525
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in Vibrio-related infection management: an integrated technology approach for aquaculture and human health

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 03 Aug 2023, Accepted 25 Nov 2023, Published online: 05 May 2024

References

  • Montánchez I, Ogayar E, Plágaro AH, et al. Analysis of Vibrio harveyi adaptation in sea water microcosms at elevated temperature provides insights into the putative mechanisms of its persistence and spread in the time of global warming. Sci Rep. 2019;9:289. doi: 10.1038/s41598-018-36483-0.
  • Jiang C, Tanaka M, Nishikawa S, et al. Vibrio Clade 3.0: new Vibrionaceae evolutionary units using genome-based approach. Curr Microbiol. 2022;79:10. doi: 10.1007/s00284-021-02725-0.
  • Baker-Austin C, Oliver JD, Alam M, et al. Vibrio spp. infections. Nat Rev Dis Primers. 2018;4:8–19. doi: 10.1038/s41572-018-0005-8.
  • Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev. 2004;68:403–431, table of contents. doi: 10.1128/MMBR.68.3.403-431.2004.
  • Onohuean H, Agwu E, Nwodo UU. A global perspective of Vibrio species and associated diseases: three-decade meta-synthesis of research advancement. Environ Health Insights. 2022;16. doi: 10.1177/11786302221099406.
  • Hickey ME, Lee JL. A comprehensive review of Vibrio (Listonella) anguillarum: ecology, pathology and prevention. Rev Aquacult. 2018;10:585–610. doi: 10.1111/raq.12188.
  • Vezzulli L, Chiara G, Philip C, et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. PNAS. 2016;113:E5062–E5071. doi: 10.1073/pnas.1609157113.
  • Cervino JM, Thompson FL, Gomez-Gil B, et al. The Vibrio core group induces yellow band disease in Caribbean and Indo‐Pacific reef‐building corals. J Appl Microbiol. 2008;105:1658–1671. doi: 10.1111/j.1365-2672.2008.03871.x.
  • Ramamurthy T, Chowdhury G, Pazhani GP, et al. Vibrio fluvialis: an emerging human pathogen. Front Microbiol. 2014;5:91. doi: 10.3389/fmicb.2014.00091.
  • Mustapha S, Mustapha EM, Nozha C. Vibrio alginolyticus: an emerging pathogen of food borne diseases. Inte J Sci Technol. 2013;2:302–309.
  • Ghenem L, Elhadi N, Alzahrani F, et al. Vibrio parahaemolyticus: a review on distribution, pathogenesis, virulence determinants and epidemiology. Saudi J Med Med Sci. 2017;5:93–103. doi: 10.4103/sjmms.sjmms_30_17.
  • Ali M, Nelson AR, Lopez AL, et al. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis. 2015;9:e0003832. doi: 10.1371/journal.pntd.0003832.
  • Kokashvili T, Whitehouse CA, Tskhvediani A, et al. Occurrence and diversity of clinically important Vibrio species in the aquatic environment of Georgia. Front Public Health. 2015;3:232. doi: 10.3389/fpubh.2015.00232.
  • Wang R, Wang J, Sun Y, Yang B, Wang A. Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor. Mar Pollut Bull 2015;101(2):701–6. doi: 10.1016/j.marpolbul.2015.10.027.
  • Poblete-Morales M, Irgang R, Henríquez-Núñez H, et al. Vibrio ordalii antimicrobial susceptibility testing—modified culture conditions required and laboratory-specific epidemiological cut-off values. Vet Microbiol. 2013;165:434–442. doi: 10.1016/j.vetmic.2013.04.024.
  • Davidson N, Edwards F, Harris PNA, et al. Vibrio species bloodstream infections in Queensland, Australia. Intern Med J. 2023;54:157–163. doi: 10.1111/imj.16187.
  • Williams NLR, Siboni N, King WL, et al. Latitudinal dynamics of Vibrio along the Eastern Coastline of Australia. Water. 2022;14:2510. doi: 10.3390/w14162510.
  • Lee K-K, Yu S-R, Chen F-R, et al. News & notes: virulence of Vibrio alginolyticus isolated from diseased tiger prawn, Penaeus monodon. Curr Microbiol. 1996;32:229–231. doi: 10.1007/s002849900041.
  • Cao H, An J, Zheng W, et al. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J Invertebr Pathol. 2015;130:13–20. doi: 10.1016/j.jip.2015.06.002.
  • Lightner DV. A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp. Sorrento (LA): World Aquaculture Society; 1996.
  • Wong HC, Liu SH, Wang TK, et al. Characteristics of Vibrio parahaemolyticus O3: k 6 from Asia. Appl Environ Microbiol. 2000;66:3981–3986. doi: 10.1128/AEM.66.9.3981-3986.2000.
