660
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum: advances and perspectives

ORCID Icon, , , & ORCID Icon
Pages 448-461 | Received 16 Aug 2022, Accepted 05 Jan 2023, Published online: 21 Mar 2023

References

  • Holm LJ, Haupt-Jorgensen M, Larsen J, et al. L-serine supplementation lowers diabetes incidence and improves blood glucose homeostasis in NOD mice. PLoS One. 2018;13(3):e0194414.
  • Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng. 2020;58:17–34.
  • Davis DA, Cox PA, Banack SA, et al. L-Serine reduces spinal cord pathology in a vervet model of preclinical ALS/MND. J Neuropathol Exp Neurol. 2020;79(4):393–406.
  • Bradley WG, Miller RX, Levine TD, et al. Studies of environmental risk factors in amyotrophic lateral sclerosis (ALS) and a phase I clinical trial of L-serine. Neurotox Res. 2018;33(1):192–198.
  • Li M, Chen J, Wang Y, et al. Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Front Bioeng Biotechnol. 2020;8(357):357.
  • Stolz M, Peters-Wendisch P, Etterich H, et al. Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Appl Environ Microbiol. 2007;73(3):750–755.
  • Zhang X, Xu G, Shi J, et al. Microbial production of L-serine from renewable feedstocks. Trends Biotechnol. 2018;36(7):700–712.
  • Mundhada H, Seoane JM, Schneider K, et al. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution. Metab Eng. 2017;39:141–150.
  • Joo YC, Hyeon JE, Han SO. Metabolic design of Corynebacterium glutamicum for production of L-cysteine with consideration of sulfur-supplemented animal feed. J Agric Food Chem. 2017;65(23):4698–4707.
  • Kondoh M, Hirasawa T. L-Cysteine production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2019;103(6):2609–2619.
  • Wei L, Wang H, Xu N, et al. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production. Appl Microbiol Biotechnol. 2019;103(3):1325–1338.
  • Mundhada H, Schneider K, Christensen HB, et al. Engineering of high yield production of L-serine in Escherichia coli. Biotechnol Bioeng. 2016;113(4):807–816.
  • Rennig M, Mundhada H, Wordofa GG, et al. Industrializing a bacterial strain for L-serine production through translation initiation optimization. ACS Synth Biol. 2019;8(10):2347–2358.
  • Wang C, Wu J, Shi B, et al. Improving L-serine formation by Escherichia coli by reduced uptake of produced L-serine. Microb Cell Fact. 2020;19(1):66.
  • Xu GQ, Zhu QJ, Luo YC, et al. Enhanced production of L-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose. Biochem Eng J. 2015;103:60–67.
  • Zhu Q, Zhang X, Luo Y, et al. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99(4):1665–1673.
  • Zhang XM, Gao YJ, Chen ZW, et al. High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum. Microb Cell Fact. 2020;19(1):115.
  • Yang J, Yang S. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics. 2017;18(Suppl 1):940.
  • Liu H, Fang G, Wu H, et al. L-Cysteine production in Escherichia coli based on rational metabolic engineering and modular strategy. Biotechnol J. 2018;13(5):e1700695.
  • Peters-Wendisch P, Netzer R, Eggeling L, et al. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Appl Microbiol Biotechnol. 2002;60(4):437–441.
  • Peters-Wendisch P, Stolz M, Etterich H, et al. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol. 2005;71(11):7139–7144.
  • Zheng MM, Chen KC, Wang RF, et al. Coupling between D-3-phosphoglycerate dehydrogenase and D-2-hydroxyglutarate dehydrogenase drives bacterial L-serine synthesis. P Natl Acad Sci USA. 2017;114:E7574–E7582.
  • Schuller DJ, Grant GA, Banaszak LJ. The allosteric ligand site in the vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Biol. 1995;2(1):69–76.
  • Grant GA, Schuller DJ, Banaszak LJ. A model for the regulation of D-3-phosphoglycerate dehydrogenase, a Vmax-type allosteric enzyme. Protein Sci. 1996;5(1):34–41.
  • Saski R, Pizer LI. Regulatory properties of purified 3-phosphoglycerate dehydrogenase from Bacillus subtilis. Eur J Biochem. 1975;51(2):415–427.
  • Grant GA. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch Biochem Biophys. 2012;519(2):175–185.
  • Haitani Y, Awano N, Yamazaki M, et al. Functional analysis of L-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol Lett. 2006;255(1):156–163.
  • Netzer R, Peters-Wendisch P, Eggeling L, et al. Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol. 2004;70(12):7148–7155.
  • Stauffer GV. Biosynthesis of serine, glycine, and one-carbon units. 2nd ed. Washington (DC): ASM Press; 1996.
  • Newman EB, Walker C. L-serine degradation in Escherichia coli K-12: a combination of L-serine, glycine, and leucine used as a source of carbon. J Bacteriol. 1982;151(2):777–782.
  • Zinser ER, Kolter R. Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol. 1999;181(18):5800–5807.
  • Wada M, Awano N, Haisa K, et al. Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol Lett. 2002;217(1):103–107.
  • Kim JW, Kim HJ, Kim Y, et al. Properties of the Corynebacterium glutamicum metC gene encoding cystathionine beta-lyase. Mol Cells. 2001;11(2):220–225.
  • Sawada K, Zen-In S, Wada M, et al. Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. Metab Eng. 2010;12(4):401–407.
  • Wieschalka S, Blombach B, Eikmanns BJ. Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol. 2012;94(2):449–459.
