77
Views
0
CrossRef citations to date
0
Altmetric
Review Article

How to deal with xenobiotic compounds through environment friendly approach?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 13 Apr 2023, Accepted 13 Mar 2024, Published online: 06 May 2024

References

  • Tijani JO, Fatoba OO, Babajide OO, et al. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett. 2016;14:27–49. doi: 10.1007/s10311-015-0537-z.
  • Chowdhary P, Shukla G, Raj G, et al. Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Appl. Sci. 2019;1:45. doi: 10.1007/s42452-018-0046-3.
  • Wei Z, Van Le Q, Peng W, et al. A review on phytoremediation of contaminants in air, water and soil. J Hazard Mater. 2021;403:123658. doi: 10.1016/j.jhazmat.2020.123658.
  • Pant G, Garlapati D, Agrawal U, et al. Biological approaches practised using genetically engineered microbes for a sustainable environment: a review. J Hazard Mater. 2021;405:124631. doi: 10.1016/j.jhazmat.2020.124631.
  • Dar OI, Aslam R, Pan D, et al. Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: a review. Environ Technol Innov. 2022;25:102122. doi: 10.1016/j.eti.2021.102122.
  • Schopf MF, Pierezan MD, Rocha R, et al. Pesticide residues in milk and dairy products: an overview of processing degradation and trends in mitigating approaches. Crit Rev Food Sci Nutr. 2022;63:12610–12624.
  • Sharma M, Mandal MK, Pandey S, et al. Visible-light-driven photocatalytic degradation of tetracycline using heterostructured Cu2O–TiO2 nanotubes, kinetics, and toxicity evaluation of degraded products on cell lines. ACS Omega. 2022;7:33572–33586. doi: 10.1021/acsomega.2c04576.
  • Jelic A, Gros M, Ginebreda A, et al. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011;45:1165–1176. doi: 10.1016/j.watres.2010.11.010.
  • Panigrahy N, Priyadarshini A, Sahoo MM, et al. A comprehensive review on eco-toxicity and biodegradation of phenolics: recent progress and future outlook. Environ Technol Innov. 2022;27:102423. doi: 10.1016/j.eti.2022.102423.
  • Verma S, Kuila A. Bioremediation of heavy metals by microbial process. Environ Technol Innov. 2019;14:100369. doi: 10.1016/j.eti.2019.100369.
  • Tajarudin HA, Bin Othman MF, Bin Serri NAB, et al. Biological treatment technology for landfill leachate. In Waste management: concepts, methodologies, tools, and applications. Pennsylvania (PA): IGI Global. 2020. p. 775–806.
  • Jain R, Garg V, Yadav D. In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Biodegradation. 2014;25:437–446. doi: 10.1007/s10532-013-9672-z.
  • Schröder P, Sauvêtre A, Gnädinger F, et al. Discussion paper: sustainable increase of crop production through improved technical strategies, breeding and adapted management–a European perspective. Sci Total Environ. 2019;678:146–161. doi: 10.1016/j.scitotenv.2019.04.212.
  • Zhang H, Yuan X, Xiong T, et al. Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chem Eng J. 2020;398:125657. doi: 10.1016/j.cej.2020.125657.
  • Hussain A, Rehman F, Rafeeq H, et al. In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air–a review. Chemosphere. 2022;289:133252. doi: 10.1016/j.chemosphere.2021.133252.
  • Oliver E. Suitability of bacteria in bioremediation techniques common for petroleum-related pollutions. Asia J Appl Microbiol. 2021;8:1–18.
  • Dixit VK, Misra S, Mishra SK, et al. Rhizobacteria‐mediated bioremediation: insights and future perspectives. In: Soil bioremediation: an approach towards sustainable technology. New York: John Wiley & Sons, Inc.; 2021. p. 193–211.
  • Mishra B, Varjani S, Agrawal DC, et al. Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Environ Technol Innov. 2020;20:101063. doi: 10.1016/j.eti.2020.101063.
  • Sharma P. Role and significance of biofilm-forming microbes in phytoremediation-a review. Environ Technol Innov. 2022;25:102182. doi: 10.1016/j.eti.2021.102182.
  • Lal S, Ratna S, Said OB, et al. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov. 2018;10:243–263. doi: 10.1016/j.eti.2018.02.011.
  • Muerdter CP, Wong CK, LeFevre GH. Emerging investigator series: the role of vegetation in bioretention for stormwater treatment in the built environment: pollutant removal, hydrologic function, and ancillary benefits. Environ Sci Water Res Technol. 2018;4:592–612. doi: 10.1039/C7EW00511C.
  • Imam A, Suman SK, Kanaujia PK, et al. Biological machinery for polycyclic aromatic hydrocarbons degradation: a review. Bioresour Technol. 2022;343:126121. doi: 10.1016/j.biortech.2021.126121.
  • Correa‐García S, Pande P, Séguin A, et al. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol. 2018;11:819–832. doi: 10.1111/1751-7915.13303.
