127
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Ultrasonic processing: effects on the physicochemical and microbiological aspects of dairy products

, , , , , , , , , & ORCID Icon show all
Received 11 Sep 2023, Accepted 21 Feb 2024, Published online: 21 Apr 2024

References

  • Carrillo-Lopez LM, Garcia-Galicia IA, Tirado-Gallegos JM, et al. Recent advances in the application of ultrasound in dairy products: effect on functional, physical, chemical, microbiological and sensory properties. Ultrason Sonochem. 2021;73:105467. doi: 10.1016/j.ultsonch.2021.105467.
  • Soltani Firouz M, Sardari H, Soofiabadi M, et al. Ultrasound assisted processing of milk: advances and challenges. J Food Process Engineering. 2023;46:e14173. doi: 10.1111/jfpe.14173.
  • Mortazavi N, Aliakbarlu J. Antibacterial effects of ultrasound, cinnamon essential oil, and their combination against Listeria monocytogenes and Salmonella typhimurium in milk. J Food Sci. 2019;84:3700–3706. doi: 10.1111/1750-3841.14914.
  • Scudino H, Silva EK, Gomes A, et al. Ultrasound stabilization of raw milk: microbial and enzymatic inactivation, physicochemical properties and kinetic stability. Ultrason Sonochem. 2020;67:105185. doi: 10.1016/j.ultsonch.2020.105185.
  • Dhahir N, Feugang J, Witrick K, et al. Impact of ultrasound processing on some milk-borne microorganisms and the components of camel milk. Emir J Food Agric. 2020;12:245. doi: 10.9755/ejfa.2020.v32.i4.2088.
  • Ragab ES, Zhang S, Korma SA, et al. Physicochemical and rheological properties of stirred yoghurt during storage induced from high-intensity thermosonicated goat and cow milk. Fermentation. 2023;9:42. doi: 10.3390/fermentation9010042.
  • Babu KS, Amamcharla JK. Influence of bulk nanobubbles generated by acoustic cavitation on powder microstructure and rehydration characteristics of spray-dried milk protein concentrate powders. Nanomaterials. 2023;13:1093. doi: 10.3390/nano13061093.
  • Arab M, Yousefi M, Khanniri E, et al. A comprehensive review on yogurt syneresis: effect of processing conditions and added additives. J Food Sci Technol. 2023;60:1656–1665. doi: 10.1007/s13197-022-05403-6.
  • Akdeniz V, Akalın A. New approach for yoghurt and ice cream production: high-intensity ultrasound. Trends Food Sci Technol. 2019;86:392–398. doi: 10.1016/j.tifs.2019.02.046.
  • Sfakianakis P, Topakas E, Tzia C. Comparative study on high-intensity ultrasound and pressure milk homogenization: effect on the kinetics of yogurt fermentation process. Food Bioprocess Technol. 2015;8:548–557. doi: 10.1007/s11947-014-1412-9.
  • Martin NH, Torres-Frenzel P, Wiedmann M. Invited review: controlling dairy product spoilage to reduce food loss and waste. J Dairy Sci. 2021;104:1251–1261. doi: 10.3168/jds.2020-19130.
  • Gholamhosseinpour A, Hashemi SMB, Raoufi Jahromi L, et al. Conventional heating, ultrasound and microwave treatments of milk: fermentation efficiency and biological activities. Int Dairy J. 2020;110:104809. doi: 10.1016/j.idairyj.2020.104809.
  • Soltani Firouz M, Farahmandi A, Hosseinpour S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: a review. Ultrason Sonochem. 2019;57:73–88. doi: 10.1016/j.ultsonch.2019.05.014.
  • Bermudez-Aguirre D, Niemira BA. Pasteurization of foods with ultrasound: the present and the future. Appl Sci. 2022;12:10416. doi: 10.3390/app122010416.
  • Chávez-Martínez A, Reyes-Villagrana RA, Rentería-Monterrubio AL, et al. Low and high-intensity ultrasound in dairy products: applications and effects on physicochemical and microbiological quality. Foods. 2020;9:1688. doi: 10.3390/foods9111688.
  • Akdeniz V, Akalın AS. Recent advances in dual effect of power ultrasound to microorganisms in dairy industry: activation or inactivation. Crit Rev Food Sci Nutr. 2022;62:889–904. doi: 10.1080/10408398.2020.1830027.
  • Singla M, Sit N. Application of ultrasound in combination with other technologies in food processing: a review. Ultrason Sonochem. 2021;73:105506. doi: 10.1016/j.ultsonch.2021.105506.
