhRMA n.d. [cited 2020 Oct 7]. Available from: https://www.phrma.org/Report/Medicines-in-Development-for-Neurological-Disorders-2018-Report
  • Chaudhary U, Birbaumer N, Curado MR. Brain-machine interface (BMI) in paralysis. Ann Phys Rehabil Med. 2015;58(1):9–13.
  • Branco MP, Pels EGM, Sars RH, et al. Brain-Computer interfaces for communication: Preferences of individuals with locked-in syndrome. Neurorehabil Neural Repair. 2021;35(3):267–279.
  • Burns A, Adeli H, Buford JA. Brain-computer interface after nervous system injury. Neuroscientist. 2014;20(6):639–651.
  • Buch E, Weber C, Cohen LG, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39(3):910–917.
  • Birbaumer N, Murguialday AR, Cohen L. Brain-computer interface in paralysis. Curr Opin Neurol. 2008;21(6):634–638.
  • Friehs GM, Zerris VA, Ojakangas CL, et al. Brain-machine and brain-computer interfaces. Stroke. 2004;35:2702–2705.
  • Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA. 2004;101:17849–17854.
  • Chase SM, Schwartz AB, Kass RE. Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms. Neural Netw. 2009;22(9):1203–1213.
  • Allison BZ, Wolpaw EW, Wolpaw JR. Brain-computer interface systems: progress and prospects. Expert Rev Med Devices. 2007;4(4):463–474.
  • Ramadan RA, Vasilakos AV. Brain computer interface: control signals review. Neurocomputing. 2017;223:26–44.
  • Tiwari N, Edla DR, Dodia S, et al. Brain computer interface: a comprehensive survey. Biol Inspired Cognit Archit. 2018;26:118–129.
  • Ramadan RA, Refat S, Elshahed MA, et al. Basics of brain computer interface. Intell Syst Ref Libr. 2015;74:31–50.
  • Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–171.
  • Saha S, Mamun KA, Ahmed K, et al. Progress in brain computer interface: challenges and opportunities. Front Syst Neurosci. 2021;15:578875.
  • Blau A. Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: an introductory overview and critical discussion. Curr Opin Colloid Interface Sci. 2013;18(5):481–492.
  • Konrad P, Shanks T. Implantable brain computer interface: challenges to neurotechnology translation. Neurobiol Dis. 2010;38(3):369–375.
  • Grimaldi G, Manto M. Neurological tremor: sensors, signal processing and emerging applications. Sensors. 2010;10(2):1399–1422.
  • Fu Y, Zhao J, Dong Y, et al. Dry electrodes for human bioelectrical signal monitoring. Sensors. 2020;20(13):3630–3651.
  • Eckhorn R, Thomas U. A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors. J Neurosci Methods. 1993;49(3):175–179.
  • Vansteensel MJ, Pels EGM, Bleichner MG, et al. Fully implanted brain–computer interface in a Locked-In patient with ALS. N Engl J Med. 2016;375(21):2060–2066.
  • Pels EGM, Aarnoutse EJ, Leinders S, et al. Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol. 2019;130(10):1798–1803.
  • Capogrosso M, Milekovic T, Borton D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016;539(7628):284–288.
  • Zamberletti E, Gabaglio M, Woolley-Roberts M, et al. Cannabidivarin treatment ameliorates Autism-Like behaviors and restores hippocampal endocannabinoid system and glia alterations induced by prenatal valproic acid exposure in Rats. Front Cell Neurosci. 2019;13:367.
  • Yoo S-S, Kim H, Filandrianos E, et al. Non-invasive brain-to-brain interface (BBI): establishing functional links between two brains. PLOS One. 2013;8(4):e60410.
  • Grau C, Ginhoux R, Riera A, et al. Conscious brain-to-brain communication in humans using non-invasive technologies. PLOS One. 2014;9(8):e105225.
  • Kitago T, Marshall RS. Strategies for early stroke recovery: what lies ahead? Curr Treat Options Cardio Med. 2015;17(1):356.
  • Sterr A, Elbert T, Berthold I, et al. Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Arch Phys Med Rehabil. 2002;83(10):1374–1377.
  • Rocha LSO, Gama GCB, Rocha RSB, et al. Constraint induced movement therapy increases functionality and quality of life after stroke. J Stroke Cerebrovasc Dis. 2021;30(6):105774.
  • Kruskal PB, Jiang Z, Gao T, et al. Beyond the patch clamp: nanotechnologies for intracellular recording. Neuron. 2015;86(1):21–24.
