259
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Utilizing CO2 in industrial off-gas for microalgae cultivation: considerations and solutions

, & ORCID Icon
Received 22 Feb 2023, Accepted 17 Jun 2023, Published online: 27 Jul 2023

References

  • Yadav G, Karemore A, Dash SK, et al. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresour Technol. 2015;191:399–406. doi: 10.1016/j.biortech.2015.04.040.
  • Ritchie H. CO2 emissions dataset: our sources and methods. 2022 [cited 2023 Feb 14]. Available from: https://ourworldindata.org/co2-dataset-sources
  • Sun Z, Zhang D, Yan C, et al. Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine. J Chem Technol Biotechnol. 2015;90:730–738. doi: 10.1002/jctb.4367.
  • Miller BG. 5 – Introduction to coal utilization technologies. In: Iller BG, editor. Clean coal engineering technology [Internet]. Boston: Butterworth-Heinemann; 2011. P. 133–217. Available from: https://www.sciencedirect.com/science/article/pii/B9781856177108000054.
  • Tiseo I. Carbon tax rates worldwide as of April 1, 2022, by country. 2023. Available from: https://www.statista.com/statistics/483590/prices-of-implemented-carbon-pricing-instruments-worldwide-by-select-country/.
  • Government of Canada. The federal carbon pollution pricing benchmark [Internet]. 2022. Available from: https://www.canada.ca/en/environment-climate-change/services/climate-change/pricing-pollution-how-it-will-work/carbon-pollution-pricing-federal-benchmark-information.html
  • Wang Z, Cheng J, Song W, et al. CO2 gradient domestication produces gene mutation centered on cellular light response for efficient growth of microalgae in 15% CO2 from flue gas. Chem Eng J. 2022;429:131968. doi: 10.1016/j.cej.2021.131968.
  • Kapoore RV, Padmaperuma G, Maneein S, et al. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol. 2022;42:46–72. doi: 10.1080/07388551.2021.1921691.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. doi: 10.1016/j.biotechadv.2007.02.001.
  • Yen H-W, Ho S-H, Chen C-Y, et al. CO2, Nox and Sox removal from flue gas via microalgae cultivation: A critical review. Biotechnol J. 2015;10:829–839. doi: 10.1002/biot.201400707.
  • Toledo-Cervantes A, Morales M, Novelo E, et al. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresour Technol. 2013;130:652–658. doi: 10.1016/j.biortech.2012.12.081.
  • I de G, Mendoza JL, Acién FG, et al. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol. 2014;153:307–314. doi: 10.1016/j.biortech.2013.11.087.
  • Dineshbabu G, Uma VS, Mathimani T, et al. On-site concurrent carbon dioxide sequestration from flue gas and calcite formation in ossein effluent by a marine cyanobacterium Phormidium valderianum BDU 20041. Energy Convers Manag. 2017;141:315–324. doi: 10.1016/j.enconman.2016.09.040.
  • Wang H, Hill RT, Zheng T, et al. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol. 2016;36:341–352. doi: 10.3109/07388551.2014.961402.
  • Palanisami S, Lee K, Balakrishnan B, et al. Flue-gas-influenced heavy metal bioaccumulation by the indigenous microalgae Desmodesmus communis LUCC 002. Environ Technol. 2015;36:463–469. doi: 10.1080/09593330.2014.952342.
  • Hosseini NS, Shang H, Scott JA. Increasing microalgal lipid productivity for conversion into biodiesel by using a non-energy consuming light guide. Biochem Eng J. 2018;134:60–68. doi: 10.1016/j.bej.2018.03.006.
  • Desjardins SM, Laamanen CA, Basiliko N, et al. Dark stress for improved lipid quantity and quality in bioprospected acid-tolerant green microalgae. FEMS Microbiol Lett. 2022;369:fnac057. doi: 10.1093/femsle/fnac057.
  • Government of Canada. What are the Clean Fuel Regulations? [Internet]. 2022; Available from https://www.canada.ca/en/environment-climate-change/services/managing-pollution/energy-production/fuel-regulations/clean-fuel-regulations/about.html
  • Hasib-Ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture—Development and progress. Chem Eng Process. 2010;49:313–322. doi: 10.1016/j.cep.2010.03.008.