  • Ely CS, Smets BF. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: implications for rhizodegradation. Int J Phytoremediation. 2017;19:877–883. doi: 10.1080/15226514.2017.1303805.
  • He W, Megharaj M, Wu C-Y, et al. Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol. 2020;40:31–45. doi: 10.1080/07388551.2019.1675582.
  • Zubair M, Shakir M, Ali Q, et al. Rhizobacteria and phytoremediation of heavy metals. Environ Technol Rev. 2016;5:112–119. doi: 10.1080/21622515.2016.1259358.
  • Rani S, Sud D. Effect of temperature on adsorption-desorption behaviour of triazophos in Indian soils. Plant Soil Environ. 2015;61:36–42. doi: 10.17221/704/2014-PSE.
  • Sarkar B, Mukhopadhyay R, Mandal A, et al. Sorption and desorption of agro-pesticides in soils. In: Agrochemicals detection, treatment and remediation. Amsterdam: Elsevier; 2020. p. 189–205.
  • Huang Y, Xiao L, Li F, et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules. 2018;23:2313. doi: 10.3390/molecules23092313.
  • Bhambri A, Karn SK. Biotechnique for nitrogen and phosphorus removal: a possible insight. Chem Ecol. 2020;36:785–809. doi: 10.1080/02757540.2020.1777991.
  • Talan A, Tyagi RD, Drogui P. Critical review on insight into the impacts of different inhibitors and performance inhibition of anammox process with control strategies. Environ Technol Innov. 2021;23:101553. doi: 10.1016/j.eti.2021.101553.
  • Sharma M, Yadav A, Dubey KK, et al. Decentralized systems for the treatment of antimicrobial compounds released from hospital aquatic wastes. Sci Total Environ. 2022;840:156569. doi: 10.1016/j.scitotenv.2022.156569.
  • Guarino C, Zuzolo D, Marziano M, et al. Investigation and assessment for an effective approach to the reclamation of polycyclic aromatic hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Sci Rep. 2019;9:11522. doi: 10.1038/s41598-019-48005-7.
  • Wells GF, Park H, Yeung C, et al. Ammonia‐oxidizing communities in a highly aerated full‐scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ Microbiol. 2009;11:2310–2328. doi: 10.1111/j.1462-2920.2009.01958.x.
  • Wilén B-M, Liébana R, Persson F, et al. The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Appl Microbiol Biotechnol. 2018;102:5005–5020. doi: 10.1007/s00253-018-8990-9.
  • Alharbi SK, Nghiem LD, van de Merwe JP, et al. Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor: transformation products and toxicity of treated effluent. Biocatal Biotransform. 2019;37:399–408. https://doi.org/10.1080/1024242220191580268.
  • Jiang B, Li A, Cui D, et al. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Appl Microbiol Biotechnol. 2014;98:4671–4681. doi: 10.1007/s00253-013-5488-3.
  • Ali NSA, Muda K, Amin MFM, et al. Initialization, enhancement and mechanisms of aerobic granulation in wastewater treatment. Sep Purif Technol. 2021;260:118220. doi: 10.1016/j.seppur.2020.118220.
  • Haroune L, Saibi S, Bellenger J-P, et al. Evaluation of the efficiency of Trametes hirsuta for the removal of multiple pharmaceutical compounds under low concentrations relevant to the environment. Bioresour Technol. 2014;171:199–202. doi: 10.1016/j.biortech.2014.08.036.
  • Dhiman N, Chaudhary S, Singh A, et al. Sustainable degradation of pharmaceutical waste using different fungal strains: enzyme induction, kinetics and isotherm studies. Environ Technol Innov. 2022;25:102156. doi: 10.1016/j.eti.2021.102156.
  • Tiwari B, Sellamuthu B, Ouarda Y, et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol. 2017;224:1–12. doi: 10.1016/j.biortech.2016.11.042.
  • Spina F, Cecchi G, Landinez-Torres A, et al. Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosyst. 2018;152:474–488. doi: 10.1080/11263504.2018.1445130.
  • Rostam AB, Taghizadeh M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: a critical review. J Environ Chem Eng. 2020;8:104566. doi: 10.1016/j.jece.2020.104566.
  • Hairom NHH, Soon CF, Mohamed RMSR, et al. A review of nanotechnological applications to detect and control surface water pollution. Environ Technol Innov. 2021;24:102032. doi: 10.1016/j.eti.2021.102032.
  • Liu W, Song X, Huda N, et al. Comparison between aerobic and anaerobic membrane bioreactors for trace organic contaminant removal in wastewater treatment. Environ Technol Innov. 2020;17:100564. doi: 10.1016/j.eti.2019.100564.
  • Isik O, Batyrow M, Abdelrahman AM, et al. Dynamic membrane bioreactor performance for treatment of municipal wastewaters at different sludge concentrations. Environ Technol Innov. 2021;22:101452. doi: 10.1016/j.eti.2021.101452.