  • Duan X, Fu TM, Liu J, et al. Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today. 2013;8(4):351–373.
  • Bae JR, Kim SH. Synapses in neurodegenerative diseases. BMB Rep. 2017;50(5):237–246.
  • Mazzucchi S, Palermo G, Campese N, et al. The role of synaptic biomarkers in the spectrum of neurodegenerative diseases. Expert Rev Proteomics. 2020;17(7–8):543–559.
  • Lepeta K, Lourenco MV, Schweitzer BC, et al. Synaptopathies: synaptic dysfunction in neurological disorders – a review from students to students. J Neurochem. 2016;138(6):785–805.
  • Jain KK. Role of nanotechnology in developing new therapies for diseases of the nervous system. Nanomedicine. 2006;1(1):9–12.
  • Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotech. 2013;8(2):83–94.
  • Mak JN, Wolpaw JR. Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng. 2009;2:187–199.
  • Sharma A, Rieth L, Tathireddy P, et al. Long term in vitro functional stability and recording longevity of fully integrated wireless neural interfaces based on the Utah slant electrode array. J Neural Eng. 2011;8(4):045004.
  • Angle MR, Cui B, Melosh NA. Nanotechnology and neurophysiology. Curr Opin Neurobiol. 2015;32:132–140.
  • Cobb JLS. Observations on the electrical activity within the retractor muscles of the lantern of Echinus esculentus using extracellular recording electrodes. Comp Biochem Physiol. 1968;24(1):311–316.
  • Cederquist KB, Kelley SO. Nanostructured biomolecular detectors: pushing performance at the nanoscale. Curr Opin Chem Biol. 2012;16(3–4):415–421.
  • Jacobs J, Kahana MJ. Direct brain recordings fuel advances in cognitive electrophysiology. Trends Cogn Sci. 2010;14(4):162–171.
  • Bagal IV, Johar MA, Hassan MA, et al. Facile morphology control of high aspect ratio patterned Si nanowires by metal-assisted chemical etching. J Mater Sci. 2018;29:18167–18177.
  • Dayeh SA, Wang J, Li N, et al. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 2011;11(10):4200–4206.
  • Chen K-I, Li B-R, Chen Y-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today. 2011;6(2):131–154.
  • Qing Q, Jiang Z, Xu L, et al. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat Nanotechnol. 2014;9(2):142–147.
  • Sahasrabuddhe K, Khan AA, Singh AP, et al. The argo: a high channel count recording system for neural recording in vivo. J Neural Eng. 2021;18(1):015002.
  • Rubehn B, Wolff SBE, Tovote P, et al. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Lab Chip. 2013;13(4):579–588.
  • Zimmerman JF, Murray GF, Wang Y, et al. Free-standing kinked silicon nanowires for probing inter- and intracellular force dynamics. Nano Lett. 2015;15(8):5492–5498.
  • Kim JH, Kang G, Nam Y, et al. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology. 2010;21:8.
  • O'Connell NE, Marston L, Spencer S, et al. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2018;4:CD008208.
  • Huff W, Lenartz D, Schormann M, et al. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin Neurol Neurosurg. 2010;112(2):137–143.
  • Priori A, Foffani G, Rossi L, et al. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol. 2013;245:77–86.
  • Figee M, Mayberg H. The future of personalized brain stimulation. Nat Med. 2021;27(2):196–197.
  • Benabid AL. Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol. 2003;13(6):696–706.
  • Gross C, Rougier A, Guehl D, et al. High-frequency stimulation of the globus Pallidus internalis in Parkinson's disease: a study of seven cases. J Neurosurg. 1997;87(4):491–498.
  • Rizzone M, Lanotte M, Bergamasco B, et al. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry. 2001;71(2):215–219.
  • Neumann WJ, Turner RS, Blankertz B, et al. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019;16(1):105–118.
  • Wichmann T, DeLong MR. Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron. 2006;52(1):197–204.
  • Chen S, Weitemier AZ, Zeng X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018;359(6376):679–684.
  • Mazzatenta A, Giugliano M, Campidelli S, et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci. 2007;27(26):6931–6936.
  • Li Y, Li Y, Wang H, et al. Yb3+, Er3+ codoped cerium oxide upconversion nanoparticles enhanced the enzymelike catalytic activity and antioxidative activity for Parkinson's disease treatment. ACS Appl Mater Interfaces. 2021;13(12):13968–13977.
  • Yu N, Huang L, Zhou Y, et al. Near‐infrared‐light activatable nanoparticles for deep‐tissue‐penetrating wireless optogenetics. Adv Healthcare Mater. 2019;8(6):1801132.