  • Hack J, Maeda N, Meier DM. Review on CO2 capture using amine-functionalized materials. ACS Omega. 2022;7:39520–39530. doi: 10.1021/acsomega.2c03385.
  • Leimbrink M, Tlatlik S, Salmon S, et al. Pilot scale testing and modeling of enzymatic reactive absorption in packed columns for CO2 capture. Int J Greenh Gas Control. 2017;62:100–112. doi: 10.1016/j.ijggc.2017.04.010.
  • Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, et al. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol. 2022;19:1–12. doi: 10.1080/07388551.2022.2071672.
  • Tredici MR. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels. 2010;1:143–162. doi: 10.4155/bfs.09.10.
  • Tsukahara K, Sawayama S. Liquid fuel production using microalgae. J Jpn Petrol Inst. 2005;48:251–259. doi: 10.1627/jpi.48.251.
  • Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv. 2012;30:673–690. doi: 10.1016/j.biotechadv.2011.11.008.
  • Rastogi RP, Pandey A, Larroche C, et al. Algal green energy – R&D and technological perspectives for biodiesel production. Renew Sust Energ Rev. 2018;82:2946–2969. doi: 10.1016/j.rser.2017.10.038.
  • Laamanen CA, Shang H, Ross GM, et al. Smelter off-gas waste heat and carbon dioxide sequestration to promote production of biodiesel. CIM J. 2017;8(2):1–12.
  • Elisabeth B, Rayen F, Behnam T. Microalgae culture quality indicators: a review. Crit Rev Biotechnol. 2021;41:457–473. doi: 10.1080/07388551.2020.1854672.
  • Senhorinho GNA, Laamanen CA, Scott JA. Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia. 2018;57:432–439. doi: 10.2216/17-114.1.
  • Eibl JK, Corcoran JD, Senhorinho GNA, et al. Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies. AMB Express. 2014;4(1):7. doi: 10.1186/2191-0855-4-7.
  • Laamanen CA, Scott JA. Chapter 1 – Microalgae biofuel bioreactors for mitigation of industrial CO2 emissions. In: Singh L, Yousuf A, Mahapatra DM, editors. Bioreactors [Internet]. Elsevier; 2020. p. 1–16. Available from: https://www.sciencedirect.com/science/article/pii/B9780128212646000012.
  • Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol. 2013;33:172–215. doi: 10.3109/07388551.2012.681625.
  • Borowitzka MA. The ‘stress’ concept in microalgal biology—homeostasis, acclimation and adaptation. J Appl Phycol. 2018;30:2815–2825. doi: 10.1007/s10811-018-1399-0.
  • Hossain N, Mahlia TMI. Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit Rev Biotechnol. 2019;39:835–859. doi: 10.1080/07388551.2019.1624945.
  • Münkel R, Schmid-Staiger U, Werner A, et al. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnol Bioeng. 2013;110:2882–2893. doi: 10.1002/bit.24948.
  • Chen Y, Xu C, Vaidyanathan S. Microalgae: a robust “green bio-bridge” between energy and environment. Crit Rev Biotechnol. 2018;38:351–368. doi: 10.1080/07388551.2017.1355774.
  • Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol. 2017;37:37–52. doi: 10.3109/07388551.2015.1108956.
  • Desjardins SM. Adaptation of microalgae bioprospected from stressed environments in Northern Ontario for the production of lipids. Sudbury, ON (Canada): Laurentian University; 2020.
  • Saravana PS, Ummat V, Bourke P, et al. Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: a review. Crit Rev Biotechnol. 2022:1–16. doi: 10.1080/07388551.2022.2089869.
  • Singh V, Mishra V. A review on the current application of light-emitting diodes for microalgae cultivation and its fiscal analysis. Crit Rev Biotechnol. 2023;43(5):665–679.
  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, et al. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Crit Rev Biotechnol. 2018;38:1244–1260. doi: 10.1080/07388551.2018.1472066.
  • Aguirre A-M, Bassi A, Saxena P. Engineering challenges in biodiesel production from microalgae. Crit Rev Biotechnol. 2013;33:293–308. doi: 10.3109/07388551.2012.695333.
  • Pongsurapipat Y, Areeprasert C, Takahashi F, et al. Life cycle analysis of low-temperature hydrothermal treatment pathway to produce biodiesel from microalgae. Biofuels. 2017;8:215–223. doi: 10.1080/17597269.2016.1221297.
