305
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Fashion meets science: how advanced breeding approaches could revolutionize the textile industry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, , , & show all
Received 20 Jun 2023, Accepted 15 Dec 2023, Published online: 07 Mar 2024

References

  • Kozłowski RM, Mackiewicz-Talarczyk M. Introduction to natural textile fibres. In: Handbook of natural fibres. UK: Woodhead Publishing; 2012. p. 1–8. doi: 10.1533/9780857095503.1
  • Fernández L. 2022. Global production volume of textile fibers 1975–2020. Statista. Retrieved from https://www.statista.com/statistics/263154/worldwide-production-volume-of-textile-fibers-since-1975/.
  • Ministry of Chemicals and Fertilizers, GOI. 2022. Annual report 2021-22: chemical and petrochemical statistics at a glance-2021.
  • FAOSTAT. 2023. Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL.
  • Sinclair R. Understanding textile fibres and their properties In: Textiles and Fashion. Amsterdam, Netherlands: Elsevier; 2015. p. 3–27. doi: 10.1016/B978-1-84569-931-4.00001-5.
  • Adekomaya O, Jamiru T, Sadiku R, et al. Negative impact from the application of natural fibers. J Clean Prod. 2016;143:843–846. doi: 10.1016/j.jclepro.2016.12.037.
  • Cushman SA, Zhang L, Niyitanga S, et al. Editorial: applied genetics of natural fiber plants. Fron Genet. 2021;1:647225.
  • Said JI, Song M, Wang H, et al. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics. 2015;290:1003–1025. doi: 10.1007/s00438-014-0963-9.
  • Halladakeri P, Gudi S, Akhtar S, et al. Meta-analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.). Plant Genome. 2023; 16:e20342. doi: 10.1002/tpg2.20342.
  • Li F, Fan G, Wang K, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46:567–572. doi: 10.1038/ng.2987.
  • Gao S, Wang B, Xie S, et al. A high-quality reference genome of wild Cannabis sativa. Hortic Res. 2020;7:73. doi: 10.1038/s41438-020-0295-3.
  • Wang Z, Hobson N, Galindo L, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012;72:461–473. doi: 10.1111/j.1365-313X.2012.05093.x.
  • Chen ZJ, Sreedasyam A, Ando A, et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet. 2020;52:525–533. doi: 10.1038/s41588-020-0614-5.
  • Sarfraz Z, Iqbal MS, Geng X, et al. GWAS mediated elucidation of heterosis for metric traits in Cotton (Gossypium hirsutum L.) across multiple environments. Front Plant Sci. 2021;12:565552. doi: 10.3389/fpls.2021.565552.
  • Gudi S, Saini DK, Halladakeri P, et al. Genome-wide association study unravels genomic regions associated with chlorophyll fluorescence parameters in wheat (Triticum aestivum L.) under different sowing conditions. Plant Cell Rep. 2023;42:1453–1472. doi: 10.1007/s00299-023-03041-6.
  • Syduzzaman M, Al Faruque MA, Bilisik K, et al. Plant-based natural fibre reinforced composites: a review on fabrication, properties and applications. Coatings. 2020;10:973. doi: 10.3390/coatings10100973.
  • https://www.textileschool.com/220/textile-fibers-the-building-blocks-of-the-textile-industry/.
  • Townsend T. World natural fibre production and employment. In: Handbook of natural fibres. 2nd ed., Vol. 1. Cambridge: Woodhead Publishing Series in Textiles; 2020. p. 15–36.
  • Westman MP, Fifield LS, Simmons KL, et al. Natural fiber composites: a review. U.S. Department of Energy Office of Scientific and Technical Information. Richland, WA (United States): Pacific Northwest National Lab; 2010. p. 10. doi: 10.2172/989448.
  • Gupta PK, Patra S, Samanta KK. Potential of okra for application in textiles: a review. J Nat Fibers. 2021;18:1788–1800. doi: 10.1080/15440478.2019.1697997.
  • Dawson T. Progress towards a greener textile industry. Color Technol. 2012;128:1–8. doi: 10.1111/j.1478-4408.2011.00346.x.
  • Hulle A, Purohit R. Essential and desirable properties of textile fibers: characteristics of good textile fiber. 2017. Retrieved from https://www.onlinetextileacademy.com/essential-and-desirable-properties-of-textile-fibers-characteristics-of-good-textile-fiber/.
  • Yu C. Natural textile fibres: vegetable fibres. Textiles and fashion. Amsterdam, Netherlands: Elsevier; 2015. p. 29–56.