  • Chandrapala J, Leong T. Ultrasonic processing for dairy applications: recent advances. Food Eng Rev. 2015;7:143–158. doi: 10.1007/s12393-014-9105-8.
  • Urango ACM, Strieder MM, Silva EK, et al. Impact of thermosonication processing on food quality and safety: a review. Food Bioprocess Technol. 2022;15:1700–1728. doi: 10.1007/s11947-022-02760-0.
  • Gallo M, Ferrara L, Naviglio D. Application of ultrasound in food science and technology: a perspective. Foods. 2018;7:164. doi: 10.3390/foods7100164.
  • Kentish S, Ashokkumar M. The physical and chemical effects of ultrasound. In: Feng H, Barbosa-Canovas G, Weiss J, editors. Ultrasound technologies for food and bioprocessing. New York: Springer, 2010. p. 1–12.
  • Raso J, Mañas P, Pagán R, et al. Influence of different factors on the output power transferred into medium by ultrasound. Ultrason Sonochem. 1999;5:157–162. doi: 10.1016/s1350-4177(98)00042-x.
  • Nunes BV, da Silva CN, Bastos SC, et al. Microbiological inactivation by ultrasound in liquid products. Food Bioprocess Technol. 2022;15:2185–2209. doi: 10.1007/s11947-022-02818-z.
  • Cameron M, McMaster LD, Britz TJ. Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci Technol. 2009;89:83–98. doi: 10.1051/dst/2008037.
  • Van Hekken DL, Renye J, Bucci AJ, et al. Characterization of the physical, microbiological, and chemical properties of sonicated raw bovine milk. J Dairy Sci. 2019;102:6928–6942. doi: 10.3168/jds.2018-15775.
  • Balthazar CF, Santillo A, Guimarães JT, et al. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physical-chemical quality. Ultrason Sonochem. 2019;51:241–248. doi: 10.1016/j.ultsonch.2018.10.017.
  • Jalilzadeh A, Hesari J, Peighambardoust SH, et al. The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese. J Dairy Sci. 2018;101:5809–5820. doi: 10.3168/jds.2017-14352.
  • Guimarães JT, Balthazar CF, Scudino H, et al. High-intensity ultrasound: a novel technology for the development of probiotic and prebiotic dairy products. Ultrason Sonochem. 2019;57:12–21. doi: 10.1016/j.ultsonch.2019.05.004.
  • Iorio MC, Bevilacqua A, Corbo MR, et al. A case study on the use of ultrasound for the inhibition of Escherichia coli O157: h 7 and Listeria monocytogenes in almond milk. Ultrason Sonochem. 2019;52:477–483. doi: 10.1016/j.ultsonch.2018.12.026.
  • Pahalagedara AS, Gkogka E, Ravn LW, et al. The growth potential and thermal resistance of bacterial spores under conditions relevant for ambient acid dairy-based products. Food Control. 2023;152:109841. doi: 10.1016/j.foodcont.2023.109841.
  • Porcellato D, Kristiansen H, Finton MD, et al. Composition and fate of heat-resistant anaerobic spore-formers in the milk powder production line. Int J Food Microbiol. 2023;402:110281. doi: 10.1016/j.ijfoodmicro.2023.110281.
  • Vashisht P, Pendyala B, Patras A, et al. Pilot scale study on UV-C inactivation of bacterial endospores and virus particles in whole milk: evaluation of system efficiency and product quality. bioRxiv, 2022-01, 2022.
  • Evelyn Silva FVM. Ultrasound assisted thermal inactivation of spores in foods: pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci Technol. 2020;105:402–415. doi: 10.1016/j.tifs.2020.09.020.
  • Bhargava N, Mor RS, Kumar K, et al. Advances in application of ultrasound in food processing: a review. Ultrason Sonochem. 2021;70:105293. doi: 10.1016/j.ultsonch.2020.105293.
  • Li S, Zhang R, Lei D, et al. Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends Food Sci Technol. 2021;109:1–15. doi: 10.1016/j.tifs.2021.01.017.
  • Gregersen SB, Wiking L, Hammershøj M. Acceleration of acid gel formation by high intensity ultrasound is linked to whey protein denaturation and formation of functional milk fat globule-protein complexes. J Food Eng. 2019;254:17–24. doi: 10.1016/j.jfoodeng.2019.03.004.
  • Ahmadi Z, Razavi SMA, Varidi M. Sequential ultrasound and transglutaminase treatments improve functional, rheological, and textural properties of whey protein concentrate. Innov Food Sci Emerg Technol. 2017;43:207–215. doi: 10.1016/j.ifset.2017.08.013.