  • Oliver J. The biology of Vibrio vulnificus. Microbiol Spect. 2015;3. doi: 10.1128/microbiolspec.VE-0001-2014.
  • Chitov T, Kirikaew P, Yungyune P, et al. An incidence of large foodborne outbreak associated with Vibrio mimicus. Eur J Clin Microbiol Infect Dis. 2009;28:421–424. doi: 10.1007/s10096-008-0639-7.
  • Subasinghe R, Soto D, Jia J. Global aquaculture and its role in sustainable development. Rev Aquacult. 2009;1:2–9. doi: 10.1111/j.1753-5131.2008.01002.x.
  • Godfray HCJ, Beddington JR, Crute IR, et al. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–818. doi: 10.1126/science.1185383.
  • King T, Cole M, Farber JM, et al. Food safety for food security: relationship between global megatrends and developments in food safety. Trends Food Sci Technol. 2017;68:160–175. doi: 10.1016/j.tifs.2017.08.014.
  • Gormaz JG, Fry JP, Erazo M, et al. Public health perspectives on aquaculture. Curr Environ Health Rep. 2014;1:227–238. doi: 10.1007/s40572-014-0018-8.
  • Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect. 2011;13:992–1001. doi: 10.1016/j.micinf.2011.06.013.
  • Mohammadi-Barzelighi H, Bakhshi B, Lari AR, et al. Characterization of pathogenicity island prophage in clinical and environmental strains of Vibrio cholerae. J Med Microbiol. 2011;60:1742–1749. doi: 10.1099/jmm.0.031732-0.
  • Aguirre-Guzmán G, Ascencio F, Saulnier D. Pathogenicity of Vibrio penaeicida for white shrimp Litopenaeus vannamei: a cysteine protease-like exotoxin as a virulence factor. Dis Aquat Organ. 2005;67:201–207. doi: 10.3354/dao067201.
  • Jones MK, Oliver JD. Vibrio vulnificus: disease and pathogenesis. Infect Immun. 2009;77:1723–1733. doi: 10.1128/IAI.01046-08.
  • Weil AA, Becker RL, Harris JB. Vibrio cholerae at the intersection of immunity and the microbiome. MSphere. 2019;4:e00597-19. doi: 10.1128/mSphere.00597-19.
  • Luan XY, Chen JX, Zhang XH, et al. Comparison of different primers for rapid detection of Vibrio parahaemolyticus using the polymerase chain reaction. Lett Appl Microbiol. 2007;44:242–247. doi: 10.1111/j.1472-765X.2006.02074.x.
  • Park JY, Jeon S, Kim JY, et al. Multiplex real-time polymerase chain reaction assays for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Osong Public Health Res Perspect. 2013;4:133–139. doi: 10.1016/j.phrp.2013.04.004.
  • Sawabe T, Ogura Y, Matsumura Y, et al. Corrigendum: updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol. 2014;5:583. doi: 10.3389/fmicb.2014.00583.
  • Thompson CC, Vicente ACP, Souza RC, et al. Genomic taxonomy of vibrios. BMC Evol Biol. 2009;9:258. doi: 10.1186/1471-2148-9-258.
  • Xie ZY, Hu CQ, Chen C, et al. Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett Appl Microbiol. 2005;41:202–207. doi: 10.1111/j.1472-765X.2005.01688.x.
  • Silvester R, Alexander D, Antony AC, et al. GroEL PCR-RFLP–an efficient tool to discriminate closely related pathogenic Vibrio species. Microb Pathog. 2017;105:196–200. doi: 10.1016/j.micpath.2017.02.029.
  • Yu J, Zhu B, Zhou T, et al. Species‐specific identification of Vibrio sp. based on 16S‐23S rRNA gene internal transcribed spacer. J Appl Microbiol. 2020;129:738–752. doi: 10.1111/jam.14637.
  • Ma X, Zhu F, Jin Q. Antibiotics and chemical disease control agents reduce innate disease resistance in crayfish. Fish Shellfish Immunol. 2019;86:169–178. doi: 10.1016/j.fsi.2018.11.015.
  • Wong KC, Brown AM, Luscombe GM, et al. Antibiotic use for Vibrio infections: important insights from surveillance data. BMC Infect Dis. 2015;15:226. doi: 10.1186/s12879-015-0959-z.
  • Vallejos-Vidal E, Reyes-López F, Teles M, et al. The response of fish to immunostimulant diets. Fish Shellfish Immunol. 2016;56:34–69. doi: 10.1016/j.fsi.2016.06.028.