  • A. Rahman Bhuiyan M, Shaid A, M. Bashar M, et al. A novel approach of dyeing jute fiber with reactive dye after treating with chitosan. OJOPM. 2013;03:87–91. doi: 10.4236/ojopm.2013.34014.
  • Rani A, Jhang T, Singh S. Developing herbal mosquito repellent cotton fabric using the optimized process variables for the safe environment. Proceedings. 2023;78:900–906.
  • Ghosh A, Majumdar A. Process control in drawing, combing and speed frame operations. In: Process control in textile manufacturing. Amsterdam, Netherlands: Elsevier; 2013. p. 158–190.
  • Bristi U, Bristi U. The effect of temperature variation on dyeing tie-dye cotton fabrics dyed with reactive dye. JTST. 2018;04:117–128. doi: 10.4236/jtst.2018.44008.
  • Krifa M, Stewart Stevens S. Cotton utilization in conventional and non-conventional textiles-a statistical review. AS. 2016;07:747–758. doi: 10.4236/as.2016.710069.
  • Kelly CM, Osorio-Marin J, Kothari N, et al. Genetic improvement in cotton fiber elongation can impact yarn quality. Ind Crops Prod. 2019;129:1–9. doi: 10.1016/j.indcrop.2018.11.066.
  • Gowda SA, Katageri IS, Kumar NM, et al. Development and evaluation of India’s first intraspecific Gossypium barbadense cotton recombinant inbred mapping population for extra-long staple fibre traits. J Genet. 2022;101:1–14. doi: 10.1007/s12041-021-01338-7.
  • Gowda SA, Katageri IS, Patil RS, et al. 63 K and 50 K SNP array based high-density genetic mapping and QTL analysis for productivity and fiber quality traits in cotton. Euphytica. 2022;218:93. doi: 10.1007/s10681-022-03039-3.
  • Chen ZJ, Scheffler BE, Dennis E, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007;145:1303–1310. doi: 10.1104/pp.107.107672.
  • Yang X, Zhou X, Wang X, et al. Mapping QTL for cotton fiber quality traits using simple sequence repeat markers, conserved intron-scanning primers, and transcript-derived fragments. Euphytica. 2015;201:215–230. doi: 10.1007/s10681-014-1194-1.
  • Tyagi P, Gore MA, Bowman DT, et al. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor Appl Genet. 2014;127:283–295. doi: 10.1007/s00122-013-2217-3.
  • Kaur B, Tyagi P, Kuraparthy V. Genetic diversity and population structure in the landrace accessions of Gossypium hirsutum. Crop Sci. 2017;57:2457–2470. doi: 10.2135/cropsci2016.12.0999.
  • Faisal Nazir M, He S, Ahmed H, et al. Genomic insight into the divergence and adaptive potential of a forgotten landrace G. hirsutum L. purpurascens. J Genet Genomics. 2021;48:473–484. doi: 10.1016/j.jgg.2021.04.009.
  • Chandnani R. Comparative molecular dissection of transmission genetics and quantitative trait inheritance in cotton reciprocal advanced backcross populations [Doctoral dissertation]. University of Georgia; 2017.
  • Abdurakhmonov IY, Saha S, Jenkins JN, et al. Linkage disequilibrium-based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica. 2009;136:401–417. doi: 10.1007/s10709-008-9337-8.
  • Razzaq A, Zafar MM, Ali A, et al. The pivotal role of major chromosomes of sub-genomes A and D in fiber quality traits of cotton. Front Genet. 2022;12:642595. doi: 10.3389/fgene.2021.642595.
  • Li C, Dong C, Zhao H, et al. Identification of superior parents with high fiber quality using molecular markers and phenotypes based on a core collection of upland cotton (Gossypium hirsutum L.). Mol Breed. 2022;42:30.
  • Darmanov MM, Makamov AK, Ayubov MS, et al. Development of superior fibre quality upland cotton cultivar series ‘Ravnaq’ using marker-assisted selection. Front Plant Sci. 2022;13:906472. doi: 10.3389/fpls.2022.906472.
  • Ma LL, Su Y, Nie H, et al. QTL and genetic analysis controlling fiber quality traits using paternal backcross population in upland cotton. J Cotton Res. 2020;3:1–11. doi: 10.1186/s42397-020-00060-6.
  • Wang X, Miao Y, Cai Y, et al. Large-fragment insertion activates gene GaFZ (Ga08G0121) and is associated with the fuzz and trichome reduction in cotton (Gossypium arboreum). Plant Biotechnol J. 2021;19:1110–1124. doi: 10.1111/pbi.13532.
  • Zhang T, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–537. doi: 10.1038/nbt.3207.
