242
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current trends and possibilities of typical microbial protein production approaches: a review

, , , , , , , , & show all
Received 27 Mar 2023, Accepted 17 Jan 2024, Published online: 02 Apr 2024

References

  • Henchion M, Moloney AP, Hyland J, et al. Review: trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal. 2021;15(Suppl 1):100287. doi: 10.1016/j.animal.2021.100287.
  • Ritala A, Häkkinen ST, Toivari M, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016. Front Microbiol. 2017;8:2009. doi: 10.3389/fmicb.2017.02009.
  • Henchion M, Hayes M, Mullen AM, et al. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods. 2017;6:53. doi: 10.3390/foods6070053.
  • Thakur S, Pandey AK, Verma K, et al. Plant-based protein as an alternative to animal proteins: a review of sources, extraction methods and applications. Int J Food Sci Technol. 2024;59:488–497. doi: 10.1111/ijfs.16663.
  • Fasolin LH, Pereira RN, Pinheiro AC, et al. Emergent food proteins – towards sustainability, health and innovation. Food Res Int. 2019;125:108586. doi: 10.1016/j.foodres.2019.108586.
  • Ma Z, Mondor M, Goycoolea Valencia F, et al. Current state of insect proteins: extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct. 2023;14:8129–8156. doi: 10.1039/d3fo02865h.
  • Pan J, Xu H, Cheng Y, et al. Recent insight on edible insect protein: extraction, functional properties, allergenicity, bioactivity, and applications. Foods. 2022;11:2931. doi: 10.3390/foods11192931.
  • Lippolis A, Bussotti L, Ciani M, et al. Microbes : food for the Future. Foods. 2021;10:971. doi: 10.3390/foods10050971.
  • Matassa S, Boon N, Pikaar I, et al. Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol. 2016;9:568–575. doi: 10.1111/1751-7915.12369.
  • Chowdhary P, Gupta A, Gnansounou E, et al. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. Environ Pollut. 2021;278:116796. doi: 10.1016/j.envpol.2021.116796.
  • Humpenöder F, Bodirsky BL, Weindl I, et al. Projected environmental benefits of replacing beef with microbial protein. Nature. 2022;605:90–96. doi: 10.1038/s41586-022-04629-w.
  • Areniello M, Matassa S, Esposito G, et al. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol. 2023;41:197–213. doi: 10.1016/j.tibtech.2022.07.008.
  • Hadi J, Brightwell G. Safety of alternative proteins: technological, environmental and regulatory aspects of cultured meat, plant-based meat, insect protein and single-cell protein. Foods. 2021;10:1226. doi: 10.3390/foods10061226.
  • Banks M, Johnson R, Giver L, et al. Industrial production of microbial protein products. Curr Opin Biotechnol. 2022;75:102707. doi: 10.1016/j.copbio.2022.102707.
  • Järviö N, Maljanen NL, Kobayashi Y, et al. An attributional life cycle assessment of microbial protein production: a case study on using hydrogen-oxidizing bacteria. Sci Total Environ. 2021;776:145764. doi: 10.1016/j.scitotenv.2021.145764.
  • Wang S, Cui J, Bilal M, et al. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol. 2020;40:1232–1249. doi: 10.1080/07388551.2020.1809990.
  • Sakekar AA, Gaikwad SR, Punekar NS. Protein expression and secretion by filamentous fungi. J Biosci. 2021;46:5. doi: 10.1007/s12038-020-00120-8.
  • Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol. 2019;35:54. doi: 10.1007/s11274-019-2630-0.
  • Jach ME, Serefko A, Ziaja M, et al. Yeast protein as an easily accessible food source. Metabolites. 2022;12:12. doi: 10.3390/metabo12010063.
  • Kumar R, Hegde AS, Sharma K, et al. Microalgae as a sustainable source of edible proteins and bioactive peptides – current trends and future prospects. Food Res Int. 2022;157:111338. doi: 10.1016/j.foodres.2022.111338.
  • Lupatini AL, Colla LM, Canan C, et al. Potential application of microalga Spirulina platensis as a protein source. J Sci Food Agric. 2017;97:724–732. doi: 10.1002/jsfa.7987.
  • Kusmayadi A, Leong YK, Yen HW, et al. Microalgae as sustainable food and feed sources for animals and humans – biotechnological and environmental aspects. Chemosphere. 2021;271:129800. doi: 10.1016/j.chemosphere.2021.129800.