  • Akinpelu AA, Ali ME, Johan MR, et al. Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes: a review of the current technologies, challenges and prospects. Process Saf Environ Protect. 2019;122:68–82. doi: 10.1016/j.psep.2018.11.006.
  • Upadhyay AK, Mojumdar A, Raina V, et al. Eco‐friendly and economical method for detoxification of pesticides by microbes. In: Jamil N, Kumar P, Batool R, editors. Soil microenvironment for bioremediation and polymer production. New York: John Wiley & Sons, Inc.; 2019. p. 95–113.
  • Dhakar K, Zarecki R, Van Bommel D, et al. Strategies for enhancing in vitro degradation of linuron by Variovorax sp. strain SRS 16 under the guidance of metabolic modeling. Front Bioeng Biotechnol. 2021;9:602464. doi: 10.3389/fbioe.2021.602464.
  • Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage. 2018;210:10–22. doi: 10.1016/j.jenvman.2017.12.075.
  • Perera IC, Hemamali EH. Genetically modified organisms for bioremediation: current research and advancements. In: Suyal DC, Soni R, editors. Bioremediation of environmental pollutants. Cham: Springer; 2022. p. 163–186.
  • Seo J-S, Keum Y-S, Li QX. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates. Biodegradation. 2013;24:795–811. doi: 10.1007/s10532-013-9629-2.
  • Hanaka A, Ozimek E, Majewska M, et al. Physiological diversity of Spitsbergen soil microbial communities suggests their potential as plant growth-promoting bacteria. Int J Mol Sci. 2019;20:1207. doi: 10.3390/ijms20051207.
  • Sud D, Kumar J, Kaur P, et al. Toxicity, natural and induced degradation of chlorpyrifos. J. Chil Chem Soc. 2020;65:4807–4816. doi: 10.4067/S0717-97072020000204807.
  • Kalsi A, Celin SM, Bhanot P, et al. Microbial remediation approaches for explosive contaminated soil: critical assessment of available technologies, recent innovations and future prospects. Environ Technol Innov. 2020;18:100721. doi: 10.1016/j.eti.2020.100721.
  • Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017;6:48–60. doi: 10.1002/fes3.108.
  • Kedari AV. Pesticides: classification, hazardous effect on human health and environment. Ilkogretim Online. 2020;19:5961–5970.
  • Cuozzo SA, Sineli PE, Davila Costa J, et al. Streptomyces sp. is a powerful biotechnological tool for the biodegradation of HCH isomers: biochemical and molecular basis. Crit Rev Biotechnol. 2018;38:719–728. doi: 10.1080/07388551.2017.1398133.
  • Kumar J, Ramlal A, Mallick D, et al. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants. 2021;10:1185. doi: 10.3390/plants10061185.
  • Zheng Y, Han B, Xu X, et al. Distribution characteristics, sources, and risk assessment of organochlorine pesticides in the Fildes Peninsula and Adelaide Island. Mar Pollut Bull. 2022;185:114284. doi: 10.1016/j.marpolbul.2022.114284.
  • Lupi L, Bedmar F, Wunderlin DA, et al. Organochlorine pesticides in agricultural soils and associated biota. Environ Earth Sci. 2016;75:1–11. doi: 10.1007/s12665-015-5140-x.
  • Silva‐Barni MF, Smedes F, Fillmann G, et al. Passive sampling of pesticides and polychlorinated biphenyls along the Quequén Grande River watershed, Argentina. Environ Toxicol Chem. 2019;38:340–349. doi: 10.1002/etc.4325.
  • Sehrawat A, Phour M, Kumar R, et al. Bioremediation of pesticides: an eco-friendly approach for environment sustainability. In: Microbial rejuvenation of polluted environment. Cham: Springer; 2021. p. 23–84.
  • Zaffar H, Ahmad R, Pervez A, et al. A newly isolated Pseudomonas sp. can degrade endosulfan via hydrolytic pathway. Pestic Biochem Physiol. 2018;152:69–75. doi: 10.1016/j.pestbp.2018.09.002.
  • Kong L, Zhang Y, Zhu L, et al. Influence of isolated bacterial strains on the in situ biodegradation of endosulfan and the reduction of endosulfan-contaminated soil toxicity. Ecotoxicol Environ Saf. 2018;160:75–83. doi: 10.1016/j.ecoenv.2018.05.032.
  • Patel AB, Shaikh S, Jain KR, et al. Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol. 2020;11:562813. doi: 10.3389/fmicb.2020.562813.
  • Premnath N, Mohanrasu K, Rao RGR, et al. A crucial review on polycyclic aromatic hydrocarbons-environmental occurrence and strategies for microbial degradation. Chemosphere. 2021;280:130608. doi: 10.1016/j.chemosphere.2021.130608.
  • Häder D-P, Banaszak AT, Villafañe VE, et al. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci Total Environ. 2020;713:136586. doi: 10.1016/j.scitotenv.2020.136586.