  • Liu X, Hou J, Chen L, et al. Natural variation of GhSI7 increases seed index in cotton. Theor Appl Genet. 2022;135:3661–3672. doi: 10.1007/s00122-022-04209-6.
  • Islam MS, Thyssen GN, Jenkins JN, et al. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genom. 2016;17:1–17.
  • Tan Z, Fang X, Tang S, et al. Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.). Euphytica. 2015;203:615–628. doi: 10.1007/s10681-014-1288-9.
  • Fang L, Gong H, Hu Y, et al. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol. 2017;18:33. doi: 10.1186/s13059-017-1167-5.
  • Song X, Zhu G, Hou S, et al. Genome-wide association analysis reveals loci and candidate genes involved in fiber quality traits under multiple field environments in cotton (Gossypium hirsutum). Front Plant Sci. 2021;12:695503. doi: 10.3389/fpls.2021.695503.
  • Liu X, Moncuquet P, Zhu QH, et al. Genetic identification and transcriptome analysis of lintless and fuzzless traits in Gossypium arboreum l. Int J Mol Sci. 2020;21:1675.
  • Tian Y, Zhang T. MIXTAs and phytohormones orchestrate cotton fiber development. Curr Opin Plant Biol. 2020;59:101975. doi: 10.1016/j.pbi.2020.10.007.
  • Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829. doi: 10.1093/genetics/157.4.1819.
  • Islam MS, Fang DD, Jenkins JN, et al. Evaluation of genomic selection methods for predicting fiber quality traits in upland cotton. Mol Genet Genomics. 2020;295:67–79. doi: 10.1007/s00438-019-01599-z.
  • Billings GT, Jones MA, Rustgi S, et al. Outlook for implementation of genomics-based selection in public cotton breeding programs. Plants. 2022;11:11. doi: 10.3390/plants11111446.
  • Gapare W, Liu S, Conaty W, et al. Historical datasets support genomic selection models for the prediction of cotton fiber quality phenotypes across multiple environments. G3. 2018;8:1721–1732. doi: 10.1534/g3.118.200140.
  • Qin Y, Sun H, Hao P, et al. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines. BMC Genom. 2019;20:1–16.
  • Ma J, Jiang Y, Pei W, et al. Expressed genes and their new alleles identification during fibre elongation reveal the genetic factors underlying improvements of fibre length in cotton. Plant Biotechnol J. 2022;20:1940–1955. doi: 10.1111/pbi.13874.
  • Salih H, Leng X, He S-P, et al. Characterization of the early fiber development gene, Ligon-lintless 1 (Li1), using microarray-NC-ND license. Plant Gene. 2016;6:59–66. doi: 10.1016/j.plgene.2016.03.006.
  • Li L, Zhang C, Huang J, et al. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J. 2021;19:109–123. doi: 10.1111/pbi.13446.
  • Bilal Tufail M, Yasir M, Zuo D, et al. Identification and characterization of phytocyanin family genes in cotton genomes. Genes. 2023;14:611. doi: 10.3390/genes14030611.
  • Liu Z, Sun Z, Ke H, et al. Transcriptome, ectopic expression and genetic population analysis identify candidate genes for fiber quality improvement in cotton. Int J Mol Sci. 2023; 24:24.
  • Yang J, Gao L, Liu X, et al. Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum. Sci Rep. 2021;11:22833. doi: 10.1038/s41598-021-01829-8.
  • Wang Y, Li Y, Gong SY, et al. GhKNL1 controls fiber elongation and secondary cell wall synthesis by repressing its downstream genes in cotton (Gossypium hirsutum). J Integr Plant Biol. 2022;64:39–55. doi: 10.1111/jipb.13192.
  • Shi Z, Chen X, Xue H, et al. GhBZR3 suppresses cotton fiber elongation by inhibiting very-long-chain fatty acid biosynthesis. Plant J. 2022;111:785–799. doi: 10.1111/tpj.15852.
  • Prasad P, Khatoon U, Verma RK, et al. Transcriptional landscape of cotton fiber development and its alliance with fiber-associated traits. Front Plant Sci. 2022;13:811655. doi: 10.3389/fpls.2022.811655.
  • Wei X, Li J, Wang S, et al. Fiber-specific overexpression of GhACO1 driven by E6 promoter improves cotton fiber quality and yield. Ind Crops Prod. 2022;185:115134. doi: 10.1016/j.indcrop.2022.115134.
  • Cao JF, Zhao B, Huang CC, et al. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Mol Plant. 2020;13:1063–1077. doi: 10.1016/j.molp.2020.05.006.
  • Ahmed M, Iqbal A, Latif A, et al. Overexpression of a sucrose synthase gene indirectly improves cotton fiber quality through sucrose cleavage. Front Plant Sci. 2020;11:476251. doi: 10.3389/fpls.2020.476251.