  • Alvarez-Pellitero P. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Vet Immunol Immunopathol. 2008;126:171–198. doi: 10.1016/j.vetimm.2008.07.013.
  • Galindo-Villegas J, García-Moreno D, De Oliveira S, et al. Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. Proc Natl Acad Sci U S A. 2012;109: e2605–E2614. doi: 10.1073/pnas.1209920109.
  • Bricknell I, Dalmo RA. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol. 2005;19:457–472. doi: 10.1016/j.fsi.2005.03.008.
  • Ghosh AK, Sarkar S, Bir J, et al. Probiotic tiger shrimp (Penaeus monodon) farming at different stocking densities and its impact on production and economics. Int J Res Fish Aquac. 2013;3:25–29.
  • Miccoli A, Saraceni P, Scapigliati G. Vaccines and immune protection of principal Mediterranean marine fish species. Fish Shellfish Immunol. 2019;94:800–809. doi: 10.1016/j.fsi.2019.09.065.
  • Du Y, Hu X, Miao L, et al. Current status and development prospects of aquatic vaccines. Front Immunol. 2022;13:1040336. doi: 10.3389/fimmu.2022.1040336.
  • Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006;20:137–151. doi: 10.1016/j.fsi.2004.09.006.
  • Motes ML, DePaola A, Cook DW, et al. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Appl Environ Microbiol. 1998;64:1459–1465. doi: 10.1128/AEM.64.4.1459-1465.1998.
  • Nigro OD, James-Davis LTI, De Carlo EH, et al. Variable freshwater influences on the abundance of Vibrio vulnificus in a tropical urban estuary. Appl Environ Microbiol. 2022;88:e01884-21. doi: 10.1128/AEM.01884-21.
  • Urquhart EA, Jones SH, Yu JW, et al. Environmental conditions associated with elevated Vibrio parahaemolyticus concentrations in Great Bay Estuary, New Hampshire. PLoS One. 2016;11:e0155018. doi: 10.1371/journal.pone.0155018.
  • Vezzulli L, Pezzati E, Brettar I, et al. Effects of global warming on Vibrio ecology. Microbiol Spectr. 2015;3:18. doi: 10.1128/microbiolspec.VE-0004-2014.
  • Kashulin A, Seredkina N, Sørum H. Cold‐water vibriosis. The current status of knowledge. J Fish Dis. 2017;40:119–126. doi: 10.1111/jfd.12465.
  • Faria EC, Brown BJT, Snook RD. Water toxicity monitoring using Vibrio fischeri: a method free of interferences from colour and turbidity. J Environ Monit. 2004;6:97–102. doi: 10.1039/b311137g.
  • Bentzon‐Tilia M, Sonnenschein EC, Gram L. Monitoring and managing microbes in aquaculture–towards a sustainable industry. Microb Biotechnol. 2016;9:576–584. doi: 10.1111/1751-7915.12392.
  • Kalatzis PG, Castillo D, Katharios P, et al. Bacteriophage interactions with marine pathogenic vibrios: implications for phage therapy. Antibiotics. 2018;7:15. doi: 10.3390/antibiotics7010015.
  • Vinod MG, Shivu MM, Umesha KR, et al. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture. 2006;255:117–124. doi: 10.1016/j.aquaculture.2005.12.003.
  • Kim JY, Lee J-L. Correlation of total bacterial and Vibrio spp. populations between fish and water in the aquaculture system. Front Mar Sci. 2017;4:147. doi: 10.3389/fmars.2017.00147.
  • Halet D, Defoirdt T, Van Damme P, et al. Poly-β-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol. 2007;60:363–369. doi: 10.1111/j.1574-6941.2007.00305.x.
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165.
  • Rutherford S, Bassler B. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspect Med. 2012;2:a012427.
  • Kalatzis PG, Bastías R, Kokkari C, et al. Isolation and characterization of two lytic bacteriophages, φSt2 and φGrn1; phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS One. 2016;11:e0151101. doi: 10.1371/journal.pone.0151101.
  • Matamp N, Bhat SG. Phage endolysins as potential antimicrobials against multidrug resistant Vibrio alginolyticus and Vibrio parahaemolyticus: current status of research and challenges ahead. Microorganisms. 2019;7:84. doi: 10.3390/microorganisms7030084.
  • Sotomayor MA, Reyes JK, Restrepo L, et al. Efficacy assessment of commercially available natural products and antibiotics, commonly used for mitigation of pathogenic Vibrio outbreaks in Ecuadorian Penaeus (Litopenaeus) vannamei hatcheries. PLoS One. 2019;14:e0210478. doi: 10.1371/journal.pone.0210478.