  • Theerachat M, Guieysse D, Morel S, et al. Laccases from marine organisms and their applications in the biodegradation of toxic and environmental pollutants: a review. Appl Biochem Biotechnol. 2019;187:583–611. doi: 10.1007/s12010-018-2829-9.
  • Khalid FE, Lim ZS, Sabri S, et al. Bioremediation of diesel contaminated marine water by bacteria: a review and bibliometric analysis. JMSE. 2021;9:155. doi: 10.3390/jmse9020155.
  • Faccia PA, Pardini FM, Agnello AC, et al. Degradability of poly (ether-urethanes) and poly (ether-urethane)/acrylic hybrids by bacterial consortia of soil. Int Biodeterior Biodegradation. 2021;160:105205. doi: 10.1016/j.ibiod.2021.105205.
  • Gallego S, Vila J, Tauler M, et al. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation. 2014;25:543–556. doi: 10.1007/s10532-013-9680-z.
  • Espinosa-Ortiz EJ, Rene ER, Gerlach R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol. 2022;42:361–383. doi: 10.1080/07388551.2021.1940831.
  • Ghosal D, Ghosh S, Dutta TK, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7:1369. doi: 10.3389/fmicb.2016.01369.
  • García de Llasera MP, Olmos-Espejel JdJ, Díaz-Flores G, et al. Biodegradation of benzo (a) pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: a comparative study useful for bioremediation. Environ Sci Pollut Res Int. 2016;23:3365–3375. doi: 10.1007/s11356-015-5576-2.
  • Patel JG, Kumar JIN, Kumar RN, et al. Biodegradation capability and enzymatic variation of potentially hazardous polycyclic aromatic hydrocarbons—anthracene and pyrene by Anabaena fertilissima. Polycycl Aromat Compd. 2016;36:72–87. doi: 10.1080/10406638.2015.1039656.
  • Babu AG, Reja SI, Akhtar N, et al. Bioremediation of polycyclic aromatic hydrocarbons (PAHs): current practices and outlook. In: Microbial metabolism of xenobiotic compounds. Cham: Springer; 2019. p. 189–216.
  • Sayara T, Khayat S, Saleh J, et al. Algal–bacterial symbiosis for nutrients removal from wastewater: the application of multivariate data analysis for process monitoring and control. Environ Technol Innov. 2021;23:101548. doi: 10.1016/j.eti.2021.101548.
  • Muñoz R, Guieysse B, Mattiasson B. Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol. 2003;61:261–267. doi: 10.1007/s00253-003-1231-9.
  • Denaro R, Di Pippo F, Crisafi F. Biodegradation of hydrocarbons in marine environment. In: Water pollution and remediation: organic pollutants. Cham: Springer; 2021. p. 195–228.
  • Richardson E, Bass D, Smirnova A, et al. Phylogenetic estimation of community composition and novel eukaryotic lineages in Base Mine Lake: an oil sands tailings reclamation site in northern Alberta. J Eukaryot Microbiol. 2020;67:86–99. doi: 10.1111/jeu.12757.
  • Miles SM, Asiedu E, Balaberda A, et al. Oil sands process affected water sourced Trichoderma harzianum demonstrates capacity for mycoremediation of naphthenic acid fraction compounds. Chemosphere. 2020;258:127281. doi: 10.1016/j.chemosphere.2020.127281.
  • Miles SM, Hofstetter S, Edwards T, et al. Tolerance and cytotoxicity of naphthenic acids on microorganisms isolated from oil sands process-affected water. Sci Total Environ. 2019;695:133749. doi: 10.1016/j.scitotenv.2019.133749.
  • Balaberda A, Ulrich AC. Persulfate oxidation coupled with biodegradation by Pseudomonas fluorescens enhances naphthenic acid remediation and toxicity reduction. Microorganisms. 2021;9:1502. doi: 10.3390/microorganisms9071502.
  • Mohapatra RK, Behera SS, Patra JK, et al. Potential application of bacterial biofilm for bioremediation of toxic heavy metals and dye-contaminated environments. In: New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Amsterdam: Elsevier; 2020. p. 267–281.
  • Golby S, Ceri H, Gieg LM, et al. Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol Ecol. 2012;79:240–250. doi: 10.1111/j.1574-6941.2011.01212.x.
  • Presentato A, Cappelletti M, Sansone A, et al. Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources. Front Microbiol. 2018;9:672. doi: 10.3389/fmicb.2018.00672.
  • Demeter MA, Lemire JA, Yue G, et al. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation. Front Microbiol. 2015;6:936. doi: 10.3389/fmicb.2015.00936.
  • Li C, Li Q, Wang Z, et al. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Sci Rep. 2019;9:15291. doi: 10.1038/s41598-019-51804-7.
  • Silambarasan S, Abraham J. Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut. 2013;224:11. doi: 10.1007/s11270-012-1369-0.