  • Akhtar S, Shahid AA, Shakoor S, et al. Tissue specific expression of bacterial cellulose synthase (Bcs) genes improves cotton fiber length and strength. Plant Sci. 2023;328:111576. doi: 10.1016/j.plantsci.2022.111576.
  • Li F, Wu S, Lü F, et al. Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Sci Bull. 2009;54:1210–1216. doi: 10.1007/s11434-009-0142-2.
  • Xu Y, Lu Y, Xie C, et al. Whole-genome strategies for marker-assisted plant breeding. Mol Breeding. 2012;29:833–854. doi: 10.1007/s11032-012-9699-6.
  • Iqbal A, Latif A, Galbraith DW, et al. Structure-based prediction of protein–protein interactions between GhWlim5 Domain1 and GhACTIN-1 proteins: a practical evidence with improved fibre strength. J Plant Biochem Biotechnol. 2021;30:373–386. doi: 10.1007/s13562-020-00603-7.
  • Amat-Ur-Rasool H, Latif A, Yasmeen A, et al. Enhanced expression of plasma membrane intrinsic protein 2 improves cotton fiber length in Gossypium arboreum. Mol Biol Rep. 2022;49:5419–5426. doi: 10.1007/s11033-022-07138-1.
  • Patel JD, Wright RJ, Auld D, et al. Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes. Theor Appl Genet. 2014;127:821–830. doi: 10.1007/s00122-013-2259-6.
  • Zeynalova IC, Tagiyev AA, Gojayeva GA, et al. Types and economically valuable features of change produced by the gamma radiation before sowing the seeds by the M1 generation of the cotton plant. Int J Biol Chem. 2022;15:40–46.
  • Liu J, Zhao G, Geng J, et al. Genome-wide analysis of mutations induced by carbon ion beam irradiation in cotton. Front Plant Sci. 2023;14:1056662. doi: 10.3389/fpls.2023.1056662.
  • Patel JD, Khanal S, Chandnani R, et al. Improved upland cotton germplasm for multiple fiber traits mediated by transferring and pyramiding novel alleles from ethyl methanesulfonate-generated mutant lines into elite genotypes. Front Plant Sci. 2022;13:842741. doi: 10.3389/fpls.2022.842741.
  • Chen X, Lu X, Shu N, et al. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep. 2017;7:44304. doi: 10.1038/srep44304.
  • Hu H, Zhang R, Tao Z, et al. Cellulose synthase mutants distinctively affect cell growth and cell wall integrity for plant biomass production in Arabidopsis. Plant Cell Physiol. 2018;59:1144–1157. doi: 10.1093/pcp/pcy050.
  • Sun H, Hao P, Gu L, et al. Pectate lyase-like Gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. Plant Sci. 2020;293:110395. doi: 10.1016/j.plantsci.2019.110395.
  • Hidayat TRS, Nurindah Sunarto DA. Developing of Indonesian colored cotton varieties to support sustainable traditional woven fabric industry. IOP Conf Ser Earth Environ Sci. Institute of Physics Publishing; 2020.
  • Sun S, Xiong XP, Zhu Q, et al. Transcriptome sequencing and metabolome analysis reveal genes involved in pigmentation of green-colored cotton fibers. Int J Mol Sci. 2019;20:4838.
  • Mikhailova A, Strygina K, Khlestkina E. The genes determining synthesis of pigments in cotton. BioComm. 2019;64:133–145. doi: 10.21638/spbu03.2019.205.
  • Ge X, Wang P, Wang Y, et al. Brief communication development of an eco-friendly pink cotton germplasm by engineering betalain biosynthesis pathway. Plant Biotechnol J. 2023;21:674–676. doi: 10.1111/pbi.13987.
  • Goudenhooft C, Bourmaud A, Baley C. Flax (Linum usitatissimum L.) fibers for composite reinforcement: exploring the link between plant growth, cell walls development, and fiber properties. Front Plant Sci. 2019;10:411. doi: 10.3389/fpls.2019.00411.
  • Bourmaud A, Siniscalco D, Foucat L, et al. Evolution of flax cell wall ultrastructure and mechanical properties during the retting step. Carbohydr Polym. 2019;206:48–56. doi: 10.1016/j.carbpol.2018.10.065.
  • Ebskamp MJM. Engineering flax and hemp for an alternative to cotton. Trends Biotechnol. 2002;20:229–230. doi: 10.1016/s0167-7799(02)01953-4.