  • Amiri A, Mousakhani-Ganjeh A, Torbati S, et al. Impact of high-intensity ultrasound duration and intensity on the structural properties of whipped cream. Int Dairy J. 2018;78:152–158. doi: 10.1016/j.idairyj.2017.12.002.
  • Guimarães JT, Silva EK, Alvarenga VO, et al. Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason Sonochem. 2018;44:251–260. doi: 10.1016/j.ultsonch.2018.02.012.
  • Gammoh S, Alu’datt MH, Tranchant CC, et al. Modification of the functional and bioactive properties of camel milk casein and whey proteins by ultrasonication and fermentation with Lactobacillus delbrueckii subsp. Lactis. LWT. 2020;129:109501. doi: 10.1016/j.lwt.2020.109501.
  • Parreiras PM, Nogueira JAV, Cunha LRD, et al. Effect of thermosonication on microorganisms, the antioxidant activity and the retinol level of human milk. Food Control. 2020;113:107172. doi: 10.1016/j.foodcont.2020.107172.
  • Monteiro SHMC, Silva EK, Alvarenga VO, et al. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage. Ultrason Sonochem. 2018;42:1–10. doi: 10.1016/j.ultsonch.2017.11.015.
  • Ma S, Wang C, Guo M. Changes in structure and antioxidant activity of β-lactoglobulin by ultrasound and enzymatic treatment. Ultrason Sonochem. 2018;43:227–236. doi: 10.1016/j.ultsonch.2018.01.017.
  • Alizadeh O, Aliakbarlu J. Effects of ultrasound and ohmic heating pretreatments on hydrolysis, antioxidant and antibacterial activities of whey protein concentrate and its fractions. Lwt. 2020;131:109913. doi: 10.1016/j.lwt.2020.109913.
  • Guimarães JT, Silva EK, Ranadheera CS, et al. Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrason Sonochem. 2019;55:157–164. doi: 10.1016/j.ultsonch.2019.02.025.
  • Jiang Z, Wang C, Li T, et al. Effect of ultrasound on the structure and functional properties of transglutaminase-crosslinked whey protein isolate exposed to prior heat treatment. Int Dairy J. 2019;88:79–88. doi: 10.1016/j.idairyj.2018.08.007.
  • Cheng Y, Donkor PO, Ren X, et al. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocolloids. 2019;89:434–442. doi: 10.1016/j.foodhyd.2018.11.007.
  • Jiang Z, Yao K, Yuan X, et al. Effects of ultrasound treatment on physico-chemical, functional properties and antioxidant activity of whey protein isolate in the presence of calcium lactate. J Sci Food Agric. 2018;98:1522–1529. doi: 10.1002/jsfa.8623.
  • Khatkar AB, Kaur A, Khatkar SK, et al. Characterization of heat-stable whey protein: impact of ultrasound on rheological, thermal, structural and morphological properties. Ultrason Sonochem. 2018;49:333–342. doi: 10.1016/j.ultsonch.2018.08.026.
  • Kashaninejad M, Razavi SMA. Influence of thermosonication treatment on the average size of fat globules, emulsion stability, rheological properties and color of camel milk cream. LWT. 2020;132:109852. doi: 10.1016/j.lwt.2020.109852.
  • Körzendörfer A, Schäfer J, Hinrichs J, et al. Power ultrasound as a tool to improve the processability of protein-enriched fermented milk gels for Greek yogurt manufacture. J Dairy Sci. 2019;102:7826–7837. doi: 10.3168/jds.2019-16541.
  • Ragab ES, Zhang S, Pang X, et al. Ultrasound improves the rheological properties and microstructure of rennet-induced gel from goat milk. Int Dairy J. 2020;104:104642. doi: 10.1016/j.idairyj.2020.104642.
  • Abesinghe AMNL, Vidanarachchi JK, Islam N, et al. Effects of ultrasonication on the physicochemical properties of milk fat globules of Bubalus bubalis (water buffalo) under processing conditions: a comparison with shear-homogenization. Innovative Food Science & Emerging Technologies. 2020;59:102237. doi: 10.1016/j.ifset.2019.102237.
  • Perera CO, Alzahrani MAJ. Ultrasound as a pre-treatment for extraction of bioactive compounds and food safety: a review. LWT. 2021;142:111114. doi: 10.1016/j.lwt.2021.111114.
  • Chen ZJ. Microbial inactivation in foods by ultrasound. J Food Microbiol Saf Hyg. 2017;2(1):E102.
  • Chantapakul T, Tao W, Chen W, et al. Manothermosonication: inactivation and effects on soymilk enzymes. Ultrason Sonochem. 2020;64:104961. doi: 10.1016/j.ultsonch.2020.104961.