  • Hamad MTMH. Biodegradation of diazinon by fungal strain Apergillus niger MK640786 using response surface methodology. Environ Technol Innov. 2020;18:100691. doi: 10.1016/j.eti.2020.100691.
  • Gao Y, Chen S, Hu M, et al. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One. 2012;7:e38137. doi: 10.1371/journal.pone.0038137.
  • Khan S, Ali SA, Ali AS. Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’ isolated from soils of plastic waste dump yard, Bhopal, India. Environ Technol. 2022;44:2300–2314.
  • Ram RM, Vaishnav A, Singh HB. Trichoderma spp.: expanding potential beyond agriculture. In: Trichoderma: agricultural applications and beyond. Cham: Springer; 2020. p. 351–367.
  • Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Sci Total Environ. 2021;778:146132. doi: 10.1016/j.scitotenv.2021.146132.
  • Mohapatra D, Rath SK, Mohapatra PK. Bioremediation of insecticides by white-rot fungi and its environmental relevance. In: Mycoremediation and environmental sustainability. Cham: Springer; 2018. p. 181–212.
  • Kheirkhah T, Hejazi P, Rahimi A. Effects of utilizing sawdust on non-ligninolytic degradation of high concentration of n-hexadecane by white-rot fungi: kinetic analysis of solid-phase bioremediation. Environ Technol Innov. 2020;19:100887. doi: 10.1016/j.eti.2020.100887.
  • Ijoma GN, Tekere M. Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds. Int. J. Environ. Sci. Technol. 2017;14:1787–1806. doi: 10.1007/s13762-017-1269-3.
  • Evans CS, Hedger JN. Degradation of plant cell wall polymers. British Mycological Society Symposium Series. 2001. p. 1–26.
  • Ossai IC, Ahmed A, Hassan A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov. 2020;17:100526. doi: 10.1016/j.eti.2019.100526.
  • Verma AK, Singh S. Phytochemical analysis and in vitro cytostatic potential of ethnopharmacological important medicinal plants. Toxicol Rep. 2020;7:443–452. doi: 10.1016/j.toxrep.2020.02.016.
  • Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6:e03170. doi: 10.1016/j.heliyon.2020.e03170.
  • Pérez-Llano Y, Soler HP, Olivano AR, et al. Laccases from extremophiles. In: Laccases in bioremediation and waste valorisation. Cham: Springer; 2020. p. 213–238.
  • Morsi R, Bilal M, Iqbal HMN, et al. Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ. 2020;714:136572. doi: 10.1016/j.scitotenv.2020.136572.
  • Yadav A, Rene ER, Mandal MK, et al. Biodegradation of cyclophosphamide and etoposide by white rot fungi and their degradation kinetics. Bioresour Technol. 2022;346:126355. doi: 10.1016/j.biortech.2021.126355.
  • Jaiswal S, Sharma B, Shukla P. Integrated approaches in microbial degradation of plastics. Environ Technol Innov. 2020;17:100567. doi: 10.1016/j.eti.2019.100567.
  • Singh AK, Bilal M, Iqbal HMN, et al. Lignin peroxidase in focus for catalytic elimination of contaminants—a critical review on recent progress and perspectives. Int J Biol Macromol. 2021;177:58–82. doi: 10.1016/j.ijbiomac.2021.02.032.
  • Köck-Schulmeyer M, Villagrasa M, de Alda ML, et al. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Environ. 2013;458-460:466–476. doi: 10.1016/j.scitotenv.2013.04.010.
  • Beggah S, van der Meer, JR. Protocol for inferring compound biodegradation at low concentrations from biomass measurements. In: Hydrocarbon and lipid microbiology protocols. Cham: Springer; 2014. p. 255–263.
  • Helbling DE, Hammes F, Egli T, et al. Kinetics and yields of pesticide biodegradation at low substrate concentrations and under conditions restricting assimilable organic carbon. Appl Environ Microbiol. 2014;80:1306–1313. doi: 10.1128/AEM.03622-13.
  • Liu L, Helbling DE, Kohler H-PE, et al. A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes. Environ Sci Technol. 2014;48:13358–13366. doi: 10.1021/es503491w.
  • Pileggi M, Pileggi SAV, Sadowsky MJ. Herbicide bioremediation: from strains to bacterial communities. Heliyon. 2020;6:e05767. doi: 10.1016/j.heliyon.2020.e05767.
  • Simonsen A, Badawi N, Anskjær GG, et al. Intermediate accumulation of metabolites results in a bottleneck for mineralisation of the herbicide metabolite 2, 6-dichlorobenzamide (BAM) by Aminobacter spp. Appl Microbiol Biotechnol. 2012;94:237–245. doi: 10.1007/s00253-011-3591-x.
  • Li D, Alidina M, Drewes JE. Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems. Appl Microbiol Biotechnol. 2014;98:5747–5756. doi: 10.1007/s00253-014-5677-8.