  • Mokshina N, Gorshkov O, Galinousky D, et al. Genes with bast fiber-specific expression in flax plants - Molecular keys for targeted fiber crop improvement. Ind Crops Prod. 2020;152:112549.
  • Gorshkov O, Chernova T, Mokshina N, et al. Intrusive growth of phloem fibers in flax stem: integrated analysis of miRNA and mRNA expression profiles. Plants. 2019;8:47. doi: 10.3390/plants8020047.
  • Wu J, Zhao Q, Zhang L, et al. QTL mapping of fiber-related traits based on a high-density genetic map in flax (Linum usitatissimum L.). Front Plant Sci. 2018;9:885. doi: 10.3389/fpls.2018.00885.
  • Xie D, Dai Z, Yang Z, et al. Genome-wide association study identifying candidate genes influencing important agronomic traits of Flax (Linum usitatissimum L.) using SLAF-seq. Front Plant Sci. 2017;8:2232. doi: 10.3389/fpls.2017.02232.
  • Kanapin A, Rozhmina T, Bankin M, et al. Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. Int J Mol Sci. 2022;23:14536. doi: 10.3390/ijms232314536.
  • Povkhova LV, Melnikova NV, Rozhmina TA, et al. Genes associated with the flax plant type (oil or fiber) identified based on genome and transcriptome sequencing data. Plants. 2021;10:2616. doi: 10.3390/plants10122616.
  • Lan S, Zheng C, Hauck K, et al. Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax. Int J Mol Sci. 2020;21:1577. doi: 10.3390/ijms21051577.
  • He L, Xiao J, Rashid KY, et al. Genome-wide association studies for pasmo resistance in flax (Linum usitatissimum L.). Front Plant Sci. 2018;9:1982. doi: 10.3389/fpls.2018.01982.
  • Day A, Addi M, Kim W, et al. ESTs from the fibre-bearing stem tissues of flax (Linum usitatissimum L.): expression analyses of sequences related to cell wall development. Plant Biol. 2005;7:23–32. doi: 10.1055/s-2004-830462.
  • Gorshkova T, Chernova T, Mokshina N, et al. Transcriptome analysis of intrusively growing flax fibers isolated by laser microdissection. Sci Rep. 2018;8:14570. doi: 10.1038/s41598-018-32869-2.
  • Galinousky D, Mokshina N, Padvitski T, et al. The toolbox for fiber flax breeding: a pipeline from gene expression to fiber quality. Front Genet. 2020;11:589881. doi: 10.3389/fgene.2020.589881.
  • Hobson N, Deyholos MK. LuFLA1PRO and LuBGAL1PRO promote gene expression in the phloem fibres of flax (Linum usitatissimum). Plant Cell Rep. 2013;32:517–528. doi: 10.1007/s00299-013-1383-8.
  • Wróbel-Kwiatkowska M, Czemplik M, Kulma A, et al. New biocomposites based on bioplastic flax fibers and biodegradable polymers. Biotechnol Prog. 2012;28:1336–1346. doi: 10.1002/btpr.1599.
  • Musialak M, Wróbel-Kwiatkowska M, Kulma A, et al. Improving retting of fibre through genetic modification of flax to express pectinases. Transgenic Res. 2008;17:133–147. doi: 10.1007/s11248-007-9080-4.
  • Preisner M, Kulma A, Zebrowski J, et al. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties. BMC Plant Biol. 2014;14:50. doi: 10.1186/1471-2229-14-50.
  • Boba A, Kulma A, Kostyn K, et al. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiol Mol Plant Pathol. 2011;76:39–47. doi: 10.1016/j.pmpp.2011.06.002.
  • Chantreau M, Grec S, Gutierrez L, et al. PT-flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biol. 2013;13:159. doi: 10.1186/1471-2229-13-159.
  • Morello L, Pydiura N, Galinousky D, et al. Flax tubulin and CesA superfamilies represent attractive and challenging targets for a variety of genome- and base-editing applications. Funct Integr Genomics. 2020;20:163–176. doi: 10.1007/s10142-019-00667-2.
  • van Bakel H, Stout JM, Cote AG, et al. The draft genome and transcriptome of Cannabis sativa. Genome Biol. 2011;12: r 102. doi: 10.1186/gb-2011-12-10-r102.
  • Schluttenhofer C, Yuan L. Challenges towards revitalizing hemp: a multifaceted crop hemp: a multifaceted and diverse. Trends Plant Sci. 2017;22:917–929. doi: 10.1016/j.tplants.2017.08.004.
  • Salentijn EMJ, Petit J, Trindade LM. The complex interactions between flowering behavior and fiber quality in hemp. Front Plant Sci. 2019;10:614. doi: 10.3389/fpls.2019.00614.