  • Abesinghe AMNL, Islam N, Vidanarachchi JK, et al. Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria. Int Dairy J. 2019;90:1–14. doi: 10.1016/j.idairyj.2018.10.006.
  • Annandarajah C, Grewell D, Talbert JN, et al. Batch thermosonication for the reduction of plasmin activity in skim milk. J Food Process Preserv. 2018;42:e13616. doi: 10.1111/jfpp.13616.
  • Awasti N. Influence of sporulation and germination behavior of Bacillus licheniformis on microbial quality of skim milk powder. Electronic theses and dissertations, 2019.
  • Awasti N, Chaudhary P, Anand S, et al. Manufacturing low-spore-count skim milk powders by combining optimized raw milk holding conditions and hydrodynamic cavitation. Dairy Sci Publ Datab. 2019;102.
  • Wang C, Xie Q, Wang Y, et al. Effect of ultrasound treatment on allergenicity reduction of milk casein via colloid formation. J Agric Food Chem. 2020;68:4678–4686. doi: 10.1021/acs.jafc.9b08245.
  • Lim SY, Benner LC, Clark S. Neither thermosonication nor cold sonication is better than pasteurization for milk shelf life. J Dairy Sci. 2019;102:3965–3977. doi: 10.3168/jds.2018-15347.
  • Gao S, Hemar Y, Lewis GD, et al. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound. Ultrason Sonochem. 2014;21:2099–2106. doi: 10.1016/j.ultsonch.2013.12.008.
  • Geciova J, Bury D, Jelen P. Methods for disruption of microbial cells for potential use in the dairy industry—a review. Int Dairy J. 2002;12:541–553. doi: 10.1016/S0958-6946(02)00038-9.
  • Shamila-Syuhada AK, Chuah L-O, Wan-Nadiah WA, et al. Inactivation of microbiota and selected spoilage and pathogenic bacteria in milk by combinations of ultrasound, hydrogen peroxide, and active lactoperoxidase system. Int Dairy J. 2016;61:120–125. doi: 10.1016/j.idairyj.2016.05.002.
  • Gao S, Lewis GD, Ashokkumar M, et al. Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism. Ultrason Sonochem. 2014;21:454–460. doi: 10.1016/j.ultsonch.2013.06.007.
  • Almanza-Rubio JL, Gutiérrez-Méndez N, Leal-Ramos MY, et al. Modification of the textural and rheological properties of cream cheese using thermosonicated milk. J Food Eng. 2016;168:223–230. doi: 10.1016/j.jfoodeng.2015.08.002.
  • Niranjan T, Rifna EJ, Hashmi S, et al. Ultrasound technology for food preservation. In: Kumar S, Mukherjee A, Mitra A, et al., editors. Emerging technologies in food preservation. Boca Raton (FL): CRC Press, 2023. p. 75.
  • Sutariya S, Sunkesula V, Kumar R, et al. Emerging applications of ultrasonication and cavitation in dairy industry: a review. Cogent Food & Agriculture. 2018;4:1549187. doi: 10.1080/23311932.2018.1549187.
  • Tavsanli H, Aydin M, Ede ZA, et al. Influence of ultrasound application on the microbiota of raw goat milk and some food pathogens including Brucella melitensis. Food Sci Technol Int. 2022;28:634–640. doi: 10.1177/10820132211049601.
  • Herceg Z, Juraga E, Sobota-Šalamon B, et al. Inactivation of mesophilic bacteria in milk by means of high intensity ultrasound using response surface methodology. Czech J Food Sci. 2012;30:108–117. doi: 10.17221/93/2011-CJFS.
  • Peng Z, Li Y, Yan L, et al. Correlation analysis of microbial contamination and alkaline phosphatase activity in raw milk and dairy products. Int J Environ Res Public Health. 2023;20:1825. doi: 10.3390/ijerph20031825.
  • Inguglia ES, Tiwari BK, Kerry JP, et al. Effects of high intensity ultrasound on the inactivation profiles of Escherichia coli K12 and Listeria innocua with salt and salt replacers. Ultrason Sonochem. 2018;48:492–498. doi: 10.1016/j.ultsonch.2018.05.007.
  • Bermúdez-Aguirre D, Corradini MG, Mawson R, et al. Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov Food Sci Emer Technol. 2009;10:172–178. doi: 10.1016/j.ifset.2008.11.005.
  • Gabriel AA. Inactivation of Listeria monocytogenes in milk by multifrequency power ultrasound. J Food Process Preserv. 2015;39:846–853. doi: 10.1111/jfpp.12295.