  • Islama NF, Patowaryb R, Sarmaa H. Biosurfactant-assisted phytoremediation for a sustainable future. In: Assisted phytoremediation. Amsterdam: Elsevier; 2021. p. 399.
  • Sharma I. Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In: Trace metals in the environment-new approaches and recent advances. London: IntechOpen; 2020.
  • Basu S, Rabara RC, Negi S, et al. Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation? Trends Biotechnol. 2018;36:499–510. doi: 10.1016/j.tibtech.2018.01.011.
  • Pandey A, Tripathi PH, Tripathi AH, et al. Omics technology to study bioremediation and respective enzymes. In: Smart bioremediation technologies. Amsterdam: Elsevier; 2019. p. 23–43.
  • Immanuel Suresh J, Janani S. Molecular tools-a future perspective approach for monitoring landfill leachates and validating bioremediation process. In: Circular economy in municipal solid waste landfilling: biomining & leachate treatment. Cham: Springer; 2022. p. 95–113.
  • Bhatt P, Gangola S, Chaudhary P, et al. Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in indigenous Bacillus spp. Bioremediat J. 2019;23:42–52. doi: 10.1080/10889868.2019.1569586.
  • Cakmakci R. The variability of the predominant culturable plant growth-promoting rhizobacterial diversity in the acidic tea rhizosphere soils in the Eastern Black Sea region. Alinteri J Agric Sci. 2019;34:175–181.
  • Riseh RS, Vazvani MG, Hajabdollahi N, et al. Bioremediation of heavy metals by Rhizobacteria. Appl Biochem Biotechnol. 2023;195:4689–4711. doi: 10.1007/s12010-022-04177-z.
  • Marques APGC, Moreira H, Franco AR, et al. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria–Effects on phytoremediation strategies. Chemosphere. 2013;92:74–83. doi: 10.1016/j.chemosphere.2013.02.055.
  • Hassen W, Neifar M, Cherif H, et al. Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Front Microbiol. 2018;9:34. doi: 10.3389/fmicb.2018.00034.
  • Gomaa EZ, El-Mahdy OM. Improvement of chitinase production by Bacillus thuringiensis NM101-19 for antifungal biocontrol through physical mutation. Microbiology. 2018;87:472–485. doi: 10.1134/S0026261718040094.
  • Jiang Z, Zhang X, Wang Z, et al. Enhanced biodegradation of atrazine by Arthrobacter sp. DNS10 during co-culture with a phosphorus solubilizing bacteria: Enterobacter sp. P1. Ecotoxicol Environ Saf. 2019;172:159–166. doi: 10.1016/j.ecoenv.2019.01.070.
  • Haque MM, Hossen MN, Rahman A, et al. Decolorization, degradation and detoxification of mutagenic dye methyl orange by novel biofilm producing plant growth-promoting rhizobacteria. Chemosphere. 2023;346:140568. doi: 10.1016/j.chemosphere.2023.140568.
  • Muratova A, Pozdnyakova N, Makarov O, et al. Degradation of phenanthrene by the rhizobacterium Ensifer meliloti. Biodegradation. 2014;25:787–795. doi: 10.1007/s10532-014-9699-9.
  • Guarino F, Miranda A, Castiglione S, et al. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere. 2020;251:126310. doi: 10.1016/j.chemosphere.2020.126310.
  • Uhlik O, Jecna K, Mackova M, et al. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol. 2009;75:6471–6477. doi: 10.1128/AEM.00466-09.
  • Jia Y, Wang J, Ren C, et al. Identification and characterization of a meta-cleavage product hydrolase involved in biphenyl degradation from Arthrobacter sp. YC-RL1. Appl Microbiol Biotechnol. 2019;103:6825–6836. doi: 10.1007/s00253-019-09956-z.
  • Purwanti IF, Abdullah SRS, Basri H, et al. Identification of diesel-tolerant rhizobacteria of Scirpus mucronatus. Afr J Microbiol Res. 2012;6:2395–2402.
  • Ravintheran SK, Sivaprakasam S, Loke S, et al. Complete genome sequence of Sphingomonas paucimobilis AIMST S2, a xenobiotic-degrading bacterium. Sci Data. 2019;6:280. doi: 10.1038/s41597-019-0289-x.
  • Sbani NHAL, Abdullah SRS, Idris M, et al. PAH-degrading rhizobacteria of Lepironia articulata for phytoremediation enhancement. J Water Process Eng. 2021;39:101688. doi: 10.1016/j.jwpe.2020.101688.
  • Janczak K, Dąbrowska GB, Raszkowska-Kaczor A, et al. Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. Int Biodeterior Biodegradation. 2020;155:105087. doi: 10.1016/j.ibiod.2020.105087.
  • Chang X, Wang Y, Sun J, et al. Mitigation of tobacco bacteria wilt with microbial degradation of phenolic allelochemicals. Sci Rep. 2022;12:20716. doi: 10.1038/s41598-022-25142-0.