  • Manilal A, Selvin J, George S. In vivo therapeutic potentiality of red seaweed, Asparagopsis (Bonnemaisoniales, Rhodophyta) in the treatment of Vibriosis in Penaeus monodon Fabricius. Saudi J Biol Sci. 2012;19:165–175. doi: 10.1016/j.sjbs.2011.12.003.
  • Szunerits S, Boukherroub R. Graphene-based biosensors. Interface Focus. 2018;8:20160132. doi: 10.1098/rsfs.2016.0132.
  • Zhang Z, Zhou J, Du X. Electrochemical biosensors for detection of foodborne pathogens. Micromachines. 2019;10:222. doi: 10.3390/mi10040222.
  • Rahman M, Heng LY, Futra D, et al. Ultrasensitive biosensor for the detection of Vibrio cholerae DNA with polystyrene-co-acrylic acid composite nanospheres. Nanoscale Res Lett. 2017;12:474. doi: 10.1186/s11671-017-2236-0.
  • Hash S, Martinez-Viedma MP, Fung F, et al. Nuclear magnetic resonance biosensor for rapid detection of Vibrio parahaemolyticus. Biomed J. 2019;42:187–192. doi: 10.1016/j.bj.2019.01.009.
  • Huff K, Aroonnual A, Littlejohn AEF, et al. Light‐scattering sensor for real‐time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate. Microb Biotechnol. 2012;5:607–620. doi: 10.1111/j.1751-7915.2012.00349.x.
  • Wang Y, Li H, Wang Y, et al. Nanoparticle-based lateral flow biosensor combined with multiple cross displacement amplification for rapid, visual and sensitive detection of Vibrio cholerae. FEMS Microbiol Lett. 2017;364:fnx234. doi: 10.1093/femsle/fnx234.
  • Laczka OF, Labbate M, Seymour JR, et al. Surface immuno-functionalisation for the capture and detection of Vibrio species in the marine environment: a new management tool for industrial facilities. PLoS One. 2014;9:e108387. doi: 10.1371/journal.pone.0108387.
  • Milton DL. Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol. 2006;296:61–71. doi: 10.1016/j.ijmm.2006.01.044.
  • Tiaden A, Hilbi H. α-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors. 2012;12:2899–2919. doi: 10.3390/s120302899.
  • Santhyia AV, Mulloorpeedikayil RG, Kollanoor RJ, et al. Molecular variations in Vibrio alginolyticus and V. harveyi in shrimp-farming systems upon stress. Braz J Microbiol. 2015;46:1001–1008. doi: 10.1590/S1517-838246420140410.
  • Girgis K, Clouse N, Mushe O, et al. The applications of GIS in water resources. 2022 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA; 2022; p. 1515–1520. doi: 10.1109/CSCI58124.2022.00268.
  • Longdill P, Healy T, Black K. GIS-based models for sustainable open-coast shellfish aquaculture management area site selection. Ocean Coast Manage. 2008;51:612–624. doi: 10.1016/j.ocecoaman.2008.06.010.
  • Klemas VV. editor. Advances in fisheries applications of remote sensing. 2014 IEEE/OES Baltic International Symposium (BALTIC): IEEE; 2014. doi: 10.1109/BALTIC.2014.6887836.
  • Erisman B, Aburto-Oropeza O, Gonzalez-Abraham C, et al. Spatio-temporal dynamics of a fish spawning aggregation and its fishery in the Gulf of California. Sci Rep. 2012;2:284. doi: 10.1038/srep00284.
  • Assefa WW, Abebe WB. GIS modeling of potentially suitable sites for aquaculture development in the Lake Tana basin, Northwest Ethiopia. Agric Food Sec. 2018;7:1–15.
  • Vance TC, Merati N, Yang C, et al. Cloud computing for ocean and atmospheric science. New York: IEEE; 2016.
  • Ali A, Syed KS. An outlook of high performance computing infrastructures for scientific computing. Adv Comp. 2013;91:87–118.
  • Nižetić S, Šolić P, López-de-Ipiña González-de-Artaza D, et al. Internet of Things (IoT): opportunities, issues and challenges towards a smart and sustainable future. J Clean Prod. 2020;274:122877. doi: 10.1016/j.jclepro.2020.122877.
  • Lee PG. Process control and artificial intelligence software for aquaculture. Aquacult Eng. 2000;23:13–36. doi: 10.1016/S0144-8609(00)00044-3.
  • Scopus data. Key word vibrio. [accessed 2023 Oct 28]. https://www.scopus.com.
