241
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Engineering industrial yeast for improved tolerance and robustness

, , , , , , , & show all
Received 17 Feb 2023, Accepted 01 Feb 2024, Published online: 19 Mar 2024

References

  • Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev. 2005;69:124–154. doi: 10.1128/MMBR.69.1.124-154.2005.
  • Liu H, Qi Y, Zhou P, et al. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol. 2021;41:339–354. doi: 10.1080/07388551.2020.1856770.
  • Moshood TD, Nawanir G, Mahmud F. Sustainability of biodegradable plastics: a review on social, economic, and environmental factors. Crit Rev Biotechnol. 2022;42:892–912. doi: 10.1080/07388551.2021.1973954.
  • Yamada R, Kashihara T, Ogino H. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World J Microbiol Biotechnol. 2017;33:99. doi: 10.1007/s11274-017-2269-7.
  • Gong Z, Nielsen J, Zhou YJ. Engineering robustness of microbial cell factories. Biotechnol J. 2017;12:1–9. doi: 10.1002/biot.201700014.
  • Mohedano MT, Konzock O, Chen Y. Strategies to increase tolerance and robustness of industrial microorganisms. Synth Syst Biotechnol. 2022;7:533–540. doi: 10.1016/j.synbio.2021.12.009.
  • Li MJ, Borodina I. Application of synthetic biology for productionof chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15:1–12.
  • Hussain MH, Mohsin MZ, Zaman WQ, et al. Multiscale engineering of microbial cell factories: a step forward towards sustainable natural products industry. Synth Syst Biotechnol. 2022;7:586–601. doi: 10.1016/j.synbio.2021.12.012.
  • Sitepu IG, Sestric R, Levin D, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv. 2014;32:1336–1360. doi: 10.1016/j.biotechadv.2014.08.003.
  • Ageitos JM, Vallejo JA, Veiga-Crespo P, et al. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011;90:1219–1227. doi: 10.1007/s00253-011-3200-z.
  • Lam FH, Turanl-Yldz B, Resch MG, et al. Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. Sci Adv. 2021;7:eabf7613. doi: 10.1126/sciadv.abf7613.
  • Shimizu K, Yu M. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv. 2019;37:107441. doi: 10.1016/j.biotechadv.2019.107441.
  • Mans R, Daran J, Pronk JT. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol. 2017;50:47–56. doi: 10.1016/j.copbio.2017.10.011.
  • Smith J, Rensburg EV, Rgens JB. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol. 2014;14:41. doi: 10.1186/1472-6750-14-41.
  • Li J, Zhu K, Miao L, et al. Simultaneous improvement of limonene production and tolerance in Yarrowia lipolytica through tolerance engineering and evolutionary engineering. ACS Synth. Biol. 2021;10:884–896. doi: 10.1021/acssynbio.1c00052.
  • Ferreira DJM, Noble J. Yeast strain optimization for enological applications: advances in grape and wine biotechnology. J Biosci Bioeng. 2019;12:622–629.
  • Yang X, Zheng S, Ali Shah SB, et al. Advances in pharmacology, biosynthesis, and metabolic engineering of Scutellaria-specialized metabolites. Crit Rev Biotechnol. 2022;35:1–17.
  • Barrick JE, Lenski RE. Genome dynamics during experimental evolution. Nat Rev Genet. 2013;14:827–839. doi: 10.1038/nrg3564.
  • Rostron KA, Rolph CE, Lawrence CL. Nile red fluores cence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schiz osaccharomyces pombe. Antonie Van Leeuwenhoek. 2015;108:97–106. doi: 10.1007/s10482-015-0467-6.
  • Yuan HL, Dong LB, Tu R, et al. Micro-droplets characterization and its application for amino acid detection in droplet microfluidic system. Chin J Biotech. 2014;30:139–146.
  • Markovitsi D, Gustavsson T, Banyasz A. Absorption of UV radiation by DNA: spatial and temporal features. Mutat Res. 2010;704:21–28. doi: 10.1016/j.mrrev.2009.11.003.
  • Henderson CM, Block DE. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80:2966–2972. doi: 10.1128/AEM.04151-13.
  • Watanabe T, Watanabe I, Nakamura TJBT, et al. A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol. 2011;102:1844–1848. doi: 10.1016/j.biortech.2010.09.087.