  • Kazbar A, Cogne G, Urbain B, et al. Effect of dissolved oxygen concentration on microalgal culture in photobioreactors. Algal Res. 2019;39:101432. doi: 10.1016/j.algal.2019.101432.
  • Grobbelaar JU. Algal nutrition – mineral nutrition. In: Handbook of Microalgal Culture [Internet]. West Sussex (UK): John Wiley & Sons, Ltd; 2003. P. 95–115. Available from: 10.1002/9780470995280.ch6.
  • Zimmerman WB, Zandi M, Bandulasena HCH, et al. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Appl Energy. 2011;88:3357–3369. doi: 10.1016/j.apenergy.2011.02.013.
  • Lindsey R. Climate change: atmospheric carbon dioxide. 2022. Available from: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
  • Wang B, Lan CQ, Horsman M. Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv. 2012;30:904–912. doi: 10.1016/j.biotechadv.2012.01.019.
  • Nguyen LN, Vu MT, Vu HP, et al. Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization. Crit Rev Environ Sci Technol. 2022;53(1):1–23.
  • Demirbas A. Production economics of high-quality microalgae. Energ Source B. 2017;12:395–401. doi: 10.1080/15567249.2015.1057655.
  • Laamanen CA, Shang H, Ross GM, et al. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates. Energy Convers Manag. 2014;88:476–483. doi: 10.1016/j.enconman.2014.08.047.
  • Costache TA, Acién Fernández FG, Morales MM, et al. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl Microbiol Biotechnol. 2013;97:7627–7637. doi: 10.1007/s00253-013-5035-2.
  • Srimongkol P, Sangtanoo P, Songserm P, et al. Microalgae-based wastewater treatment for developing economic and environmental sustainability: current status and future prospects. Front Bioeng Biotechnol. 2022;10:904046. doi: 10.3389/fbioe.2022.904046.
  • Yadav G, Mathimani T, Sekar M, et al. Strategic evaluation of limiting factors affecting algal growth – an approach to waste mitigation and carbon dioxide sequestration. Sci Total Environ. 2021;796:149049. doi: 10.1016/j.scitotenv.2021.149049.
  • Wijayasekera SCN, Cooray BY, Premaratne M, et al. Assessment of the potential of CO2 sequestration from cement flue gas using locally isolated microalgae. Moratuwa Engineering Research Conference (MERCon) (p. 124–129). 2020. doi: 10.1109/MERCon50084.2020.9185234.
  • Moheimani NR. Tetraselmis suecica culture for CO2 bioremediation of untreated flue gas from a coal-fired power station. J Appl Phycol. 2016;28:2139–2146. doi: 10.1007/s10811-015-0782-3.
  • Aslam A, Thomas-Hall SR, Manzoor M, et al. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production. J Photochem Photobiol B. 2018;179:126–133. doi: 10.1016/j.jphotobiol.2018.01.003.
  • Cheng J, Yang Z, Zhou J, et al. Improving the CO2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond. Korean J Chem Eng. 2018;35:498–502. doi: 10.1007/s11814-017-0300-1.
  • Praveenkumar R, Kim B, Choi E, et al. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour Technol. 2014;171:500–505. doi: 10.1016/j.biortech.2014.08.112.
  • Taştan BE, Duygu E, İlbaş M, et al. Enhancement of microalgal biomass production and dissolved inorganic C fixation from actual coal flue gas by exogenous salicylic acid and 1-triacontanol growth promoters. Energy. 2016;103:598–604. doi: 10.1016/j.energy.2016.03.020.
  • Kandimalla P, Desi S, Vurimindi H. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ Sci Pollut Res Int. 2016;23:9345–9354. doi: 10.1007/s11356-015-5264-2.
  • Yadav G, Dash SK, Sen R. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Sci Total Environ. 2019;688:129–135. doi: 10.1016/j.scitotenv.2019.06.024.
  • Borkenstein CG, Knoblechner J, Frühwirth H, et al. Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol. 2011;23:131–135. doi: 10.1007/s10811-010-9551-5.