  • Manchanayake T, Salleh A, Amal MNA, et al. Pathology and pathogenesis of Vibrio infection in fish: a review. Aquacult Rep. 2023;28:101459. doi: 10.1016/j.aqrep.2022.101459.
  • Ziarati M, Zorriehzahra MJ, Hassantabar F, et al. Zoonotic diseases of fish and their prevention and control. Vet Q. 2022;42:95–118. doi: 10.1080/01652176.2022.2080298.
  • Trinanes J, Martinez-Urtaza J. Future scenarios of risk of viruses infections on a warming planet: a global mapping study. Lancet Planet Health. 2021;5:e426–E435. doi: 10.1016/S2542-5196(21)00169-8.
  • Matteucci G, Schippa S, Di Lallo G, et al. Species diversity, spatial distribution, and virulence associated genes of culturable vibrios in a brackish coastal Mediterranean environment. Ann Microbiol. 2015;65:2311–2321. doi: 10.1007/s13213-015-1073-6.
  • Sanches-Fernandes GMM, Sá-Correia I, Costa R. Vibriosis outbreaks in aquaculture: addressing environmental and public health concerns and preventive therapies using gilthead seabream farming as a model system. Front Microbiol. 2022;13:904815. doi: 10.3389/fmicb.2022.904815.
  • Castillo D, Kauffman K, Hussain F, et al. Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Sci Rep. 2018;8:9973. doi: 10.1038/s41598-018-28326-9.
  • Mohamad A, Zamri-Saad M, Amal MNA, et al. Vaccine efficacy of a newly developed feed-based whole-cell polyvalent vaccine against vibriosis, streptococcosis and motile aeromonad septicemia in Asian Seabass, Lates calcarifer. Vaccines. 2021;9:368. doi: 10.3390/vaccines9040368.
  • Ma J, Bruce JT, Jones M, et al. Review of fish vaccine development strategies: conventional methods and modern biotechnological approaches. Microorganisms. 2019;7:569. doi: 10.3390/microorganisms7110569.
  • Mondiale de la Santé O, Organization WH. Cholera vaccines: WHO position paper–August 2017–vaccins anticholériques: note de synthèse de l’OMS–août 2017. Week Epidemiol Rec = Relevé Épidémiologique Hebdomadaire. 2017;92:477–498.
  • Sit B, Zhang T, Fakoya B, et al. Oral immunization with a probiotic cholera vaccine induces broad protective immunity against Vibrio cholerae colonization and disease in mice. PLoS Negl Trop Dis. 2019;13:e0007417. doi: 10.1371/journal.pntd.0007417.
  • Rahman MT, Sobur MA, Islam MS, et al. Zoonotic diseases: etiology, impact, and control. Microorganisms. 2020;8:1405. doi: 10.3390/microorganisms8091405.
  • Christou L. The global burden of bacterial and viral zoonotic infections. Clin Microbiol Infect. 2011;17:326–330. doi: 10.1111/j.1469-0691.2010.03441.x.
  • Triga A, Smyrli M, Katharios P. Pathogenic and opportunistic Vibrio spp. associated with Vibriosis incidences in the Greek aquaculture: the role of Vibrio harveyi as the principal cause of Vibriosis. Microorganisms. 2023;11:1197. doi: 10.3390/microorganisms11051197.
  • Loo K-Y, Law JW-F, Teng-Hern Tan L, et al. Diagnostic techniques for the rapid detection of Vibrio species. Aquaculture. 2022;561:738628. doi: 10.1016/j.aquaculture.2022.738628.
  • Li H, Zhang X, Long H, et al. Vibrio alginolyticus 16S-23S intergenic spacer region analysis, and PCR assay for identification of coral pathogenic strain XSBZ03. Dis Aquat Organ. 2018;129:71–83. doi: 10.3354/dao03233.
  • Hoffmann M, Brown EW, Feng PC, et al. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiol. 2010;10:90. doi: 10.1186/1471-2180-10-90.
  • Coyle NM, Bartie KL, Bayliss SC, et al. A hopeful sea-monster: a very large homologous recombination event impacting the core genome of the marine pathogen Vibrio anguillarum. Front Microbiol. 2020;11:1430. doi: 10.3389/fmicb.2020.01430.
  • Meparambu Prabhakaran D, Ramamurthy T, Thomas S. Genetic and virulence characterisation of Vibrio parahaemolyticus isolated from Indian coast. BMC Microbiol. 2020;20:62. doi: 10.1186/s12866-020-01746-2.
  • Hossain MMM, Uddin MI, Islam H, et al. Diagnosis, genetic variations, virulence, and toxicity of AHPND-positive Vibrio parahaemolyticus in Penaeus monodon. Aquac Int. 2020;28(6):2531–2546. doi: 10.1007/s10499-020-00607-z.