  • Janssen M, Wijffels RH, Barbosa MJ. Microalgae based production of single-cell protein. Curr Opin Biotechnol. 2022;75:102705. doi: 10.1016/j.copbio.2022.102705.
  • Bertasini D, Binati RL, Bolzonella D, et al. Single Cell Proteins production from food processing effluents and digestate. Chemosphere. 2022;296:134076. doi: 10.1016/j.chemosphere.2022.134076.
  • Bhatia SK, Bhatia RK, Choi YK, et al. Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol. 2018;38:1209–1229. doi: 10.1080/07388551.2018.1471445.
  • Thuan NH, Tatipamula VB, Canh NX, et al. Recent advances in microbial co‑culture for production of value‑added compounds. 3 Biotech. 2022;12:115. doi: 10.1007/s13205-022-03177-4.
  • Amaro HM, Salgado EM, Nunes OC, et al. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. J Environ Manage. 2023;337:117678. doi: 10.1016/j.jenvman.2023.117678.
  • El Sheikha AF, Ray RC. Potential impacts of bioprocessing of sweet potato: review. Crit Rev Food Sci Nutr. 2017;57:455–471. doi: 10.1080/10408398.2014.960909.
  • Pfau F, Hummel J. Microbial protein formation of different carbohydrates in vitro. J Anim Physiol Anim Nutr (Berl). 2019;103:1739–1746. doi: 10.1111/jpn.13204.
  • Wang L, Wang D, Yang Z, et al. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Sci China Life Sci. 2021;64:294–310. doi: 10.1007/s11427-020-1780-x.
  • Babini E, Taneyo-Saa DL, Tassoni A, et al. Microbial fermentation of industrial rice-starch byproduct as valuable source of peptide fractions with health-related activity. Microorganisms. 2020;8:986. doi: 10.3390/microorganisms8070986.
  • Sar T, Larsson K, Fristedt R, et al. Demo-scale production of protein-rich fungal biomass from potato protein liquor for use as innovative food and feed products. Food Biosci. 2022;47:101637. doi: 10.1016/j.fbio.2022.101637.
  • Pruksasri S, Wollinger KK, Novalin S. Transformation of rice bran into single-cell protein, extracted protein, soluble and insoluble dietary fiber, and minerals. J Sci Food Agric. 2019;99:5044–5049. doi: 10.1002/jsfa.9747.
  • Aguilar-Rivera N. Bioindicators for the sustainability of sugar agro-industry. Sugar Tech. 2022;24:651–661. doi: 10.1007/s12355-021-01105-z.
  • Voutilainen E, Pihlajaniemi V, Parviainen T. Economic comparison of food protein production with single-cell organisms from lignocellulose side-streams. Bioresour Technol Reports. 2021;14:100683. doi: 10.1016/j.biteb.2021.100683.
  • Capson-Tojo G, Batstone DJ, Grassino M, et al. Purple phototrophic bacteria for resource recovery: challenges and opportunities. Biotechnol Adv. 2020;43:107567. doi: 10.1016/j.biotechadv.2020.107567.
  • Panda SK, Ray RC, Mishra SS, et al. Microbial processing of fruit and vegetable wastes into potential biocommodities: a review. Crit Rev Biotechnol. 2018;38:1–16. doi: 10.1080/07388551.2017.1311295.
  • Mensah JKM, Twumasi P. Use of pineapple waste for single cell protein (SCP) production and the effect of substrate concentration on the yield. J Food Process Eng. 2017;40:e12478.
  • Chakraborty A, Bhowal J. Bioconversion of jackfruit seed waste to fungal biomass protein by submerged fermentation. Appl Biochem Biotechnol. 2022;195:2158–2171. doi: 10.1007/s12010-022-04063-8.
  • Vendruscolo F, Albuquerque PM, Streit F, et al. Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol. 2008;28:1–12. doi: 10.1080/07388550801913840.
  • Angel Siles López J, Li Q, Thompson IP. Biorefinery of waste orange peel. Crit Rev Biotechnol. 2010;30:63–69. doi: 10.3109/07388550903425201.
  • Aggelopoulos T, Bekatorou A, Pandey A, et al. Discarded oranges and brewer’s spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. Appl Biochem Biotechnol. 2013;170:1885–1895. doi: 10.1007/s12010-013-0313-0.
  • Yang Z, Jiang L, Zhang M, et al. Bioconversion of apple pomace into microbial protein feed based on extrusion pretreatment. Appl Biochem Biotechnol. 2022;194:1496–1509. doi: 10.1007/s12010-021-03727-1.