  • Gunasena H, Rupasinghe C, Dissanayaka D. Enhancing biomass production of microalgae using cement flue gas. 2nd Annual International Conference on Business Innovation, ICOBI 2019, NSBM Green University; 2019.
  • Rossi RA, Camargo EC, Crnkovic PCGM, et al. Physiological and biochemical responses of chlorella vulgaris to real cement flue gas under controlled conditions. Water Air Soil Pollut. 2018;229:259. doi: 10.1007/s11270-018-3914-y.
  • Olofsson M, Lindehoff E, Frick B, et al. Baltic sea microalgae transform cement flue gas into valuable biomass. Algal Res. 2015;11:227–233. doi: 10.1016/j.algal.2015.07.001.
  • Chiu S-Y, Kao C-Y, Huang T-T, et al. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. Cultures. Bioresour Technol. 2011;102:9135–9142. doi: 10.1016/j.biortech.2011.06.091.
  • Li F-F, Yang Z-H, Zeng R, et al. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res. 2011;50:6496–6502. doi: 10.1021/ie200040q.
  • Kaštánek F, Šabata S, Šolcová O, et al. In-field experimental verification of cultivation of microalgae Chlorella sp. Using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Manag Res. 2010;28:961–966. doi: 10.1177/0734242X10375866.
  • Cui H, Yang Z, Lu Z, et al. Combination of utilization of CO2 from flue gas of biomass power plant and medium recycling to enhance cost-effective Spirulina production. J Appl Phycol. 2019;31:2175–2185. doi: 10.1007/s10811-019-1736-y.
  • Kumar K, Banerjee D, Das D. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol. 2014;152:225–233. doi: 10.1016/j.biortech.2013.10.098.
  • Ekendahl S, Bark M, Engelbrektsson J, et al. Energy-efficient outdoor cultivation of oleaginous microalgae at northern latitudes using waste heat and flue gas from a pulp and paper mill. Algal Res. 2018;31:138–146. doi: 10.1016/j.algal.2017.11.007.
  • Choi YY, Hong ME, Jin ES, et al. Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresour Technol. 2018;249:519–526. doi: 10.1016/j.biortech.2017.10.060.
  • Mortensen LM, Gislerød HR. The growth of Chlamydomonas reinhardtii as influenced by high CO2 and low O2 in flue gas from a silicomanganese smelter. J Appl Phycol. 2015;27:633–638. doi: 10.1007/s10811-014-0357-8.
  • Benner P, Meier L, Pfeffer A, et al. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng. 2022;45:791–813. doi: 10.1007/s00449-022-02711-1.
  • McGinn PJ, Dickinson KE, Bhatti S, et al. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res. 2011;109:231–247. doi: 10.1007/s11120-011-9638-0.
  • Penloglou G, Chatzidoukas C, Kiparissides C. Scale-up and intensification of a microalgae cultivation process for the production of high-added value biochemicals. Mater Today: Proc. 2018;5:27463–27471.
  • Ramanan R, Kannan K, Deshkar A, et al. Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. And Spirulina platensis in a mini-raceway pond. Bioresour Technol. 2010;101:2616–2622. doi: 10.1016/j.biortech.2009.10.061.
  • Mondo AD, Smerilli A, Ambrosino L, et al. Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics. Crit Rev Biotechnol. 2021;41:155–171. doi: 10.1080/07388551.2021.1874284.
  • Matsumoto H, Hamasaki A, Sioji N, et al. Influence of CO2, SO2 and flue gas on microalgae productivity. J Chem Eng Japan. 1997;30:620–624. doi: 10.1252/jcej.30.620.
  • Fu J, Huang Y, Xia A, et al. How the sulfur dioxide in the flue gas influence microalgal carbon dioxide fixation: from gas dissolution to cells growth. Renew Energ. 2022;198:114–122. doi: 10.1016/j.renene.2022.08.057.
  • Mehta SK, Gaur JP. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol. 2005;25:113–152. doi: 10.1080/07388550500248571.
  • Hess D, Napan K, McNeil BT, et al. Quantification of effects of flue gas derived inorganic contaminants on microalgae growth system and end fate of contaminants. Algal Res. 2017;25:68–75. doi: 10.1016/j.algal.2017.04.007.