  • Petit J, Salentijn EMJ, Paulo MJ, et al. Elucidating the genetic architecture of fiber quality in hemp (Cannabis sativa L.) using a genome-wide association study. Front Genet. 2020;11:566314. doi: 10.3389/fgene.2020.566314.
  • Toth JA, Stack GM, Carlson CH, et al. Identification and mapping of major-effect flowering time loci Autoflower1 and Early1 in Cannabis sativa L. Front Plant Sci. 2022;13:991680. doi: 10.3389/fpls.2022.991680.
  • Borin M, Palumbo F, Vannozzi A, et al. Developing and testing molecular markers in Cannabis sativa (Hemp) for their use in variety and dioecy assessments. Plants. 2021;10:2174. doi: 10.3390/plants10102174.
  • Faux AM, Draye X, Flamand MC, et al. Identification of QTLs for sex expression in dioecious and monoecious hemp (Cannabis sativa L.). Euphytica. 2016;209:357–376. doi: 10.1007/s10681-016-1641-2.
  • Woods P, Campbell BJ, Nicodemus TJ, et al. Quantitative trait loci controlling agronomic and biochemical traits in Cannabis sativa. Genetics. 2021;219:iyab099. doi: 10.1093/genetics/iyab099.
  • Mihalyov PD, Garfinkel AR. Discovery and genetic mapping of PM1, a powdery mildew resistance gene in Cannabis sativa L. Front Agron. 2021;3:720215 doi: 10.3389/fagro.2021.720215.
  • Liu J, Qiao Q, Cheng X, et al. Transcriptome differences between fiber-type and seed-type Cannabis sativa variety exposed to salinity. Physiol Mol Biol Plants. 2016;22:429–443. doi: 10.1007/s12298-016-0381-z.
  • Jiang Y, Sun Y, Zheng D, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.). Sci Rep. 2021;11:14476. doi: 10.1038/s41598-021-93820-6.
  • Huang Y, Li D, Zhao L, et al. Comparative transcriptome combined with physiological analyses revealed key factors for differential cadmium tolerance in two contrasting hemp (Cannabis sativa L.) cultivars. Ind Crops Prod. 2019;140:111638.
  • Pandelides Z, Aluru N, Thornton C, et al. Transcriptomic changes and the roles of cannabinoid receptors and PPARγ in developmental toxicities following exposure to Δ9-tetrahydrocannabinol and cannabidiol. Toxicol Sci. 2021;182:44–59. doi: 10.1093/toxsci/kfab046.
  • Cao K, Sun Y, Han C, et al. The transcriptome of saline-alkaline resistant industrial hemp (Cannabis sativa L.) exposed to NaHCO3 stress. Ind Crops Prod. 2021;170:113766.
  • Guerriero G, Behr M, Legay S, et al. Transcriptomic profiling of hemp bast fibres at different developmental stages. Sci Rep. 2017;7:4961. doi: 10.1038/s41598-017-05200-8.
  • Chaohua C, Gonggu Z, Lining Z, et al. A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind Crops Prod. 2016;83:61–65. doi: 10.1016/j.indcrop.2015.12.035.
  • Feeney M, Punja ZK. Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell Dev Biol - Plant. 2003;39:578–585. doi: 10.1079/IVP2003454.
  • Galán-Ávila A, Gramazio P, Ron M, et al. A novel and rapid method for Agrobacterium-mediated production of stably transformed Cannabis sativa L. plants. Ind Crops Prod. 2021;170:113691.
  • Ahmed S, Gao X, Jahan MA, et al. Nanoparticle-based genetic transformation of Cannabis sativa. J Biotechnol. 2021;326:48–51. doi: 10.1016/j.jbiotec.2020.12.014.
  • Zhang S, Jiang Z, Chen J, et al. The cellulose synthase (CesA) gene family in four Gossypium species: phylogenetics, sequence variation and gene expression in relation to fiber quality in Upland cotton. Mol Genet Genomics. 2021;296:355–368. doi: 10.1007/s00438-020-01758-7.
  • Chaudhary J, Deshmukh R, Sonah H. Mutagenesis approaches and their role in crop improvement. Plants. 2019;8:467. doi: 10.3390/plants8110467.
  • An X, Zhang J, Liao Y, et al. Senescence is delayed when ramie (Boehmeria nivea L.) is transformed with the isopentyl transferase (ipt) gene under control of the SAG12 promoter. FEBS Open Bio. 2017;7:636–644. doi: 10.1002/2211-5463.12191.