  • Zhou YM, Chen YP, Guo JS, et al. Recycling of orange waste for single cell protein production and the synergistic and antagonistic effects on production quality. J Clean Prod. 2019;213:384–392. doi: 10.1016/j.jclepro.2018.12.168.
  • Marius KS, Mahamadi N, Ibrahim K, et al. Production of single cell protein (SCP) and essentials amino acids from Candida utilis FMJ12 by solid state fermentation using mango waste supplemented with nitrogen sources. Afr J Biotechnol. 2018;17:716–723. doi: 10.5897/AJB2017.16361.
  • Dunuweera AN, Nikagolla DN, Ranganathan K. Fruit waste substrates to produce single-cell proteins as alternative human food supplements and animal feeds using baker’s yeast (Saccharomyces cerevisiae). J Food Qual. 2021;2021:1–6. doi: 10.1155/2021/9932762.
  • Tropea A, Ferracane A, Albergamo A, et al. Single cell protein production through multi food-waste substrate fermentation. Fermentation. 2022;8:91. doi: 10.3390/fermentation8030091.
  • Putri D, Ulhidayati A, Musthofa IA, et al. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium. IOP Conf Ser Earth Environ Sci. 2018;131:012052. doi: 10.1088/1755-1315/131/1/012052.
  • Najari Z, Khodaiyan F, Yarmand MS, et al. Almond hulls waste valorization towards sustainable agricultural development: production of pectin, phenolics, pullulan, and single cell protein. Waste Manag. 2022;141:208–219. doi: 10.1016/j.wasman.2022.01.007.
  • Yang R, Chen Z, Hu P, et al. Two-stage fermentation enhanced single-cell protein production by Yarrowia lipolytica from food waste. Bioresour Technol. 2022;361:127677. doi: 10.1016/j.biortech.2022.127677.
  • Yang F, Jin Z, Nawaz M, et al. Oligosaccharides in straw hydrolysate could improve the production of single-cell protein with Saccharomyces cerevisiae. J Sci Food Agric. 2022;102:2928–2936. doi: 10.1002/jsfa.11633.
  • Scholtmeijer K, van den Broek LAM, Fischer ARH, et al. Potential protein production from lignocellulosic materials using edible mushroom forming fungi. J Agric Food Chem. 2023;71:4450–4457. doi: 10.1021/acs.jafc.2c08828.
  • He JT, Xia SX, Li W, et al. Resource recovery and valorization of food wastewater for sustainable development: an overview of current approaches. J Environ Manage. 2023;347:119118. doi: 10.1016/j.jenvman.2023.119118.
  • Kundu D, Dutta D, Samanta P, et al. Valorization of wastewater: a paradigm shift towards circular bioeconomy and sustainability. Sci Total Environ. 2022;848:157709. doi: 10.1016/j.scitotenv.2022.157709.
  • Vethathirri RS, Santillan E, Wuertz S. Microbial community-based protein production from wastewater for animal feed applications. Bioresour Technol. 2021;341:125723. doi: 10.1016/j.biortech.2021.125723.
  • Durkin A, Guo M, Wuertz S, et al. Resource recovery from food-processing wastewaters in a circular economy: a methodology for the future. Curr Opin Biotechnol. 2022;76:102735. doi: 10.1016/j.copbio.2022.102735.
  • Mahan KM, Le RK, Wells T, et al. Production of single cell protein from agro-waste using Rhodococcus opacus. J Ind Microbiol Biotechnol. 2018;45:795–801. doi: 10.1007/s10295-018-2043-3.
  • Arous F, Azabou S, Jaouani A, et al. Biosynthesis of single-cell biomass from olive mill wastewater by newly isolated yeasts. Environ Sci Pollut Res Int. 2016;23:6783–6792. doi: 10.1007/s11356-015-5924-2.
  • Yadav JSS, Yan S, Ajila CM, et al. Food-grade single-cell protein production, characterization and ultrafiltration recovery of residual fermented whey proteins from whey. Food Bioprod Process. 2016;99:156–165. doi: 10.1016/j.fbp.2016.04.012.
  • Scotto di Uccio A, Matassa S, Cesaro A, et al. Microbial protein production from lactose-rich effluents through food-grade mixed cultures: effect of carbon to nitrogen ratio and dilution rate. Bioresour Technol. 2023;388:129717. doi: 10.1016/j.biortech.2023.129717.