  • Leyval D, Uy D, Delaunay S, et al. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol. 2003;104(1-3):241–252.
  • Moon MW, Park SY, Choi SK, et al. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol. 2007;12(1–2):43–50.
  • Parche S, Burkovski A, Sprenger GA, et al. Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol. 2001;3(3):423–428.
  • Simic P, Willuhn J, Sahm H, et al. Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol. 2002;68(7):3321–3327.
  • Kishino M, Kondoh M, Hirasawa T. Enhanced L-cysteine production by overexpressing potential L-cysteine exporter genes in an L-cysteine-producing recombinant strain of Corynebacterium glutamicum. Biosci Biotechnol Biochem. 2019;83(12):2390–2393.
  • Zhang X, Xu G, Li H, et al. Effect of cofactor folate on the growth of Corynebacterium glutamicum SYPS-062 and L-serine accumulation. Appl Biochem Biotechnol. 2014;173(7):1607–1617.
  • Guo W, Chen Z, Zhang X, et al. A novel aceE mutation leading to a better growth profile and a higher L-serine production in a high-yield L-serine-producing Corynebacterium glutamicum strain. J Ind Microbiol Biotechnol. 2016;43(9):1293–1301.
  • Xu GQ, Jin XX, Guo W, et al. Characterization, modification, and overexpression of 3-phosphoglycerate dehydrogenase in Corynebacterium glutamicum for enhancing L-serine production. Ann Microbiol. 2015;65:929–935.
  • Becker J, Klopprogge C, Wittmann C. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Fact. 2008;7:8.
  • Cleto S, Jensen JV, Wendisch VF, et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. 2016;5(5):375–385.
  • Zhang XM, Lai LH, Xu GQ, et al. Effects of pyruvate kinase on the growth of Corynebacterium glutamicum and L-serine accumulation. Process Biochem. 2017;55:32–40.
  • Zhang XM, Yao LP, Xu GQ, et al. Enhancement of fructose utilization from sucrose in the cell for improved L-serine production in engineered Corynebacterium glutamicum. Biochem Eng J. 2017;118:113–122.
  • Zhang XM, Lai LH, Xu GQ, et al. Rewiring the Central metabolic pathway for high-yield L-serine production in Corynebacterium glutamicum by using glucose. Biotechnol J. 2019;14:e1800497.
  • Zhang X, Zhang X, Xu G, et al. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2018;102(14):5939–5951.
  • Zhang X, Zhang D, Zhu J, et al. High-yield production of L-serine from glycerol by engineered Escherichia coli. J Ind Microbiol Biotechnol. 2019;46(2):221–230.
  • Park SH, Kim HU, Kim TY, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun. 2014;5:4618.
  • Nakamori S, Kobayashi SI, Kobayashi C, et al. Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol. 1998;64(5):1607–1611.
  • Lee DS, Park JS, Kim Y, et al. Corynebacterium glutamicum sdhA encoding succinate dehydrogenase subunit a plays a role in cysR-mediated sulfur metabolism. Appl Microbiol Biotechnol. 2014;98(15):6751–6759.
  • Kjeldsen KR, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng. 2009;102(2):583–597.
  • Mei J, Xu N, Ye C, et al. Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114. Gene. 2016;575(2 Pt 3):615–622.
  • Duan Y, Zhai W, Liu W, et al. Fine-tuning multi-gene clusters via well-characterized gene expression regulatory elements: case study of the arginine synthesis pathway in C. glutamicum. ACS Synth Biol. 2021;10(1):38–48.
  • Gottl VL, Schmitt I, Braun K, et al. CRISPRi-library-guided target identification for engineering carotenoid production by Corynebacterium glutamicum. Microorganisms. 2021;9(4):670.
  • Yoon J, Woo HM. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production. Biotechnol Bioeng. 2018;115(8):2067–2074.
  • Peng F, Wang X, Sun Y, et al. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact. 2017;16(1):201.
  • Wang B, Hu Q, Zhang Y, et al. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb Cell Fact. 2018;17(1):63.
  • Jiang Y, Qian F, Yang J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
  • Zhang J, Yang F, Yang Y, et al. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microb Cell Fact. 2019;18(1):60.
  • Krumbach K, Sonntag CK, Eggeling L, et al. CRISPR/Cas12a mediated genome editing to introduce amino acid substitutions into the mechanosensitive channel MscCG of Corynebacterium glutamicum. ACS Synth Biol. 2019;8(12):2726–2734.
  • Lee SS, Park J, Heo YB, et al. Case study of xylose conversion to glycolate in Corynebacterium glutamicum: current limitation and future perspective of the CRISPR-Cas systems. Enzyme Microb Technol. 2020;132:109395.
  • Tan S, Shi F, Liu H, et al. Dynamic control of 4-hydroxyisoleucine biosynthesis by modified L-isoleucine biosensor in recombinant Corynebacterium glutamicum. ACS Synth Biol. 2020;9(9):2378–2389.
  • Zhang C, Li Y, Zhu F, et al. Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid. Bioresour Technol. 2020;318:124064.
  • Zhang H, Wang X. Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng. 2016;37:114–121.
  • Liu YR, Yang SY, Jia XQ. Construction of a “nutrition supply-detoxification” coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture. J Ind Microbiol Biotechnol. 2020;47(3):343–354.
  • Wang Y, Fan L, Tuyishime P, et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol. 2020;3(1):217.
  • Xu N, Lv H, Wei L, et al. Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2019;103(4):1877–1891.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.