  • Lin B, Wang Z, Malanoski AP, et al. Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA‐1116 and HY01 as Vibrio campbellii. Environ Microbiol Rep. 2010;2:81–89. doi: 10.1111/j.1758-2229.2009.00100.x.
  • Chun J, Grim CJ, Hasan NA, et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A. 2009;106:15442–15447. doi: 10.1073/pnas.0907787106.
  • Kennedy DA, Kurath G, Brito IL, et al. Potential drivers of virulence evolution in aquaculture. Evol Appl. 2016;9:344–354. doi: 10.1111/eva.12342.
  • Yano Y, Hamano K, Satomi M, et al. Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Control. 2014;38:30–36. doi: 10.1016/j.foodcont.2013.09.019.
  • Arunkumar M, LewisOscar F, Thajuddin N, et al. In vitro and in vivo biofilm forming Vibrio spp: a significant threat in aquaculture. Process Biochem. 2020;94:213–223. doi: 10.1016/j.procbio.2020.04.029.
  • Letchumanan V, Chan K-G, Lee L-H. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol. 2014;5:705. doi: 10.3389/fmicb.2014.00705.
  • Oliver JD, Jones JL. Vibrio parahaemolyticus and Vibrio vulnificus. In: Molecular medical microbiology. Amsterdam: Elsevier; 2015. p. 1169–1186.
  • Tan D, Gram L, Middelboe M. Vibriophages and their interactions with the fish pathogen Vibrio anguillarum. Appl Environ Microbiol. 2014;80:3128–3140. doi: 10.1128/AEM.03544-13.
  • Ali M, Emch M, Park JK, et al. Natural cholera infection–derived immunity in an endemic setting. J Infect Dis. 2011;204:912–918. doi: 10.1093/infdis/jir416.
  • Harris JB. Cholera: immunity and prospects in vaccine development. J Infect Dis. 2018;218: s141–S146. doi: 10.1093/infdis/jiy414.
  • Duan F, March JC. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci U S A. 2010;107:11260–11264. doi: 10.1073/pnas.1001294107.
  • Frans I, Michiels CW, Bossier P, et al. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis. 2011;34:643–661. doi: 10.1111/j.1365-2761.2011.01279.x.
  • Rubio T, Oyanedel D, Labreuche Y, et al. Species-specific mechanisms of cytotoxicity toward immune cells determine the successful outcome of Vibrio infections. Proc Natl Acad Sci U S A. 2019;116:14238–14247. doi: 10.1073/pnas.1905747116.
  • Kaper JB. Vibrio cholerae vaccines. Rev Infect Dis. 1989;11(Suppl 3):S568–S573. doi: 10.1093/clinids/11.supplement_3.s568.
  • Lokesh J, Fernandes JM, Korsnes K, et al. Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum. Fish Shellfish Immunol. 2012;33:626–631. doi: 10.1016/j.fsi.2012.06.017.
  • Ødegård J, Baranski M, Gjerde B, et al. Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res. 2011;42:103–114. doi: 10.1111/j.1365-2109.2010.02669.x.
  • Natnan ME, Low CF, Chong CM, et al. Comparison of different dietary fatty acids supplement on the immune response of hybrid grouper (Epinephelus fuscoguttatus× Epinephelus lanceolatus) Challenged with Vibrio vulnificus. Biology. 2022;11:1288. doi: 10.3390/biology11091288.
  • Mendivil CO. Dietary fish, fish nutrients, and immune function: a review. Front Nutr. 2020;7:617652. doi: 10.3389/fnut.2020.617652.
  • Nakai T, Park SC. Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol. 2002;153:13–18. doi: 10.1016/s0923-2508(01)01280-3.
  • Pereira C, Silva YJ, Santos AL, et al. Bacteriophages with potential for inactivation of fish pathogenic bacteria: survival, host specificity and effect on bacterial community structure. Mar Drugs. 2011;9:2236–2255. doi: 10.3390/md9112236.
  • Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev. 2000;64:655–671. doi: 10.1128/MMBR.64.4.655-671.2000.
  • Riquelme C, Hayashida G, Toranzo A, et al. Pathogenicity studies on a Vibrio anguillarum-related (VAR) strain causing an epizootic in Argopecten purpuratus larvae cultured in Chile. Dis Aquat Org. 1995;22:135–141. doi: 10.3354/dao022135.
  • Liang M, Li Z, Wang W, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun. 2019;10:3672. doi: 10.1038/s41467-019-11648-1.
  • Sanvicens N, Pastells C, Pascual N, et al. Nanoparticle-based biosensors for detection of pathogenic bacteria. TrAC, Trends Anal Chem. 2009;28:1243–1252. doi: 10.1016/j.trac.2009.08.002.