  • Liao L, Li T, Zhang J, et al. The domestication and dispersal of the cultivated ramie (Boehmeria nivea (L.) Gaud. in Freyc.) determined by nuclear SSR marker analysis. Genet Resour Crop Evol. 2014;61:55–67. doi: 10.1007/s10722-013-0014-0.
  • Liao L, Li T, Zhao Z, et al. Phylogenetic relationship of ramie and its wild relatives based on SRAP markers. Guangxi Zhiwu/Guihaia. 2010;30:791–795.
  • Tanin MJ, Sharma A, Ram H, et al. Application of potassium nitrate and salicylic acid improves grain yield and related traits by delaying leaf senescence in Gpc-B1 carrying advanced wheat genotypes. Front Plant Sci. 2023;14:1107705. doi: 10.3389/fpls.2023.1107705.
  • Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–676. doi: 10.1038/45257.
  • Gudi S, Atri C, Goyal A, et al. Physical mapping of introgressed chromosome fragment carrying the fertility restoring (Rfo) gene for Ogura CMS in Brassica juncea L. Czern & Coss. Theor Appl Genet. 2020;133:2949–2959. doi: 10.1007/s00122-020-03648-3.
  • Gupta K, Salunke P. Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol. 2012; 138 :1971–1981. doi: 10.1007/s00432-012-1323-y.
  • Liu T, Tang S, Zhu S, et al. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol. 2014;86:85–92. doi: 10.1007/s11103-014-0214-9.
  • Chen K, Ming Y, Luan M, et al. The chromosome-level assembly of ramie (Boehmeria nivea L.) genome provides insights into molecular regulation of fiber fineness. J Nat Fibers. 2023;20:2168819.
  • Luan MB, Liu CC, Wang XF, et al. SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Ind Crops Prod. 2017;107:439–445. doi: 10.1016/j.indcrop.2017.05.065.
  • You FM, Booker HM, Duguid SD, et al. Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.). Crop J. 2016;4:290–303. doi: 10.1016/j.cj.2016.03.001.
  • Cruz A, Sedano J, Burgos A, et al. Genomic selection improves genetic gain for fiber traits in a breeding program for alpacas. Livest Sci. 2023;270:105195.
  • Liu T, Zhu S, Tang Q, et al. Identification of drought stress-responsive transcription factors in ramie (Boehmeria nivea L. Gaud). BMC Plant Biol. 2013;13:130. doi: 10.1186/1471-2229-13-130.
  • Chen J, Pei Z, Dai L, et al. Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genom. 2014;15:1–11.
  • Xie J, Li J, Jie Y, et al. Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genom. 2020;21:1–17.
  • Dusi DMA, Dubald M, de Almeida ERP, et al. Transgenic plants of ramie (Boehmeria nivea Gaud.) obtained by Agrobacterium mediated transformation. Plant Cell Rep. 1993;12:625–628. doi: 10.1007/BF00232812.
  • Wang B, Peng DX, Sun ZX, et al. In vitro plant regeneration from seedling-derived explants of ramie [Boehmeria nivea (L.) Gaud]. In Vitro Celldevbiol-Plant. 2008;44:105–111. doi: 10.1007/s11627-008-9121-6.
  • Fu J, Wang B, Liu L, et al. Transgenic ramie with Bt gene mediated by Agrobacterium tumefacien and evaluation of its pest-resistance. A A S. 2009;35:1771–1777. doi: 10.3724/SP.J.1006.2009.01771.
  • Cooper JL, Henikoff S, Comai L, et al. TILLING and ecotilling for rice. Methods Mol Biol. 2013;956:39–56.
  • Singh J, Bedi S, Gudi S, et al. Coronal roots and stem lignin content as significant contributors for lodging tolerance in wheat (Triticum aestivum L.). Cereal Res Commun. 2023;51:639–647. doi: 10.1007/s42976-022-00337-3.
  • Singh G, Gudi S, Upadhyay P, et al. Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes. Front Plant Sci. 2022;13:1035878. doi: 10.3389/fpls.2022.1035878.
  • Singh G, Kaur N, Khanna R, et al. 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (Oryza sativa L.). Crit Rev Biotechnol. 2024;44:139–162.
  • Voss-Fels K, Snowdon RJ. Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J. 2016;14:1086–1094. doi: 10.1111/pbi.12456.
  • Li J, Yuan D, Wang P, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol. 2021;22:119. doi: 10.1186/s13059-021-02351-w.
  • Tanin MJ, Saini DK, Sandhu KS, et al. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep. 2022;12:13680. doi: 10.1038/s41598-022-18149-0.
  • Gudi S, Saini DK, Singh G, et al. Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci. Planta. 2022;255:115. doi: 10.1007/s00425-022-03904-4.