  • Kumar R, Mondal K, Panda PK, et al. Core–shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B. 2020;8(39):8992–9027.
  • Bergfeld IO, Mantione M, Hoogendoorn MLC, et al. Cognitive functioning in psychiatric disorders following deep brain stimulation. Brain Stimul. 2013;6(4):532–537.
  • Kohl S, Baldermann JC. Progress and challenges in deep brain stimulation for obsessive-compulsive disorder. Pharmacol Ther. 2018;186:168–175.
  • Karas PJ, Lee S, Jimenez-Shahed J, et al. Deep brain stimulation for obsessive compulsive disorder: evolution of surgical stimulation target parallels changing model of dysfunctional brain circuits. Front Neurosci. 2018;12:998.
  • Frost R, Steketee G, Amir N, et al. Cognitive assessment of obsessive-compulsive disorder. Behav Res Ther. 1997;35(4):281–291.
  • Benabid AL, Pollak P, Gao D, et al. Chronic electrical stimulation of the Ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996;84(2):203–214.
  • Hariz MI, Blomstedt P, Zrinzo L. Deep brain stimulation between 1947 and 1987: the untold story. FOC. 2010;29(2):E1–E10.
  • Holtzheimer PE, Mayberg HS. Deep brain stimulation for psychiatric disorders. Annu Rev Neurosci. 2011;34:289–307.
  • Menchón JM, Real E, Alonso P, et al. A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsive disorder. Mol Psychiatry. 2019;26:1234–1247.
  • Little S, Pogosyan A, Kuhn AA, et al. Beta band stability over time correlates with parkinsonian rigidity and bradykinesia. Exp Neurol. 2012;236(2):383–388.
  • Pol S, Temel Y, Jahanshahi A. A custom made electrode construct and reliable implantation method that allows for long‐term bilateral deep brain stimulation in mice. Neuromodulation. 2020;24:212–219.
  • Liu L, Mariani SG, De Schlichting E, et al. Frameless ROSA® robot-assisted lead implantation for deep brain stimulation: technique and accuracy. Oper Neurosurg. 2020;19(1):57–64.
  • Paff M, Loh A, Sarica C, et al. Update on current technologies for deep brain stimulation in Parkinson's disease. J Mov Disord. 2020;13(3):185–198.
  • Kumar R, Singh A, Garg N. Acoustic cavitation-assisted formulation of solid lipid nanoparticles using different stabilizers. ACS Omega. 2019;4(8):13360–13370.
  • Giammalva GR, Gagliardo C, Marrone S, et al. Focused ultrasound in neuroscience. State of the art and future perspectives. Brain Sci. 2021;11(1):12–84.
  • Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology advances in diagnosis and treatment. JAMA Neurol. 2018;75(2):246–254.
  • Fomenko A, Neudorfer C, Dallapiazza RF, et al. Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications. Brain Stimul. 2018;11(6):1209–1217.
  • Hynynen K, Clement G. Clinical applications of focused ultrasound-the brain. Int J Hyperthermia. 2007;23(2):193–202.
  • Son S, Min HS, You DG, et al. Echogenic nanoparticles for ultrasound technologies: evolution from diagnostic imaging modality to multimodal theranostic agent. Nano Today. 2014;9(4):525–540.
  • Leinenga G, Langton C, Nisbet R, et al. Ultrasound treatment of neurological diseases-current and emerging applications. Nat Rev Neurol. 2016;12(3):161–174.
  • Lipsman N, Meng Y, Bethune AJ, et al. Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun. 2018;9(1):1–8.
  • Fishman MA, Antony A, Esposito M, et al. The evolution of neuromodulation in the treatment of chronic pain: Forward-looking perspectives. Pain Med. 2019;20(Supplement_1):S58–S68.,
  • Lin PT, Ross EK, Chidester P, et al. Noninvasive neuromodulation in essential tremor demonstrates relief in a sham-controlled pilot trial. Mov Disord. 2018;33(7):1182–1183.
  • Patent US. Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy; 2002.
  • Mihran RT, Barnes FS, Wachtel H. Transient modification of nerve excitability in vitro by single ultrasound pulses. Biomed Sci Instr. 1990;26:235–246.
  • Davidson B, Hamani C, Rabin JS, et al. Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Mol Psychiatry. 2020;25(9):1946–1957.
  • Schlesinger D, Benedict S, Diederich C, et al. MR-guided focused ultrasound surgery, present and future. Med Phys. 2013;40(8):080901.
  • Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640–646.
  • Min BK, Bystritsky A, Jung KI, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci. 2011;12(1):1–12.
  • Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–329.
  • Rezayat E, Toostani IG. A review on brain stimulation using low intensity focused ultrasound. Basic Clin Neurosci. 2016;7(3):187–194.
  • Fregni F, Freedman S, Pascual-Leone A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol. 2007;6(2):188–191.
  • O'Neill BE, Karmonik C, Li KCP. An optimum method for pulsed high intensity focused ultrasound treatment of large volumes using the InSightec ExAblate® 2000 system. Phys Med Biol. 2010;55(21):6395–6410.
  • Liang S, Deng X, Ma P, et al. Recent advances in nanomaterial‐assisted combinational sonodynamic cancer therapy. Adv Mater. 2020;32:e2003214.
  • Ordeig O, Chin SY, Kim S, et al. An implantable compound-releasing capsule triggered on demand by ultrasound. Sci Rep. 2016;6(1):1–11.
  • Cotero V, Miwa H, Graf J, et al. Peripheral focused ultrasound neuromodulation (pFUS). J Neurosci Methods. 2020;341:108721.
  • Su X, Thomas RG, Bharatula LD, et al. Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound. Sci Rep. 2019;9(1):1–13.
  • US20070060954A1. Method of using spinal cord stimulation to treat neurological disorders or conditions. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US20070060954A1/en
  • US6016449A. System for treatment of neurological disorders. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US6016449A/en
  • US6591138B1. Low frequency neurostimulator for the treatment of neurological disorders. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US6591138B1/en
  • US6647296B2. Implantable apparatus for treating neurological disorders. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US6647296B2/en
  • US7949403B2. Electrical stimulation device and method for the treatment of neurological disorders. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US7949403B2/en
  • US20030028072A1. Low frequency magnetic neurostimulator for the treatment of neurological disorders. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US20030028072A1/en
  • US20050154426A1. Method and system for providing therapy for neuropsychiatric and neurological disorders utilizing transcranical magnetic stimulation and pulsed electrical vagus nerve(s) stimulation. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US20050154426A1/en
  • US20060129205A1. Method and system for cortical stimulation with rectangular and/or complex electrical pulses to provide therapy for stroke and other neurological disorders. Google Patents n.d. [cited 2020 Oct 13]. Available from: https://patents.google.com/patent/US20060129205A1/en
  • Sharma A, Badea M, Tiwari S, et al. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules. 2021;26(3):748.
  • Kourtis LC, Regele OB, Wright JM, et al. Digital biomarkers for Alzheimer’s disease: the mobile/wearable devices opportunity. NPJ Digital Med. 2019;2(1):9.
  • Frijia EM, Billing A, Lloyd-Fox S, et al. Functional imaging of the developing brain with wearable high-density diffuse optical tomography: a new benchmark for infant neuroimaging outside the scanner environment. Neuroimage. 2021;225:117490.
  • Pasluosta CF, Gassner H, Winkler J, et al. An emerging era in the management of Parkinson’s disease: wearable technologies and the internet of things. IEEE J Biomed Health Inform. 2015;19(6):1873–1881.
  • Saadeh W, Bin AMA, Butt SA. A wearable neuro-degenerative diseases detection system based on gait dynamics. IEEE/IFIP International Conference on VLSI and System-on-Chip, VLSI-SoC, IEEE Computer Society; 2017.
  • Oung QW, Hariharan M, Lee HL, et al. Wearable multimodal sensors for evaluation of patients with Parkinson disease. Proceedings – 5th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2015, Institute of Electrical and Electronics Engineers Inc.; 2016. p. 269–74.
  • Saied I, Chandran S, Arslan T. Integrated flexible hybrid silicone-textile dual-resonant sensors and switching circuit for wearable neurodegeneration monitoring systems. IEEE Trans Biomed Circuits Syst. 2019;13(6):1304–1312.
  • Madrid-Navarro CJ, Escamilla-Sevilla F, Mínguez-Castellanos A, et al. Multidimensional circadian monitoring by wearable biosensors in Parkinson's disease. Front Neurol. 2018;9:157.
  • Godoi BB, Amorim GD, Quiroga DG, et al. Parkinson's disease and wearable devices, new perspectives for a public health issue: an integrative literature review. Rev Assoc Med Bras. 2019;65(11):1413–1420.
  • Simonato M, Bennett J, Boulis NM, et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol. 2013;9(5):277–291.