  • Hülsen T, Sander EM, Jensen PD, et al. Application of purple phototrophic bacteria in a biofilm photobioreactor for single cell protein production: biofilm vs suspended growth. Water Res. 2020;181:115909. doi: 10.1016/j.watres.2020.115909.
  • Hülsen T, Stegman S, Batstone DJ, et al. Naturally illuminated photobioreactors for resource recovery from piggery and chicken-processing wastewaters utilising purple phototrophic bacteria. Water Res. 2022;214:118194. doi: 10.1016/j.watres.2022.118194.
  • Saejung C, Salasook P. Recycling of sugar industry wastewater for single-cell protein production with supplemental carotenoids. Environ Technol. 2020;41:59–70. doi: 10.1080/09593330.2018.1491633.
  • Tian Y, Li J, Meng J, et al. High-yield production of single-cell protein from starch processing wastewater using co-cultivation of yeasts. Bioresour Technol. 2023;370:128527. doi: 10.1016/j.biortech.2022.128527.
  • Liu B, Song J, Li Y, et al. Towards industrially feasible treatment of potato starch processing waste by mixed cultures. Appl Biochem Biotechnol. 2013;171:1001–1010. doi: 10.1007/s12010-013-0401-1.
  • Sousa D, Venâncio A, Belo I, et al. Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation. J Sci Food Agric. 2018;98:5248–5256. doi: 10.1002/jsfa.9063.
  • Yap SM, Lan JC-W, Kee PE, et al. Enhancement of protein production using synthetic brewery wastewater by Haematococcus pluvialis. J Biotechnol. 2022;350:1–10. doi: 10.1016/j.jbiotec.2022.03.008.
  • Zhu W, He Q, Gao H, et al. Bioconversion of yellow wine wastes into microbial protein via mixed yeast-fungus cultures. Bioresour Technol. 2020;299:122565. doi: 10.1016/j.biortech.2019.122565.
  • Pires JF, Ferreira GMR, Reis KC, et al. Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution. J Environ Manage. 2016;182:455–463. doi: 10.1016/j.jenvman.2016.08.006.
  • Zhu Z, Wu Y, Hu W, et al. Valorization of food waste fermentation liquid into single cell protein by photosynthetic bacteria via stimulating carbon metabolic pathway and environmental behaviour. Bioresour Technol. 2022;361:127704. doi: 10.1016/j.biortech.2022.127704.
  • Asiri F, Chu KH. Valorization of agro-industrial wastes into polyhydroxyalkanoates-rich single-cell proteins to enable a circular waste-to-feed economy. Chemosphere. 2022;309:136660. doi: 10.1016/j.chemosphere.2022.136660.
  • Khumchai J, Wongchai A, On-Uma R, et al. A viable bioremediation strategy for treating paper and pulp industry effluents and assessing the prospect of resulted bacterial biomass as single cell protein (SCP) using indigenous bacterial species. Chemosphere. 2022;304:135246. doi: 10.1016/j.chemosphere.2022.135246.
  • Forough S, Kumarss A, Azam H, et al. Application of Saccharomyces cerevisiae isolated from industrial effluent for zibiosorption and zinc-enriched SCP production for human and animal. Food Sci Technol. 2022;42:1–8. doi: 10.1590/fst.82021.
  • Su Y, Jacobsen C. Treatment of clean in place (CIP) wastewater using microalgae: nutrient upcycling and value-added byproducts production. Sci Total Environ. 2021;785:147337. doi: 10.1016/j.scitotenv.2021.147337.
  • Saejung C, Thammaratana T. Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff. Environ Technol. 2016;37:3055–3061. doi: 10.1080/09593330.2016.1175512.
  • Khoshnevisan B, Dodds M, Tsapekos P, et al. Coupling electrochemical ammonia extraction and cultivation of methane oxidizing bacteria for production of microbial protein. J Environ Manage. 2020;265:110560. doi: 10.1016/j.jenvman.2020.110560.
  • Matassa S, Pelagalli V, Papirio S, et al. Direct nitrogen stripping and upcycling from anaerobic digestate during conversion of cheese whey into single cell protein. Bioresour Technol. 2022;358:127308. doi: 10.1016/j.biortech.2022.127308.
  • Zhang L, Zhou P, Chen YC, et al. The production of single cell protein from biogas slurry with high ammonia-nitrogen content by screened Nectaromyces rattus. Poult Sci. 2021;100:101334. doi: 10.1016/j.psj.2021.101334.