  • Saini DK, Chopra Y, Pal N, et al. Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants. 2021;27:2245–2267. doi: 10.1007/s12298-021-01085-0.
  • Gill HS, Halder J, Zhang J, et al. Whole-genome analysis of hard winter wheat germplasm identifies genomic regions associated with spike and kernel traits. Theor Appl Genet. 2022;135:2953–2967. doi: 10.1007/s00122-022-04160-6.
  • Halder J, Gill HS, Zhang J, et al. Genome-wide association analysis of spike and kernel traits in the U.S. hard winter wheat. Plant Genome. 2023;16:e20300. doi: 10.1002/tpg2.20300.
  • Luo F, Yu Z, Zhou Q, et al. Multi-omics-based discovery of plant signaling molecules. Metabolites. 2022;12:76. doi: 10.3390/metabo12010076.
  • Watson A, Ghosh S, Williams MJ, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants. 2018;4:23–29. doi: 10.1038/s41477-017-0083-8.
  • Gudi S, Kumar P, Singh S, et al. Strategies for accelerating genetic gains in crop plants: special focus on speed breeding. Physiol Mol Biol Plants. 2022;28:1921–1938. doi: 10.1007/s12298-022-01247-8.
  • Wang HY, Wang J, Gao P, et al. Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol J. 2009;7:13–23. doi: 10.1111/j.1467-7652.2008.00367.x.
  • Neeper JT. Producer values for fiber strength and length uniformity in Southwestern cotton market. A thesis in agricultural and applied economics. Lubbock (TX): Texas Tech University at Lubbock; 1985.
  • Raskopf BD. Micronaire tests for cotton and cotton quality relationships. Knoxville (TN): University of Tennessee Agricultural Experiment Station; 1966.
  • Abbott AM, Higgerson GJ, Long RL, et al. An instrument for determining the average fiber linear density (fineness) of cotton lint samples. Text Res J. 2010;80:822–833. doi: 10.1177/0040517509348335.
  • Lin HY, Huang CH, Cheng GL, et al. Tapered optical fiber sensor based on localized surface plasmon resonance. Opt Express. 2012;20:21693–21701. doi: 10.1364/OE.20.021693.
  • Kothari N, Dever J, Hague S, et al. Evaluating intraplant cotton fiber variability. Crop Sci. 2015;55:564–570. doi: 10.2135/cropsci2014.01.0077.
  • El Mogahzy Y, Broughton Jr R, Guo H, et al. Evaluating staple fiber processing propensity: part I: processing propensity of cotton fibers. Textile Res. J. 1997;68:835–840. doi: 10.1177/004051759806801108.
  • Barotova A, Xurramov A, Mamadaliyev AB, et al. Fiber length and quality indicators in cotton varities. J Agric Hortic. 2023;3:50–53.
  • Matsudaira M, Hong Q. Compressional properties of fiber assemblies part 1: parametric representation of the compressional curves of fabrics. Text Mach Soc Jpn. 1993;46:226–231.
  • Grant JN, Morlier OW, Scott JM. Effects of mechanical processing of cotton on the physical properties of fibers. Text Res J. 1952;22:682–687. doi: 10.1177/004051755202201006.
  • Mather R, Wardman R. Regenerated fibers. In: Chemistry of textile fibres. 2015. p. 111–143.
  • Cruthers N, Carr D, Niven B, et al. Methods for characterizing plant fibers. Microsc Res Tech. 2005;67:260–264. doi: 10.1002/jemt.20206.
  • Dittenber DB, Gangarao HVS. Critical review of recent publications on use of natural composites in infrastructure. Appl Sci Manuf. 2012;43:1419–1429. doi: 10.1016/j.compositesa.2011.11.019.
  • Sadrmanesh V, Chen Y. Simulation of tensile behavior of plant fibers using the discrete element method (DEM). Appl Sci Manuf. 2018;114:196–203. doi: 10.1016/j.compositesa.2018.08.023.
  • Shuvo II. Fibre attributes and mapping the cultivar influence of different industrial cellulosic crops (cotton, hemp, flax, and canola) on textile properties. Bioresource Bioprocess. 2020;7:1–28.
  • Orton SL, Jirsa JO, Bayrak O. Design considerations of carbon fiber anchors. J Compos Constr. 2008;12:608–616. doi: 10.1061/(ASCE)1090-0268(2008)12:6(608).
  • Ramesh M, Bhoopathi R. Hemp fibers, their composites and applications. Woodhead Publishing; 2022. p. 233–252.
  • Pandey SN. Ramie fibre: part II. Physical fibre properties. A critical appreciation of recent developments. Text Prog. 2007;39:189–268. doi: 10.1080/00405160701706049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.