  • Dell’Amico E, Cavalca L, Andreoni V. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol. 2005;52:153–162. doi: 10.1016/j.femsec.2004.11.005.
  • Yang L, Chen Z, Zhang Y, et al. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. Bioresour Bioprocess. 2023;10:17. doi: 10.1186/s40643-023-00638-3.
  • Wu F, Ding Y, Nie Y, et al. Plant metabolomics integrated with transcriptomics and rhizospheric bacterial community indicates the mitigation effects of Klebsiella oxytoca P620 on p-hydroxybenzoic acid stress in cucumber. J Hazard Mater. 2021;415:125756. doi: 10.1016/j.jhazmat.2021.125756.
  • Zhu B, Li Y, Rensing C, et al. Improvement of phenolic acid autotoxicity in tea plantations by Pseudomonas fluorescens ZL22. J Hazard Mater. 2023;458:131957. doi: 10.1016/j.jhazmat.2023.131957.
  • Mondal S, Mukherjee SK, Hossain ST. Exploration of plant growth promoting rhizobacteria (PGPRs) for heavy metal bioremediation and environmental sustainability: recent advances and future prospects. In: Shah MP, editor. Modern approaches in waste bioremediation: environmental microbiology. Cham: Springer; 2023. p. 29–55.
  • Ma Y, Rajkumar M, Rocha I, et al. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci. 2014;5:757. doi: 10.3389/fpls.2014.00757.
  • Saeed Q, Xiukang W, Haider FU, et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int J Mol Sci. 2021;22:10529. doi: 10.3390/ijms221910529.
  • Li J, Zheng B, Hu R, et al. Pseudomonas species isolated from tobacco seed promote root growth and reduce lead contents in Nicotiana tobacum K326. Can J Microbiol. 2019;65:214–223. doi: 10.1139/cjm-2018-0434.
  • Rajkumari J, Choudhury Y, Bhattacharjee K, et al. Rhizodegradation of pyrene by a non-pathogenic Klebsiella pneumoniae isolate applied with Tagetes erecta L. and changes in the rhizobacterial community. Front Microbiol. 2021;12:593023. doi: 10.3389/fmicb.2021.593023.
  • Chen S, Zang M, Li L, et al. Efficient biodesulfurization of diesel oil by Gordonia sp. SC-10 with highly hydrophobic cell surfaces. Biochem Eng J. 2021;174:108094. doi: 10.1016/j.bej.2021.108094.
  • Sowani H, Kulkarni M, Zinjarde S. Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: cellular responses and degradation perspectives. Environ Pollut. 2020;263:114538. doi: 10.1016/j.envpol.2020.114538.
  • Wongchawalit J, Noitanom T, Panich-Pat T. Potential of Rhizobacteria for bioremediation of lead accumulation in rice plants. Pol J Environ Stud. 2020;29:3873–3880. doi: 10.15244/pjoes/115978.
  • Arora PK. Bacilli-mediated degradation of xenobiotic compounds and heavy metals. Front Bioeng Biotechnol. 2020;8:570307. doi: 10.3389/fbioe.2020.570307.
  • Boer C, Obici L, Souza C, et al. Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Amsterdam: Elsevier.
  • Vyas B, Christian V, Shrivastava R, et al. Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Elsevier. 2005;36:426–431.
  • Ghosh P, Ghosh U. Bioconversion of agro-waste to value-added product through solid-state fermentation by a potent fungal strain Aspergillus flavus PUF5. In: Ghosh S, editor. Utilization and management of bioresources. Singapore: Elsevier; 2018. p. 291–299.
  • Purnomo AS, Asranudin A, Prasetyoko D, et al. The biotransformation and biodecolorization of methylene blue by xenobiotic bacterium Ralstonia pickettii. Indones J Chem. 2021;21:1418–1430. doi: 10.22146/ijc.65806.
  • Torres-Farradá G, Manzano León AM, Rineau F, et al. Diversity of ligninolytic enzymes and their genes in strains of the genus Ganoderma: applicable for biodegradation of xenobiotic compounds? Front Microbiol. 2017;8:898. doi: 10.3389/fmicb.2017.00898.
  • Parte SG, Kharat AS. Aerobic degradation of clothianidin to 2-chloro-methyl thiazole and methyl 3-(thiazole-yl) methyl guanidine produced by Pseudomonas stutzeri Smk. J Environ Public Health. 2019;2019:4807913. doi: 10.1155/2019/4807913.
  • Kumar M, Yadav AN, Saxena R, et al. Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol. 2021;31:101883. doi: 10.1016/j.bcab.2020.101883.
  • Gautam P, Kumar Dubey S. Biodegradation of imidacloprid: molecular and kinetic analysis. Bioresour Technol. 2022;350:126915. doi: 10.1016/j.biortech.2022.126915.
  • Shi Z, Dong W, Xin F, et al. Characteristics and metabolic pathway of acetamiprid biodegradation by Fusarium sp. strain CS-3 isolated from soil. Biodegradation. 2018;29:593–603. doi: 10.1007/s10532-018-9855-8.