  • Mohler D, Wilson MH, Kesner S, et al. Beneficial re-use of industrial CO2 emissions using microalgae: demonstration assessment and biomass characterization. Bioresour Technol. 2019;293:122014. doi: 10.1016/j.biortech.2019.122014.
  • García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv. 2016;34:859–873. doi: 10.1016/j.biotechadv.2016.05.003.
  • Danouche M, Ghachtouli NE, Arroussi HE. Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon. 2021;7:e07609. doi: 10.1016/j.heliyon.2021.e07609.
  • Rijstenbil JW, Dehairs F, Ehrlich R, et al. Effect of the nitrogen status on copper accumulation and pools of metal-binding peptides in the planktonic diatom Thalassiosira pseudonana1Communication no. 2404 of NIOO, Netherlands Institute of Ecology.1. Aquat Toxicol. 1998;42:187–209. doi: 10.1016/S0166-445X(97)00091-X.
  • Saito K. Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol. 2004;136:2443–2450. doi: 10.1104/pp.104.046755.
  • Simmons DBD, Emery RJN. Phytochelatin induction by selenate in Chlorella vulgaris, and regulation of effect by sulfate levels. Environ Toxicol Chem. 2011;30:469–476. doi: 10.1002/etc.392.
  • Einicker-Lamas M, Mezian GA, Fernandes TB, et al. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut. 2002;120:779–786. doi: 10.1016/s0269-7491(02)00170-7.
  • Aslam A, Thomas-Hall SR, Mughal T, et al. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations. J Environ Manage. 2019;241:243–250. doi: 10.1016/j.jenvman.2019.03.118.
  • Desjardins SM, Laamanen CA, Basiliko N, et al. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH. Extremophiles. 2021;25:129–141. doi: 10.1007/s00792-021-01216-1.
  • Johnson D. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Front Microbiol. 2012;3:325.
  • Abinandan S, Subashchandrabose SR, Panneerselvan L, et al. Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Bioresour Technol. 2019;278:9–16. doi: 10.1016/j.biortech.2019.01.053.
  • Lara-Gil JA, Senés-Guerrero C, Pacheco A. Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae. Algal Res. 2016;17:285–292. doi: 10.1016/j.algal.2016.05.017.
  • Cheng J, Lu H, He X, et al. Mutation of Spirulina sp. by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas. Bioresour Technol. 2017;238:650–656. doi: 10.1016/j.biortech.2017.04.107.
  • Kao C-Y, Chen T-Y, Chang Y-B, et al. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol. 2014;166:485–493. doi: 10.1016/j.biortech.2014.05.094.
  • Talec A, Philistin M, Ferey F, et al. Effect of gaseous cement industry effluents on four species of microalgae. Bioresour Technol. 2013;143:353–359. doi: 10.1016/j.biortech.2013.05.104.
  • Kim J, Lee J-Y. Mitigation of inhibition effect of acid gases in flue gas using trona buffer for autotrophic growth of Nannochloris sp. Biochem Eng J. 2017;117:15–22. doi: 10.1016/j.bej.2016.09.014.
  • Chen Y, Wang J, Liu T, et al. Effects of initial population density (IPD) on growth and lipid composition of Nannochloropsis sp. J Appl Phycol. 2012;24:1623–1627. doi: 10.1007/s10811-012-9825-1.
  • Hosseini NS, Shang H, Scott JA. Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology. Energy. 2018;146:47–56. doi: 10.1016/j.energy.2017.08.085.
  • Negoro M, Shioji N, Miyamoto K, et al. Growth of microalgae in high CO2 gas and effects of Sox and Nox. Appl Biochem Biotechnol. 1991;28–29:877–886. doi: 10.1007/BF02922657.
  • Pires JCM, Alvim-Ferraz MCM, Martins FG, et al. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev. 2012;16:3043–3053. doi: 10.1016/j.rser.2012.02.055.
  • Ahn Y, Park S, Ji M-K, et al. Biodiesel production potential of microalgae, cultivated in acid mine drainage and livestock wastewater. J Environ Manag. 2022;314:115031. doi: 10.1016/j.jenvman.2022.115031.
  • Choi H, Lee S-M. Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system. Environ Sci Pollut Res. 2015;22:13404–13411. doi: 10.1007/s11356-015-4623-3.