  • Kadeba A, Wilgers DJ. Enhanced mutation through exposure to EMS affects the evolution of ethanol tolerance in Saccharomyces cerevisiae. BIOS. 2020;91:1789–1797. doi: 10.1893/BIOS-D-18-00030.
  • Posas F, Chambers JR, Heyman JA, et al. The transcriptional response of yeast to saline stress. J Biol Chem. 2000;275:17249–17255. doi: 10.1074/jbc.M910016199.
  • Tekarslan-Sahin SH, Alkim C, Sezgin T. Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering. Bosnian J Basic Med. 2018;18:55–65.
  • Cao S, Zhou X, Jin W, et al. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresour Technol. 2017;244:1400–1406. doi: 10.1016/j.biortech.2017.05.039.
  • Guo J-L, Fan J, Suyama T, et al. Improving RNA content of salt-tolerant Zygosaccharomyces rouxii by atmospheric and room temperature plasma (ARTP) mutagenesis and its application in soy sauce brewing. World J Microbiol Biotechnol. 2019;35:180. doi: 10.1007/s11274-019-2743-5.
  • Liu L, Li Y, Chen J, et al. Enhancement of pyruvate productivity in Torulopsis glabrata: increase of NAD + availability. J Biotechnol. 2006;126:173–185. doi: 10.1016/j.jbiotec.2006.04.014.
  • Yi S, Zhang X, Li H-X, et al. Screening and Mutation of Saccharomyces cerevisiae UV-20 with a High Yield of Second Generation Bioethanol and High Tolerance of Temperature, Glucose and Ethanol. Indian J Microbiol. 2018;58:440–447. doi: 10.1007/s12088-018-0741-1.
  • Bajwa PK, Shireen T, D'Aoust F, et al. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng. 2009;104:892–900. doi: 10.1002/bit.22449.
  • Kumari R, Pramanik K. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. J Biosci Bioeng. 2012;114:622–629. doi: 10.1016/j.jbiosc.2012.07.007.
  • Gao J, Li Y, Yu W, et al. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab. 2022;4:932–943. doi: 10.1038/s42255-022-00601-0.
  • Zeng WZ, Guo LK, Xu S, et al. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 2020;38:888–906. doi: 10.1016/j.tibtech.2020.01.001.
  • Yu Q, Li Y, Wu B, et al. Novel mutagenesis and screening technologies for food microorganisms: advances and prospects. Appl Microbiol Biotechnol. 2020;104:1517–1531. doi: 10.1007/s00253-019-10341-z.
  • Ikehata H, Ono T. The Mechanisms of UV mutagenesis. J Radiat Res. 2011;52:115–125. doi: 10.1269/jrr.10175.
  • Guo M, Cheng S, Chen G, et al. Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Eng Life Sci. 2019;19:548–556. doi: 10.1002/elsc.201800203.
  • Almeida JR, Petersson A, Gorwa-Grauslund M, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J of Chemical Tech & Biotech. 2010;82:340–349. doi: 10.1002/jctb.1676.
  • González-Ramos D, Gorter D, Grijseels S-S, et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels. 2016;9:173. doi: 10.1186/s13068-016-0583-1.
  • Shirasawa K, Hirakawa H, Nunome T, et al. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotechnol J. 2015;14:51–60. doi: 10.1111/pbi.12348.
  • Sega GA. A review of the genetic effects of ethyl methanesulfonate. Mutat Res. 1984;134:113–142. doi: 10.1016/0165-1110(84)90007-1.
  • Su Y, Shao W, Zhang A, et al. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae. FEMS Yeast Res. 2021;21:foab012. doi: 10.1093/femsyr/foab012.
  • Zhang X, Zhang X-F, Li H-P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol. 2014;98:5387–5396. doi: 10.1007/s00253-014-5755-y.
  • Wei F-L, Wang M, Li H-X, et al. A C6/C5 co‐fermenting Saccharomyces cerevisiae strain with the alleviation of antagonism between xylose utilization and robustness. Glob Change Biol Bioenergy. 2021;13:83–97. doi: 10.1111/gcbb.12778.