  • Al-Hilphy ARS, Niamah AK, Al-Temimi AB. Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. Int J Food Sci Nutr Eng. 2012;2:113–118.
  • Renhe IRT, Perrone ÍT, Tavares GM, et al. Physicochemical characteristics of raw milk. In: Nero LA, De Carvalho AF, editors. Raw milk. New York: Academic Press, 2019. p. 29–43.
  • Akdeniz V, Akalın AS. Power ultrasound affects physicochemical, rheological and sensory characteristics of probiotic yoghurts. Int Dairy J. 2023;137:105530. doi: 10.1016/j.idairyj.2022.105530.
  • Crespo A, Jiménez A, Ruiz-Moyano S, et al. Low-frequency ultrasound as a tool for quality control of soft-bodied raw ewe’s milk cheeses. Food Control. 2022;131:108405. doi: 10.1016/j.foodcont.2021.108405.
  • Delgado K, Vieira C, Dammak I, et al. Different ultrasound exposure times influence the physicochemical and microbial quality properties in probiotic goat milk yogurt. Molecules. 2020;25:4638. doi: 10.3390/molecules25204638.
  • Ragab ES, Lu J, Pang XY, et al. Effect of thermosonication process on physicochemical properties and microbial load of goat’s milk. J Food Sci Technol. 2019;56:5309–5316. doi: 10.1007/s13197-019-04001-3.
  • Bhavya ML, Shewale SR, Rajoriya D, et al. Impact of blue LED illumination and natural photosensitizer on bacterial pathogens, enzyme activity and quality attributes of fresh-cut pineapple slices. Food Bioprocess Technol. 2021;14:362–372. doi: 10.1007/s11947-021-02581-7.
  • Neoκleous I, Tarapata J, Papademas P. Non-thermal processing technologies for dairy products: their effect on safety and quality characteristics. Front Sustain Food Syst. 2022;6. doi: 10.3389/fsufs.2022.856199.
  • Thi Hong Bui A, Cozzolino D, Zisu B, et al. Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products - a review. J Dairy Res. 2020;87:501–512. doi: 10.1017/S0022029920001107.
  • Aslam R, Alam MS, Kaur J, et al. Understanding the effects of ultrasound processing on texture and rheological properties of food. J Texture Stud. 2022;53:775–799. doi: 10.1111/jtxs.12644.
  • Nguyen NHA, Anema SG. Ultrasonication of reconstituted whole milk and its effect on acid gelation. Food Chem. 2017;217:593–601. doi: 10.1016/j.foodchem.2016.08.117.
  • Körzendörfer A, Nöbel S, Hinrichs J. Particle formation induced by sonication during yogurt fermentation - impact of exopolysaccharide-producing starter cultures on physical properties. Food Res Int. 2017;97:170–177. doi: 10.1016/j.foodres.2017.04.006.
  • Asaithambi N, Singh SK, Singha P. Current status of non-thermal processing of probiotic foods: a review. J Food Eng. 2021;303:110567. doi: 10.1016/j.jfoodeng.2021.110567.
  • Huang G, Chen S, Tang Y, et al. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultrason Sonochem. 2019;51:315–324. doi: 10.1016/j.ultsonch.2018.09.033.
  • Altaf U, Rouf A, Kanojia V, et al. Ultrasound treatment: a novel processing technique for food preservation. Pharma Innov. 2018;7:234–241.
  • Mahmoud MZ, Davidson R, Abdelbasset WK, et al. The new achievements in ultrasonic processing of milk and dairy products. J Radiat Res Appl Sci. 2022;15:199–205. doi: 10.1016/j.jrras.2022.03.005.
  • Jo YJ, Choi MJ, Chun JY. Effect of high-energy emulsification on properties of commercial low-temperature pasteurized milk. Int J of Dairy Tech. 2019;72:357–363. doi: 10.1111/1471-0307.12596.
  • Ravikumar M, Suthar H, Desai C, et al. Ultrasonication: an advanced technology for food preservation. Int J Pure App Biosci. 2017;5:363–371. doi: 10.18782/2320-7051.5481.
  • Juric A, Delas I, Vukusic T, et al. Influence of gas phase plasma and high power ultrasound on fatty acids in goat milk. Am J Food Technol. 2016;11:125–133. doi: 10.3923/ajft.2016.125.133.
  • Ahmad T, Butt MZ, Aadil RM, et al. Impact of nonthermal processing on different milk enzymes. Int J of Dairy Tech. 2019;72(4):481–495. doi: 10.1111/1471-0307.12622.
  • Shabbir MA, Ahmed H, Maan AA, et al. Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Sci Technol. 2021;41:279–294. doi: 10.1590/fst.05820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.