  • Bidros DS, Vogelbaum MA. Novel drug delivery strategies in neuro-oncology. Neurotherapeutics. 2009;6(3):539–546.
  • Aryal M, Arvanitis CD, Alexander PM, et al. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev. 2014;72:94–109.
  • Tiwari A, Kumar R, Shefi O, et al. Fluorescent mantle carbon coated core-shell SPIONs for neuroengineering applications. ACS Appl Bio Mater. 2020;3(7):4665–4673.
  • Kumar VB, Kumar R, Gedanken A, et al. Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrason Sonochem. 2019;52:205–213.
  • Kumar VB, Kumar R, Friedman O, et al. One‐pot hydrothermal synthesis of elements (B, N, P)‐doped fluorescent carbon dots for cell labelling, differentiation and outgrowth of neuronal cells. ChemistrySelect. 2019;4(14):4222–4232.
  • Kumar R, Aadil KR, Ranjan S, et al. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Delivery Sci Technol. 2020;57:101617.
  • Kumar R, Kumar VB, Gedanken A. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason Sonochem. 2020;64:105009.
  • Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg. 2018;5(1):35.
  • Simrén J, Leuzy A, Karikari TK, et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimers Dement. 2021;17:1145–1156.
  • Ueno M, Chiba Y, Murakami R, et al. Blood-brain barrier and blood-cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol. 2016;33(2):89–96.
  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.
  • Kaushik A, Jayant RD, Nair M. Advances in personalized nanotherapeutics. Springer International Publishing; 2017.
  • Nair M, Jayant RD, Kaushik A, et al. Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev. 2016;103:202–217.
  • Kaushik A, Jayant RD, Bhardwaj V, et al. Personalized nanomedicine for CNS diseases. Drug Discov Today. 2018;23(5):1007–1015.
  • Sharma M, Dube T, Chibh S, et al. Nanotheranostics, a future remedy of neurological disorders. Expert Opin Drug Deliv. 2019;16(2):113–128.
  • Lockman PR, Mumper RJ, Khan MA, et al. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm. 2002;28(1):1–13.
  • Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA. 2005;102(27):9469–9474.
  • Goldstein JL, Anderson RGW, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979;279(5715):679–685.
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631.
  • Salehi B, Calina D, Docea A, et al. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. JCM. 2020;9(2):430.
  • Tam VH, Sosa C, Liu R, et al. Nanomedicine as a non-invasive strategy for drug delivery across the blood brain barrier. Int J Pharm. 2016;515(1–2):331–342.
  • Tosi G, Ruozi B, Belletti D. Nanomedicine: the future for advancing medicine and neuroscience. Nanomedicine. 2012;7(8):1113–1116.
  • Naz S, Beach J, Heckert B, et al. Cerium oxide nanoparticles: a “‘radical’ approach to neurodegenerative disease treatment”. Nanomedicine. 2017;12(5):545–553.
  • Mulik RS, Mönkkönen J, Juvonen RO, et al. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm. 2010;7(3):815–825.
  • Roney CA, Arora V, Kulkarni PV, et al. Nanoparticulate radiolabelled quinolines detect amyloid plaques in mouse models of Alzheimer’s disease. Int J Alzheimers Dis. 2009;2009:1–8.
  • Choudhury SD, Mohanty J, Pal H, et al. Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: demonstration of a stimulus-responsive fluorescent supramolecular capsule. J Am Chem Soc. 2010;132(4):1395–1401.
  • Martins PAT, Alsaiari S, Julfakyan K, et al. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates. Chem Commun. 2017;53(13):2102–2105.
  • Hemmaragala NM, Arvidsson PI, Maguire GEM, et al. Interaction of beta-amyloid interactions with peptide functionalized gold nanoparticles. J Nanosci Nanotechnol. 2012;12(3):2179–2184.
  • Cui Z, Lockman PR, Atwood CS, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases. Eur J Pharm Biopharm. 2005;59(2):263–272.
  • Hadavi D, Poot AA. Biomaterials for the treatment of Alzheimer's disease. Front Bioeng Biotechnol. 2016;4:49.
  • Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci. 2010;1184:154–172.
  • Schapira AHV. Treatment options in the modern management of Parkinson disease. Arch Neurol. 2007;64(8):1083–1088.
  • Kulkarni AD, Vanjari YH, Sancheti KH, et al. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review. J Drug Target. 2015;23(9):775–788.
  • Adamson C, Kanu OO, Mehta AI, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009;18(8):1061–1083.
  • Nikanjam M, Blakely EA, Bjornstad KA, et al. Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int J Pharm. 2007;328(1):86–94.