  • Li Y, Chen J, Lun S-Y, et al. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biotechnol. 2001;55:680–685. doi: 10.1007/s002530100598.
  • Yuan W, Lin X, Zhong S, et al. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. Electron J Biotechnol. 2020;44:19–24. doi: 10.1016/j.ejbt.2020.01.002.
  • Jiang W, Xu Y, Li C, et al. Effect of inorganic salts on the growth and Cd2+ bioaccumulation of Zygosaccharomyces rouxii cultured under Cd2+ stress. Bioresour Technol. 2013;128:831–834. doi: 10.1016/j.biortech.2012.10.090.
  • Xu X, Williams TC, Divne C, et al. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol Biofuels. 2019;12:97. doi: 10.1186/s13068-019-1427-6.
  • Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: the future of chemical production. Science. 2017;355:aag0804. doi: 10.1126/science.aag0804.
  • Majidian P, Tabatabaei M, Zeinolabedini M, et al. Metabolic engineering of microorganisms for biofuel production. Renew Sust Energ Rev. 2018;82:3863–3885. doi: 10.1016/j.rser.2017.10.085.
  • Kuyper M, Hartog M, Toirkens MJ, et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005;5:399–409. doi: 10.1016/j.femsyr.2004.09.010.
  • Kobayashi Y, Sahara T, Ohgiya S, et al. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express. 2018;8:139. doi: 10.1186/s13568-018-0670-8.
  • Cotgreave IA, Gerdes RG. Recent trends in glutathione biochemistry–glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation. Biochem Biophys Res Commun. 1998;242:1–9. doi: 10.1006/bbrc.1997.7812.
  • Qi Y, Liu H, Chen X, et al. Engineering microbial membranes to increase stress tolerance of industrial strains. Metab Eng. 2019;53:24–34. doi: 10.1016/j.ymben.2018.12.010.
  • Zhang YM, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6:222–233. doi: 10.1038/nrmicro1839.
  • Besada-Lombana PB, Fernandez-Moya R, Fenster J, et al. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnol Bioeng. 2017;114:1531–1538. doi: 10.1002/bit.26288.
  • Alper H, Moxley J, Tephanopoulos GJS, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. ACS Synth Biol. 2006;314:1565–1568.
  • Liu R, Garst AD, Eckert CA, et al. Multiplex navigation of global regulatory networks (MINR) in yeast for improved ethanol tolerance and production. Metab Eng. 2019;51:50–58. doi: 10.1016/j.ymben.2018.07.007.
  • Li J, Du L-L. piggyBac transposon-based insertional mutagenesis for the fission yeast Schizosaccharomyces pombe. Methods Mol Biol. 2014;1163:213–222. doi: 10.1007/978-1-4939-0799-1_16.
  • Chen D-W, Li J-H. Microbiology and molecular biology reviews. J Phys Chem C. 2007;111:355–599.
  • Shen Y, Abramczyk D, Walker R, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science. 2017;355:4791. doi: 10.1126/science.aaf4791.
  • Smith JD, Schlecht U, Xu W, et al. A method for high‐throughput production of sequence‐verified DNA libraries and strain collections. Mol Syst Biol. 2017;13:913.
  • Mukherjee V, Lind U, Blomberg A, et al. A CRISPR interference screen of essential genes reveals that proteasome regulation dictates acetic acid tolerance in Saccharomyces cerevisiae. mSystems. 2021;6:e00418-00421. doi: 10.1128/mSystems.00418-21.
  • Aylon YK, Kupiec M. DSB repair: the yeast paradigm. DNA Repair (Amst). 2004;3:797–815. doi: 10.1016/j.dnarep.2004.04.013.
  • Cho C, Choi SY, Luo Z-W, et al. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv. 2015;33:1455–1466. doi: 10.1016/j.biotechadv.2014.11.006.
  • Nevoigt E, Kohnke J, Fischer CR, et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol. 2006;72:5266–5273. doi: 10.1128/AEM.00530-06.
  • Helalat SH, Bidaj S, Samani S, et al. Producing alcohol and salt stress tolerant strain of Saccharomyces cerevisiae by heterologous expression of pprI gene. Enzyme Microb Technol. 2019;124:17–22. doi: 10.1016/j.enzmictec.2019.01.008.