  • Svechkarev D, Sadykov MR, Bayles KW, et al. Ratiometric fluorescent sensor array as a versatile tool for bacterial pathogen identification and analysis. ACS Sens. 2018;3:700–708. doi: 10.1021/acssensors.8b00025.
  • Pedrero M, Campuzano S, Pingarrón JM. Electroanalytical sensors and devices for multiplexed detection of foodborne pathogen microorganisms. Sensors. 2009;9:5503–5520. doi: 10.3390/s90705503.
  • Shen Y, Yue G. Current status of research on aquaculture genetics and genomics-information from ISGA 2018. Aquac Fish. 2019;4:43–47. doi: 10.1016/j.aaf.2018.11.001.
  • Clarridge IJE, Attorri SM, Zhang Q, et al. 16S ribosomal DNA sequence analysis distinguishes biotypes of Streptococcus bovis: Streptococcus bovis biotype II/2 is a separate genospecies and the predominant clinical isolate in adult males. J Clin Microbiol. 2001;39:1549–1552. doi: 10.1128/JCM.39.4.1549-1552.2001.
  • Nho S-W, Hikima J-i, Park SB, et al. Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses. PLoS One. 2013;8:e80395. doi: 10.1371/journal.pone.0080395.
  • Ke H-M, Liu D, Ogura Y, et al. Tracing genomic divergence of Vibrio bacteria in the Harveyi clade. J Bacteriol. 2018;200:e00001-18. doi: 10.1128/JB.00001-18.
  • Bonder MJ, Kurilshikov A, Tigchelaar EF, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48:1407–1412. doi: 10.1038/ng.3663.
  • Limborg MT, Alberdi A, Kodama M, et al. Applied hologenomics: feasibility and potential in aquaculture. Trends Biotechnol. 2018;36:252–264. doi: 10.1016/j.tibtech.2017.12.006.
  • Sakala R, Hayashidani H, Kato Y, et al. Isolation and characterization of Lactococcus piscium strains from vacuum‐packaged refrigerated beef. J Appl Microbiol. 2002;92:173–179. doi: 10.1046/j.1365-2672.2002.01513.x.
  • Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21:1109. doi: 10.3390/s21041109.
  • Da-Silva E, Baudart J, Barthelmebs L. Biosensing platforms for Vibrio bacteria detection based on whole cell and nucleic acid analysis: a review. Talanta. 2018;190:410–422. doi: 10.1016/j.talanta.2018.07.092.
  • Stella RG, Baumann P, Lorke S, et al. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metab Eng Commun. 2021;13:e00187. doi: 10.1016/j.mec.2021.e00187.
  • Adams A, Thompson KD. Biotechnology offers revolution to fish health management. Trends Biotechnol. 2006;24:201–205. doi: 10.1016/j.tibtech.2006.03.004.
  • Jia B, St-Hilaire S, Singh K, et al. Biosecurity knowledge, attitudes and practices of farmers culturing yellow catfish (Pelteobagrus fulvidraco) in Guangdong and Zhejiang provinces, China. Aquaculture. 2017;471:146–156. doi: 10.1016/j.aquaculture.2017.01.016.
  • Ceccarelli D, Hasan NA, Huq A, et al. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol. 2013;3:97. doi: 10.3389/fcimb.2013.00097.
  • Terman M. Evolving applications of light therapy. Sleep Med Rev. 2007;11:497–507. doi: 10.1016/j.smrv.2007.06.003.
  • Alves E, Faustino MAF, Tomé JPC, et al. Photodynamic antimicrobial chemotherapy in aquaculture: photoinactivation studies of Vibrio fischeri. PLoS One. 2011;6:e20970. doi: 10.1371/journal.pone.0020970.
  • Alves RN, Agustí S. Effect of ultraviolet radiation (UVR) on the life stages of fish. Rev Fish Biol Fisheries. 2020;30:335–372. doi: 10.1007/s11160-020-09603-1.
  • Liu R, Han G, Li Z, et al. Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiol. 2022;67:573–590. doi: 10.1007/s12223-022-00965-6.
  • Gupta S, Tiwari A, Jain U, et al. Synergistic effect of 2D material coated Pt nanoparticles with PEDOT polymer on electrode surface interface for a sensitive label free Helicobacter pylori CagA (Ag-Ab) immunosensing. Mater Sci Eng C Mater Biol Appl. 2019;103:109733. doi: 10.1016/j.msec.2019.05.018.