  • McConathy WJ, Nair MP, Paranjape S, et al. Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. Anticancer Drugs. 2008;19(2):183–188.
  • Madhankumar AB, Slagle-Webb B, Mintz A, et al. Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther. 2006;5(12):3162–3169.
  • Ito A, Shinkai M, Honda H, et al. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 2001;8(9):649–654.
  • Zhang S, Xiao M, Zhang Y, et al. Mimicking neuromelanin nanoparticles as a selective Pb2+ probe. Anal Chim Acta. 2020;1105:208–213.
  • Vashist A, Kaushik A, Vashist A, et al. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today. 2018;23(7):1436–1443.
  • Tomitaka A, Kaushik A, Kevadiya BD, et al. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today. 2019;24(3):873–882.
  • Kaushik A, Jayant RD, Nair M. Nanomedicine for neuroHIV/AIDS management. Nanomedicine. 2018;13(7):669–673.
  • Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano. 2014;8(3):1958–1965.
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
  • Craparo EF, Bondì ML, Pitarresi G, et al. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther. 2011;17(6):670–677.
  • Kaushik A, Jayant RD, Sagar V, et al. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin Drug Deliv. 2014;11(10):1635–1646.
  • Jayant RD, Sosa D, Kaushik A, et al. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Deliv. 2016;13(10):1433–1445.
  • Vashist A, Kaushik A, Vashist A, et al. Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomater Sci. 2016;4(11):1535–1553.
  • Vashist A, Kaushik A, Alexis K, et al. Bioresponsive injectable hydrogels for on-demand drug release and tissue engineering. CPD. 2017;23(24):3595–3602.
  • Vashist A, Kaushik A, Vashist A, et al. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv Healthcare Mater. 2018;7(9):1701213.
  • Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021;24(3):297–311.
  • Rabiei M, Kashanian S, Samavati SS, Jamasb S, et al. Active targeting towards and inside the brain based on nanoparticles: a review. Curr Pharm Biotechnol. 2020;21(5):374–383.
  • Kumar R, Butreddy A, Kommineni N, et al. Lignin: drug/gene delivery and tissue engineering applications. Int J Nanomedicine. 2021;16:2419–2441.
  • Cano A, Sánchez-López E, Ettcheto M, et al. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine. 2020;15(12):1239–1261.
  • Jaruszewski KM, Ramakrishnan S, Poduslo JF, et al. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein. Nanomedicine. 2012;8(2):250–260.
  • Gregori M, Masserini M, Mancini S. Nanomedicine for the treatment of Alzheimer's disease. Nanomedicine. 2015;10(7):1203–1218.
  • Hassanzadeh G, Fallahi Z, Khanmohammadi M, et al. Effect of magnetic tacrine-Loaded chitosan nanoparticles on spatial learning, memory, amyloid precursor protein and seladin-1 expression in the hippocampus of streptozotocin-exposed rats. Int Clin Neurosci J. 2016;3:25–31.
  • Brenza TM, Schlichtmann BW, Bhargavan B, et al. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J Biomed Mater Res A. 2018;106(11):2881–2890.
  • Tosi G, Ruozi B, Belletti D. Nanomedicine: the future for advancing medicine and neuroscience. Nanomedicine. 2012;7(8):1113–1116.
  • Kumar R, Kumar VB, Marcus M, et al. Element (B, N, P) doped carbon dots interaction with neural cells: promising results and future prospective. In: Parak WJ, Osiński M, editors. Colloidal nanoparticles for biomedical applications XIV, vol. 10892. SPIE; 2019. p. 22.
  • Re F, Cambianica I, Zona C, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine. 2011;7(5):551–559.
  • Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano. 2014;8(3):1958–1965.
  • Kaushik A, Jayant RD, Nikkhah-Moshaie R, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6(1):1–10.
  • Kaushik A, Rodriguez J, Rothen D, et al. MRI-guided, noninvasive delivery of magneto-electric drug nanocarriers to the brain in a nonhuman primate. ACS Appl Bio Mater. 2019;2(11):4826–4836.
  • Falconieri A, Vincentiis Raffa DS. Recent advances in the use of magnetic nanoparticles to promote neuroregeneration. Nanomedicine. 2019;14(9):1073–1076.
  • Kletetschka G, Bazala R, Takáč M, et al. Magnetic domains oscillation in the brain with neurodegenerative disease. Sci Rep. 2021;11(1):714.
  • Jayant R, Atluri V, Agudelo M, et al. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine. 2015;10:1077–1093.