  • Zhou Z, Tang H, Wang W, et al. A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discov. 2021;7:15. doi: 10.1038/s41421-021-00246-5.
  • Ishii JY, Hasunuma T, Kondo A, et al. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR–XDH pathway. Appl Microbiol Biotechnol. 2013;97:2597–2607. doi: 10.1007/s00253-012-4376-6.
  • Sies H. Glutathione and its role in cellular functions - structural analysis of an engineered change in substrate specificity. Free Radic Biol Med. 1999;27:916–921. doi: 10.1016/s0891-5849(99)00177-x.
  • Wang Y, Zhang Z, Lu X, et al. Transcription factor Hap5 induces gsh2 expression to enhance 2-phenylethanol tolerance and production in an industrial yeast Candida glycerinogenes. Appl Microbiol Biotechnol. 2020;104:4093–4107. doi: 10.1007/s00253-020-10509-y.
  • Raghavendran V, Marx C, Olsson L, et al. The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production. AMB Express. 2020;10:219. doi: 10.1186/s13568-020-01148-7.
  • Rojas ER, Billings G, Odermatt PD, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature. 2018;559:617–621. doi: 10.1038/s41586-018-0344-3.
  • Nasution OL, Lee YJ, Kim WK, et al. Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae. Biotechnol Bioeng. 2017;114:620–631. doi: 10.1002/bit.26093.
  • Sandoval NP, Papoutsakis ET. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: beyond solo genes. Curr Opin Microbiol. 2016;33:56–66. doi: 10.1016/j.mib.2016.06.005.
  • Wang Y, Zhang Z, Lu X, et al. Genetic engineering of an industrial yeast Candida glycerinogenes for efficient production of 2-phenylethanol. Appl Microbiol Biotechnol. 2020a;104:10481–10491. doi: 10.1007/s00253-020-10991-4.
  • Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol. 1997;29:1305–1312. doi: 10.1016/s1357-2725(97)00085-x.
  • Deparis Q, Claes A, Foulquié-Moreno MR, et al. Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res. 2017;17:36.
  • Liang L-Y, Liu R-M, Freed EF, et al. Transcriptional regulatory networks involved in C3–C4 alcohol stress response and tolerance in yeast. ACS Synth Biol. 2021;10:19–28. doi: 10.1021/acssynbio.0c00253.
  • Liu H, Liu K, Yan M, et al. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol. 2011;164:1150–1159. doi: 10.1007/s12010-011-9201-7.
  • Wagner JM, Williams EV, Alper HS. Developing a piggybac transposon system and compatible selection markers for insertional mutagenesis and genome engineering in Yarrowia lipolytica. J Biotechnol. 2018;13:1800022.
  • Dujon B, Sherman D, Fischer G, et al. Others: genome evolution in yeasts. Nature. 2004;430:35–44. doi: 10.1038/nature02579.
  • Ma L, Chen X, Yuan Y-J, et al. SCRaMbLE generates evolved yeasts with increased alkali tolerance. Microb Cell Fact. 2019;18:52. doi: 10.1186/s12934-019-1102-4.
  • Jianping K, Jieyi L, Zhou G, et al. Enhancement and mapping of tolerance to salt stress and 5-fluorocytosine in synthetic yeast strains via SCRaMbLE. Synth. Syst. Biotechnol. 2022;7:869–877.
  • Xia L, Wen J. Available strategies for improving the biosynthesis of surfactin: a review. Crit Rev Biotechnol. 2022;43:1111–1128. doi: 10.1080/07388551.2022.2095252.
  • Qi L-S, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Microb Cell Factories. 2013;152:1173–1183.
  • Miller JT, Meng XD, Paschon DE, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29:143–148. doi: 10.1038/nbt.1755.
  • Mitsui R, Yamada R, Ogino H. Improved stress tolerance of Saccharomyces cerevisiae by CRISPR-Cas-mediated genome evolution. Appl Biochem Biotechnol. 2019;189:810–821. doi: 10.1007/s12010-019-03040-y.
  • Gan Y, Lin Y, Guo Y, et al. Metabolic and genomic characterization of stress tolerant industrial Saccharomyces cerevisiae strains from TALENs-assisted multiplex editing. FEMS Yeast Res. 2018;18:45–50.