  • Zeng D, Jiang Y, Su Y, et al. Upcycling waste organic acids and nitrogen into single cell protein via brewer’s yeast. J Clean Prod. 2022;369:133279. doi: 10.1016/j.jclepro.2022.133279.
  • Yang X, Jiang Y, Wang S, et al. Self-sustained ammonium recovery from wastewater and upcycling for hydrogen-oxidizing bacteria-based power-to-protein conversion. Bioresour Technol. 2022;344:126271. doi: 10.1016/j.biortech.2021.126271.
  • Salazar-López NJ, Barco-Mendoza GA, Zuñiga-Martínez BS, et al. Single-cell protein production as a strategy to reincorporate food waste and agro by-products back into the processing chain. Bioengineering. 2022;9:623. doi: 10.3390/bioengineering9110623.
  • Bajić B, Vučurović D, Vasić Đ, et al. Biotechnological production of sustainable microbial proteins from agro-industrial residues and by-products. Foods. 2023;12:107. doi: 10.3390/foods12010107.
  • Dagar S, Singh SK, Gupta MK. Integration of pre-treatment with UF/RO membrane process for waste water recovery and reuse in agro-based pulp and paper industry. Membranes. 2023;13:13. doi: 10.3390/membranes13020199.
  • Espinosa-Ramírez J, Mondragón-Portocarrero AC, Rodríguez JA, et al. Algae as a potential source of protein meat alternatives. Front Nutr. 2023;10:1254300. doi: 10.3389/fnut.2023.1254300.
  • Zhu T, Sun H, Wang M, et al. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: current status and future perspectives. Biotechnol J. 2019;14:e1800694.
  • Zheng T, Zhang M, Wu L, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal. 2022;5:388–396. doi: 10.1038/s41929-022-00775-6.
  • Xu J, Wang J, Ma C, et al. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnol Adv. 2023;63:108096. doi: 10.1016/j.biotechadv.2023.108096.
  • Wang J, Qin R, Guo Y, et al. Engineering the native methylotrophs for the bioconversion of methanol to value-added chemicals: current status and future perspectives. Green Chem Eng. 2023;4EI:199–211. doi: 10.1016/j.gce.2022.10.005.
  • Sakarika M, Ganigué R, Rabaey K. Methylotrophs: from C1 compounds to food. Curr Opin Biotechnol. 2022;82:102964. doi: 10.1016/j.copbio.2023.102964.
  • Pikaar I, de Vrieze J, Rabaey K, et al. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: potentials and limitations. Sci Total Environ. 2018;644:1525–1530. doi: 10.1016/j.scitotenv.2018.07.089.
  • Yu J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol. 2018;34:89. doi: 10.1007/s11274-018-2473-0.
  • Dou J, Huang Y, Ren H, et al. Autotrophic, heterotrophic, and mixotrophic nitrogen assimilation for single-cell protein production by two hydrogen-oxidizing bacterial strains. Appl Biochem Biotechnol. 2019;187:338–351. doi: 10.1007/s12010-018-2824-1.
  • Spanoghe J, Vermeir P, Vlaeminck SE. Microbial food from light, carbon dioxide and hydrogen gas: kinetic, stoichiometric and nutritional potential of three purple bacteria. Bioresour Technol. 2021;337:125364. doi: 10.1016/j.biortech.2021.125364.
  • Cotton CA, Claassens NJ, Benito-Vaquerizo S, et al. Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol. 2020;62:168–180. doi: 10.1016/j.copbio.2019.10.002.
  • Singh HB, Kang MK, Kwon M, et al. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol. 2022;10:1050740. doi: 10.3389/fbioe.2022.1050740.
  • Simões ACP, Fernandes RP, Barreto MS, et al. Growth of methylobacterium organophilum in methanol for the simultaneous production of single-cell protein and metabolites of interest. Food Technol Biotechnol. 2022;60:338–349. doi: 10.17113/ftb.60.03.22.7372.
  • Sakarika M, Candry P, Depoortere M, et al. Impact of substrate and growth conditions on microbial protein production and composition. Bioresour Technol. 2020;317:124021. doi: 10.1016/j.biortech.2020.124021.
  • Molitor B, Mishra A, Angenent LT. Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. Energy Environ Sci. 2019;12:3515–3521. doi: 10.1039/C9EE02381J.
  • Alloul A, Wuyts S, Lebeer S, et al. Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria: paving the way for protein production on fermented wastewater. Water Res. 2019;152:138–147. doi: 10.1016/j.watres.2018.12.025.