  • Ashaduzzaman M, Deshpande SR, Murugan NA, et al. On/off-switchable LSPR nano-immunoassay for troponin-T. Sci Rep. 2017;7:44027. doi: 10.1038/srep44027.
  • Parlak O, İncel A, Uzun L, et al. Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron. 2017;89:545–550. doi: 10.1016/j.bios.2016.03.024.
  • Mishra S, Ashaduzzaman M, Mishra P, et al. Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics. Biosens Bioelectron. 2017;89:305–311. doi: 10.1016/j.bios.2016.03.052.
  • Ubina NA, Cheng S-C, Chen H-Y, et al. A visual aquaculture system using a cloud-based autonomous drones. Drones. 2021;5:109. doi: 10.3390/drones5040109.
  • Teixeira RR, Puccinelli JB, Poersch L, et al. Towards precision aquaculture: a high performance, cost-effective IoT approach. arXiv preprint arXiv:210511493. 2021.
  • Arvanitoyannis IS, Kassaveti A. Fish industry waste: treatments, environmental impacts, current and potential uses. Int J of Food Sci Tech. 2008;43:726–745. doi: 10.1111/j.1365-2621.2006.01513.x.
  • Aguilera SE, Cole J, Finkbeiner EM, et al. Managing small-scale commercial fisheries for adaptive capacity: insights from dynamic social-ecological drivers of change in Monterey Bay. PLoS One. 2015;10:e0118992. doi: 10.1371/journal.pone.0118992.
  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR, et al. Disease and health management in Asian aquaculture. Vet Parasitol. 2005;132:249–272. doi: 10.1016/j.vetpar.2005.07.005.
  • Alter T, Appel B, Bartelt E, et al. Vibrio infections from food and sea water. Introducing the" VibrioNet. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2011;54:1235–1240. doi: 10.1007/s00103-011-1359-1.
  • Hon C-C, Ramilowski JA, Harshbarger J, et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature. 2017;543:199–204. doi: 10.1038/nature21374.
  • Kim WR, Park EG, Lee YJ, et al. Integration of TE induces cancer specific alternative splicing events. Int J Mol Sci. 2022;23:10918. doi: 10.3390/ijms231810918.
  • Park EG, Kim WR, Lee YJ, et al. Downregulated pol-miR-140-3p induces the expression of the kinesin family member 5A against Streptococcus parauberis infection in olive flounder. Fish Shellfish Immunol. 2022;126:178–186. doi: 10.1016/j.fsi.2022.05.043.
  • Jo A, Im J, Lee H-E, et al. Evolutionary conservation and expression of miR-10a-3p in olive flounder and rock bream. Gene. 2017;628:16–23. doi: 10.1016/j.gene.2017.07.020.
  • Zhang W, Belton B, Edwards P, et al. Aquaculture will continue to depend more on land than sea. Nature. 2022;603: e2–E4. doi: 10.1038/s41586-021-04331-3.
  • Mishra A, Nam G-H, Gim J-A, et al. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol Cells. 2018;41:495.
  • Reverter M, Sarter S, Caruso D, et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun. 2020;11:1870. doi: 10.1038/s41467-020-15735-6.
  • Naylor RL, Hardy RW, Buschmann AH, et al. A 20-year retrospective review of global aquaculture. Nature. 2021;591:551–563. doi: 10.1038/s41586-021-03308-6.
  • Stentiford GD, Bateman IJ, Hinchliffe SJ, et al. Sustainable aquaculture through the One Health lens. Nat Food. 2020;1:468–474. doi: 10.1038/s43016-020-0127-5.
  • Biener R, Horn T, Komitakis A, et al. High-cell-density cultivation of Vibrio natriegens in a low-chloride chemically defined medium. Appl Microbiol Biotechnol. 2023;107:7043–7054. Sep 23. doi: 10.1007/s00253-023-12799-4.
  • Wu F, Wang S, Peng Y, et al. Metabolic engineering of fast-growing Vibrio natriegens for efficient pyruvate production. Microb Cell Fact. 2023;22:172. doi: 10.1186/s12934-023-02185-0.
  • Moonsamy G, Zulu NN, Lalloo R, et al. Large-scale production of an abalone probiotic, Vibrio midae, isolated from a South African abalone, Halitotis midae for use in aquaculture. Biocatal Agric Biotechnol. 2020;29:101794. doi: 10.1016/j.bcab.2020.101794.
  • Visick KL, Stabb EV, Ruby EG. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol. 2021;19:654–665. doi: 10.1038/s41579-021-00557-0.
  • Levy S. ECDC Vibrio Map Viewer: tracking the whereabouts of pathogenic species. Environ Health Perspect. 2018;126:034003. doi: 10.1289/EHP2904.