  • Pines G, Freeman A. Immobilization and characterization of Saccharomyces cerevisiae in crosslinked, prepolymerized polyacrylamide-hydrazide. European J. Appl. Microbiol. Biotechnol. 1982;16:75–80. doi: 10.1007/BF00500730.
  • Moon YM, Gurav R, Kim J, et al. Whole-cell Immobilization of engineered Escherichia coli JY001 with barium-alginate for itaconic acid production. Biotechnol Bioproc E. 2018;23:442–447. doi: 10.1007/s12257-018-0170-3.
  • Cao Y, Uhrich KE. Biodegradable and biocompatible polymers for electronic applications: a review. J Bioact Compat Polym. 2018;34:3–15. doi: 10.1177/0883911518818075.
  • Winkelhausen E, Jovanovic-Malinovska R, Kuzmanova S, et al. Hydrogels based on u.v.-crosslinked poly(ethylene oxide) – matrices for immobilization of Candida boidinii cells for xylitol production. World J Microbiol Biotechnol. 2008;24:2035–2043. doi: 10.1007/s11274-008-9707-5.
  • Petrov KK, Yankov DS, Beschkov VN. Lactic acid fermentation by cells of Lactobacillus rhamnosus immobilized in polyacrylamide gel. World J Microbiol Biotechnol. 2006;22:337–345. doi: 10.1007/s11274-005-9039-7.
  • Marre SJ, Jensen KF. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev. 2010;39:1183–1202. doi: 10.1039/b821324k.
  • Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices. Annu. Rev. Fluid Mech. 2004;36:381–411. doi: 10.1146/annurev.fluid.36.050802.122124.
  • Díez-Antolínez R, Hijosa-Valsero M, Paniagua-García AI, et al. Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads. PLoS One. 2018;13:e0210002. doi: 10.1371/journal.pone.0210002.
  • Ding S, Fang D, Pang Z, et al. Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal. Sci Total Environ. 2018;645:937–945. doi: 10.1016/j.scitotenv.2018.07.197.
  • Azhar SM, Abdulla RJB. Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. Biocatal Agric Biotechnol. 2018;14:457–465. doi: 10.1016/j.bcab.2018.04.013.
  • Yao W-W, Zhu J, Sun B, et al. In vitro enzymatic conversion of γ-aminobutyric acid immobilization of glutamate decarboxylase with bacterial cellulose membrane (BCM) and non-linear model establishment. Enzyme Microb Technol. 2013;52:258–264. doi: 10.1016/j.enzmictec.2013.01.008.
  • Xu L, Tschirner U. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture. Bioprocess Biosyst Eng. 2014;37:1551–1559. doi: 10.1007/s00449-014-1127-3.
  • Zhang W, Bai A, Chen X, et al. Ethanol production from lignocelluloses hydrolyzates with immobilized multi-microorganisms. Energ Source Part A. 2012;34:1206–1212. doi: 10.1080/15567031003681960.
  • Duarte JC, Rodrigues JAR, Moran PJS, et al. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 2013;3:31. doi: 10.1186/2191-0855-3-31.
  • Belgrano FDS, Diegel O, Pereira N, et al. Cell immobilization on 3D-printed matrices: a model study on propionic acid fermentation. Bioresour Technol. 2018;249:777–782. doi: 10.1016/j.biortech.2017.10.087.
  • Yang SY, Choi TR, Jung HR, et al. Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme Microb Technol. 2019;128:72–78. doi: 10.1016/j.enzmictec.2019.05.003.
  • Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab Chip. 2010;10:2032–2045. doi: 10.1039/c001191f.
  • Gong Z, Nielsen JC, Zhou YJ. Engineering robustness of microbial cell factories. J Biotechnol. 2017;12:1700268.
  • Kyriakou M, Chatziiona VK, Costa CN, et al. Biowaste-based biochar: a new strategy for fermentative bioethanol overproduction via whole-cell immobilization. Appl Energy. 2019;242:480–491. doi: 10.1016/j.apenergy.2019.03.024.
  • Chen D, Wang G, Li J. Interfacial bioelectrochemistry: fabrication, properties and applications of functional nanostructured biointerfaces. J. Phys. Chem. C. 2006;111:2351–2367. doi: 10.1021/jp065099w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.