  • Zhan C, Li X, Yang Y, et al. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng. 2021;118:3655–3668. doi: 10.1002/bit.27862.
  • Van Peteghem L, Sakarika M, Matassa S, et al. Towards new carbon–neutral food systems: combining carbon capture and utilization with microbial protein production. Bioresour Technol. 2022;395:130362. doi: 10.1016/j.biortech.2024.130362.
  • Hwang IY, Nguyen AD, Nguyen TT, et al. Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl Microbiol Biotechnol. 2018;102:3071–3080. doi: 10.1007/s00253-018-8842-7.
  • Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv. 2021;53:107861. doi: 10.1016/j.biotechadv.2021.107861.
  • García Martínez JB, Pearce JM, Throup J, et al. Methane single cell protein: potential to secure a global protein supply against catastrophic food shocks. Front Bioeng Biotechnol. 2022;10:906704. doi: 10.3389/fbioe.2022.906704.
  • Xu M, Zhou H, Yang X, et al. Sulfide restrains the growth of Methylocapsa acidiphila converting renewable biogas to single cell protein. Water Res. 2020;184:116138. doi: 10.1016/j.watres.2020.116138.
  • Steinberg LM, Kronyak RE, House CH. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass. Life Sci Space Res. 2017;15:32–42. doi: 10.1016/j.lssr.2017.07.006.
  • Kerckhof FM, Sakarika M, Van Giel M, et al. From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria. Front Bioeng Biotechnol. 2021;9:733753. doi: 10.3389/fbioe.2021.733753.
  • Acosta N, Sakarika M, Kerckhof FM, et al. Microbial protein production from methane via electrochemical biogas upgrading. Chem Eng J. 2020;391:123625. doi: 10.1016/j.cej.2019.123625.
  • Sharif M, Zafar MH, Aqib AI, et al. Single cell protein: sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture. 2021;531:735885. doi: 10.1016/j.aquaculture.2020.735885.
  • Khan MKI, Asif M, Razzaq ZU, et al. Sustainable food industrial waste management through single cell protein production and characterization of protein enriched bread. Food Biosci. 2022;46:101406. doi: 10.1016/j.fbio.2021.101406.
  • He JT, Li W, Deng J, et al. An insight into the health beneficial of probiotics dairy products: a critical review. Crit Rev Food Sci Nutr. 2023;63:11290–11309.
  • Buitrago Mora HM, Piñeros MA, Espinosa Moreno D, et al. Multiscale design of a dairy beverage model composed of Candida utilis single cell protein supplemented with oleic acid. J Dairy Sci. 2019;102:9749–9762. doi: 10.3168/jds.2019-16729.
  • Pesante G, Zuliani A, Cannone E, et al. Biological conversion of agricultural residues into microbial proteins for aquaculture using PHA-producing mixed microbial cultures. J Clean Prod. 2022;378:134554. doi: 10.1016/j.jclepro.2022.134554.
  • Yan J, Han B, Gui X, et al. Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed. Sci Rep. 2018;8:758. doi: 10.1038/s41598-018-19238-9.
  • Aggelopoulos T, Katsieris K, Bekatorou A, et al. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 2014;145:710–716. doi: 10.1016/j.foodchem.2013.07.105.
  • Margareth O, Anders S. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J Chem Inf Model. 2019;53:1689–1699.
  • Woolley L, Chaklader MR, Pilmer L, et al. Gas to protein: microbial single cell protein is an alternative to fishmeal in aquaculture. SSRN Electron J. 2022;859:160141.
  • Johnson RJ, Lanaspa MA, Gaucher EA. Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations. Semin Nephrol. 2011;31:394–399. doi: 10.1016/j.semnephrol.2011.08.002.
  • Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14. doi: 10.1016/j.ijcard.2015.08.109.
  • Salter AM, Lopez-Viso C. Role of novel protein sources in sustainably meeting future global requirements. Proc Nutr Soc. 2021;80:186–194. doi: 10.1017/S0029665121000513.
  • Nyyssölä A, Suhonen A, Ritala A, et al. The role of single cell protein in cellular agriculture. Curr Opin Biotechnol. 2022;75:102686. doi: 10.1016/j.copbio.2022.102686.
  • Wang GJ, Xin JY, Cui TY. CS. Study on the method of removing nucleic acid from single cell protein. Feed Res. 2019;42:45–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.