  • Jayant RD, Tiwari S, Atluri V, et al. Multifunctional nanotherapeutics for the treatment of neuroAIDS in drug abusers. Sci Rep. 2018;8(1):1–12.
  • Kaushik A, Yndart A, Atluri V, et al. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep. 2019;9(1):1–11.
  • Pandey P, Ghimire G, Garcia J, et al. Single-entity approach to investigate surface charge enhancement in magnetoelectric nanoparticles induced by AC magnetic field stimulation. ACS Sens. 2020;6:340–347.
  • Kaushik A, Nikkhah-Moshaie R, Sinha R, et al. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells. Sci Rep. 2017;7(1):1–12.
  • Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6(3):e90–e90.
  • Cimini A, D'Angelo B, Das S, et al. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater. 2012;8(6):2056–2067.
  • Nelson B, Johnson M, Walker M, et al. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants. 2016;5(2):15.
  • Zhang W, Hu S, Yin JJ, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138(18):5860–5865.
  • Brenza TM, Ghaisas S, Ramirez JEV, et al. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine. 2017;13(3):809–820.
  • Zhang B, Yan W, Zhu Y, et al. Nanomaterials in neural-stem-cell-mediated regenerative medicine: imaging and treatment of neurological diseases. Adv Mater. 2018;30(17):1705694.
  • Marcus M, Baranes K, Park M, et al. Interactions of neurons with physical environments. Adv Healthcare Mater. 2017;6(15):1700267.
  • Mohajeri M, Behnam B, Barreto GE, et al. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer's disease? Pharmacol Res. 2019;143:186–203.
  • Fraczek-Szczypta A. Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater Sci Eng C Mater Biol Appl. 2014;34:35–49.
  • Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev. 2009;61(12):1097–1114.
  • John AA, Subramanian AP, Vellayappan MV, et al. Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. Int J Nanomedicine. 2015;10:4267–4277.
  • Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci. 2000;14(3):175–182.
  • Jin G-Z, Kim M, Shin US, et al. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett. 2011;501(1):10–14.
  • Keisham B, Seksenyan A, Denyer S, et al. Quantum capacitance based amplified graphene phononics for studying neurodegenerative diseases. ACS Appl Mater Interfaces. 2019;11(1):169–175.
  • Zhang DA, Rand E, Marsh M, et al. Carbon nanofiber electrode for neurochemical monitoring. Mol Neurobiol. 2013;48(2):380–385.
  • Chen W, Ouyang J, Yi X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater. 2018;30.
  • Padmakumar S, Jones G, Pawar G, et al. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J Control Release. 2021;331:176–186.
  • Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release. 2003;87(1-3):187–198.
  • Rodriguez M, Lapierre J, Ojha CR, et al. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep. 2017;7(1):1–10.
  • Kashyap K, Shukla R. Drug delivery and targeting to the brain through nasal route: mechanisms, applications and challenges. Curr Drug Deliv. 2019;16(10):887–901.
  • Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002;7(23):1184–1189.
  • Vitorino C, Jorge A, Pais A. Recent trends in nanotechnology for brain delivery: a brief outlook. In: Nanoparticles for brain drug delivery. Jenny Stanford Publishing; 2020. p. 3–7.
  • Machhi J, Shahjin F, Das S, et al. Nanocarrier vaccines for SARS-CoV-2. Adv Drug Deliv Rev. 2021;171:215–239.
  • Mittal D, Ali A, Md S, et al. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014;21(2):75–86.
  • Rabiee N, Ahmadi S, Afshari R, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Therap. 2021;4(3):2000076.
  • Jadhav K, Gambhire M, Shaikh I, et al. Nasal drug delivery system-factors affecting and applications. CDTH. 2007;2(1):27–38.
  • Ugwoke MI, Agu RU, Verbeke N, et al. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57(11):1640–1665.
  • Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–157.
  • Bourganis V, Kammona O, Alexopoulos A, et al. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337–362.
  • Xi J, Zhang Z, Si XA. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. Int J Nanomed. 2015;10:1211–1222.
  • Ong W-Y, Shalini S-M, Costantino L. Nose-to-Brain Drug Delivery by Nanoparticles in the Treatment of Neurological Disorders n.d.
  • Liu G, Men P, Harris PLR, et al. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406(3):189–193.
  • Nabi B, Rehman S, Fazil M, et al. Riluzole-loaded nanoparticles to alleviate the symptoms of neurological disorders by attenuating oxidative stress. Drug Dev Ind Pharm. 2020;46(3):471–483.
  • Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective–a review. Drug Deliv and Transl Res. 2013;3(1):42–62.
  • Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–177.
  • Khan AR, Liu M, Khan MW, et al. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364–389.
  • Gonçalves J, Alves G, Carona A, et al. Pre-clinical assessment of the nose-to-brain delivery of zonisamide after intranasal administration. Pharm Res. 2020;37(4):1–16.
  • Cui W, Fu W, Lin Y, et al. Application of nanomaterials in neurodegenerative diseases. CSCR. 2021;16(1):83–94.
  • Saeedi M, Eslamifar M, Khezri K, et al. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother. 2019;111:666–675.
  • Guo Q, Shen X, Tao Li Y, Yuan  , et al. Carbon nanotubes-based drug delivery to cancer and brain. J Huazhong Univ Sci Technol Med Sci. 2017;37(5):635–641.
  • Kanwar J, Mahidhara G, Kanwar R. Recent advances in nanoneurology for drug delivery to the brain. CNANO. 2009;5(4):441–448.
  • Pottoo FH, Javed MN, Rahman JU, et al. Targeted delivery of miRNA based therapeuticals in the clinical management of glioblastoma multiforme. Semin Cancer Biol. 2021;69:391–398.
  • Mahringer A, Puris E, Fricker G. Crossing the blood-brain barrier: a review on drug delivery strategies using colloidal carrier systems. Neurochem Int. 2021;147:105017.
  • Zinger A, Soriano S, Baudo G, et al. Biomimetic nanoparticles as a theranostic tool for traumatic brain injury. Adv Funct Mater. 2021;31(30):2100722.
  • Chakraborty C, Sarkar B, Hsu CH, Wen ZH, et al. Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol. 2009;93(2):285–286.
  • Soni V, Pandey V, Asati S, et al. Design and fabrication of brain-targeted drug delivery. In: Basic fundamentals of drug delivery. Elsevier; 2018. p. 539–593.
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150.
  • Agrahari V, Burnouf P-A, Burnouf T, et al. Nanoformulation properties, characterization, and behavior in complex biological matrices: challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev. 2019;148:146–180.
  • Carroll RT, Bhatia D, Geldenhuys W, et al. Brain-targeted delivery of tempol-loaded nanoparticles for neurological disorders. J Drug Target. 2010;18(9):665–674.
  • Sun D, Zhuang X, Zhang S, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65(3):342–347.
  • Gao N, Sun H, Dong K, et al. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem Eur J. 2015;21:829–835.
  • Xiang Y, Wu Q, Liang L, et al. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against the Parkinson’s disease in the MPTP-induced mice model. J Drug Target. 2012;20(1):67–75.
  • Hasadsri L, Kreuter J, Hattori H, et al. Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. 2009;284(11):6972–6981.
  • Tiwari MN, Agarwal S, Bhatnagar P, et al. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism. Free Radic Biol Med. 2013;65:704–718.
  • Jafarieh O, Md S, Ali M, et al. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm. 2015;41(10):1674–1681.
  • Gambaryan PY, Kondrasheva IG, Severin ES, et al. Increasing the efficiency of Parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system. Exp Neurobiol. 2014;23(3):246–252.
  • Zhang Y, Zhai M, Chen Z, et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv. 2017;24(1):1045–1055.
  • Qin L, Wang CZ, Fan HJ, et al. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncol Lett. 2014;8(5):2000–2006.
  • Guo J, Gao X, Su L, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32(31):8010–8020.
  • Gao H, Qian J, Cao S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012;33(20):5115–5123.
  • Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas. 2012;73(1):45–51.
  • Mahmoudi M, Laurent S, Shokrgozar MA, et al. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano. 2011;5(9):7263–7276.
  • Hutter E, Boridy S, Labrecque S, et al. Microglial response to gold nanoparticles. ACS Nano. 2010;4(5):2595–2606.
  • Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci. 2017;8(7):1438–1447.
  • Liu L, Zhu G. Gut-brain axis and mood disorder. Front Psychiatry. 2018;9:223.
  • Raimondi MT, Albani D, Giordano C. An organ-on-a-chip engineered platform to study the microbiota–gut–brain axis in neurodegeneration. Trends Mol Med. 2019;25(9):737–740.
  • Westfall S, Lomis N, Kahouli I, et al. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017;74(20):3769–3787.
  • Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease-the gut-brain axis and environmental factors. Nat Rev Neurol. 2015;11(11):625–636.
  • Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2020;19:241–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.