  • Jiang Y, Zhu Y, Hu Z, et al. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecotoxicology. 2016;25:1417–1425. doi: 10.1007/s10646-016-1692-0.
  • Cheng J, Zhu Y, Zhang Z, et al. Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants. Bioresour Technol. 2019;291:121850. doi: 10.1016/j.biortech.2019.121850.
  • Lu Y, Zhang X, Gu X, et al. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol. 2021;41:1233–1256. doi: 10.1080/07388551.2021.1917507.
  • Wang Y, Yu J, Wang P, et al. Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress. Environ Sci Pollut Res Int. 2018;25:5762–5770. doi: 10.1007/s11356-017-0931-0.
  • Lin W-R, Lai Y-C, Sung P-K, et al. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J Taiwan Inst Chem Eng. 2018;93:131–141. doi: 10.1016/j.jtice.2018.10.010.
  • Kim NH, Hwang JY, Lee HG, et al. Strategic approaches to communicating with food consumers about genetically modified food. Food Control. 2018;92:523–531. doi: 10.1016/j.foodcont.2018.05.016.
  • Daev EV, Zabarin AV, Barkova SM, et al. Distortions of scientific information as a source of the formation of tension in society: the GMO case. Russ J Genet Appl Res. 2016;6:633–645.
  • Nguyen TT, Bui XT, Pham MD, et al. Effect of Tris-(hydroxymethyl)-amino methane on microalgae biomass growth in a photobioreactor. Bioresour Technol. 2016;208:1–6. doi: 10.1016/j.biortech.2016.02.043.
  • Chen Y, Bi C, Tong S, et al. An improved and reliable method for microalgae direct PCR. J Appl Phycol. 2019;31:2411–2421. doi: 10.1007/s10811-019-01768-y.
  • Bartley ML, Boeing WJ, Dungan BN, et al. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J Appl Phycol. 2014;26:1431–1437. doi: 10.1007/s10811-013-0177-2.
  • Lara-Gil JA, Álvarez MM, Pacheco A. Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. J Appl Phycol. 2014;26:357–368. doi: 10.1007/s10811-013-0136-y.
  • Hosseini NS, Shang H, Ross GM, et al. Microalgae cultivation in a novel top-lit gas-lift open bioreactor. Bioresour Technol. 2015;192:432–440. doi: 10.1016/j.biortech.2015.05.092.
  • González-Camejo J, Aparicio S, Jiménez-Benítez A, et al. Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Res. 2020;172:115518. doi: 10.1016/j.watres.2020.115518.
  • Amaral MS, Loures CCA, Naves FL, et al. Evaluation of cell growth performance of microalgae Chlorella minutissima using an internal light integrated photobioreactor. J Environ Chem Eng. 2020;8:104200. doi: 10.1016/j.jece.2020.104200.
  • Abu-Ghosh S, Fixler D, Dubinsky Z, et al. Flashing light in microalgae biotechnology. Bioresour Technol. 2016;203:357–363. doi: 10.1016/j.biortech.2015.12.057.
  • Singh RN, Sharma S. Development of suitable photobioreactor for algae production – A review. Renew Sust Energ Rev. 2012;16:2347–2353. doi: 10.1016/j.rser.2012.01.026.
  • Chiu S-Y, Kao C-Y, Chen C-H, et al. Reduction of CO2 by a high-density culture of Chlorella sp. In a semicontinuous photobioreactor. Bioresour Technol. 2008;99:3389–3396. doi: 10.1016/j.biortech.2007.08.013.
  • He L, Subramanian VR, Tang YJ. Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass Bioenergy. 2012;41:131–138. doi: 10.1016/j.biombioe.2012.02.025.
  • China S, Fujii K. Isolation of high-CO2-acclimated Micractinium sp. Strains from eutrophic reservoir water. Algal Res. 2018;34:126–133. doi: 10.1016/j.algal.2018.07.015.
  • Cheah WY, Show PL, Chang J-S, et al. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol. 2015;184:190–201. doi: 10.1016/j.biortech.2014.11.026.
  • Raja R, Hemaiswarya S, Kumar NA, et al. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol. 2008;34:77–88. doi: 10.1080/10408410802086783.
  • Alvarez AL, Weyers SL, Goemann HM, et al. Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res. 2021;54:102200. doi: 10.1016/j.algal.2021.102200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.