  • Zhao YX, Jiang HY, Chen X, et al. Neonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite. Int Biodeterior Biodegradation. 2019;145:104806. doi: 10.1016/j.ibiod.2019.104806.
  • Rana S, Jindal V, Mandal K, et al. Thiamethoxam degradation by Pseudomonas and Bacillus strains isolated from agricultural soils. Environ Monit Assess. 2015;187:300. doi: 10.1007/s10661-015-4532-4.
  • Kumar S, Kaushik G, Dar MA, et al. Microbial degradation of organophosphate pesticides: a review. Pedosphere. 2018;28:190–208. doi: 10.1016/S1002-0160(18)60017-7.
  • Mir ZA, Ali S, Tyagi A, et al. Degradation and conversion of endosulfan by newly isolated Pseudomonas mendocina ZAM1 strain. 3 Biotech. 2017;7:211. doi: 10.1007/s13205-017-0823-5.
  • Singh S, Kumar V, Singla S, et al. Kinetic study of the biodegradation of acephate by indigenous soil bacterial isolates in the presence of humic acid and metal ions. Biomolecules. 2020;10:433. doi: 10.3390/biom10030433.
  • Li F, Di L, Liu Y, et al. Carbaryl biodegradation by Xylaria sp. BNL1 and its metabolic pathway. Ecotoxicol Environ Saf. 2019;167:331–337. doi: 10.1016/j.ecoenv.2018.10.051.
  • Guo L, Fang WW, Guo LL, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by actinomycetes Streptomyces canus CGMCC 13662 and characterization of the novel nitrile hydratase involved. J Agric Food Chem. 2019;67:5922–5931. doi: 10.1021/acs.jafc.8b06513.
  • Parte SG, Mohekar AD, Kharat AS. Microbial degradation of pesticide: a review. Afr J Microbiol Res. 2017;11:992–1012.
  • Cheng Y, Zang H, Wang H, et al. Global transcriptomic analysis of Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl. Ecotoxicol Environ Saf. 2018;157:111–120. doi: 10.1016/j.ecoenv.2018.03.074.
  • Ahmad KS, Sajid A, Gul MM, et al. Effective remediation strategy for xenobiotic zoxamide by pure bacterial strains, Escherichia coli, Streptococcus pyogenes, and Streptococcus pneumoniae. Biomed Res Int. 2020;2020:5352427. doi: 10.1155/2020/5352427.
  • Elgueta S, Santos C, Lima N, et al. Immobilization of the white-rot fungus Anthracophyllum discolor to degrade the herbicide atrazine. AMB Express. 2016;6:104. doi: 10.1186/s13568-016-0275-z.
  • Pandya DK, Kumar MA. Chemo-metric engineering designs for deciphering the biodegradation of polycyclic aromatic hydrocarbons. J Hazard Mater. 2021;411:125154. doi: 10.1016/j.jhazmat.2021.125154.
  • Varghese EM, Aswani P, Jisha MS. Strategies in microbial degradation enhancement of chlorpyrifos – a review based on the primary approaches in soil bioremediation. Biocatal Biotransform. 2021;40:83–94. doi: 10.1080/1024242220211939693.
  • Stoyanova K, Gerginova M, Dincheva I, et al. Biodegradation of naphthalene and anthracene by Aspergillus glaucus strain isolated from antarctic soil. Processes. 2022;10:873. doi: 10.3390/pr10050873.
  • Abidin ANZ, Talib SA, Alias S, et al. Occurrence and bioremediation of anthracene in the environment. J. Fundam and Appl Sci. 2018;9:214. doi: 10.4314/jfas.v9i6s.17.
  • Delegan YA, Valentovich LN, Shafieva SM, et al. Characterization and genomic analysis of highly efficient thermotolerant oil-degrading bacterium Gordonia sp. 1D. Folia Microbiol. 2019;64:41–48. doi: 10.1007/s12223-018-0623-2.
  • Liu X x, Hu X, Cao Y, et al. Biodegradation of phenanthrene and heavy metal removal by acid-tolerant Burkholderia fungorum FM-2. Front Microbiol. 2019;10:408. doi: 10.3389/fmicb.2019.00408.
  • Ceci A, Pinzari F, Russo F, et al. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Appl Microbiol Biotechnol. 2018;103:53–68. doi: 10.1007/s00253-018-9451-1.
  • Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011;2011:941810. doi: 10.4061/2011/941810.
  • Wang X, Chen M, Xiao J, et al. Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3. PLoS One. 2015;10:e0132881. doi: 10.1371/journal.pone.0132881.
  • Miglani R, Parveen N, Kumar A, et al. Degradation of xenobiotic pollutants: an environmentally sustainable approach. Metabolites. 2022;12:818. doi: 10.3390/metabo12090818.
  • Kulig JK, Spandolf C, Hyde R, et al. A P450 fusion library of heme domains from Rhodococcus jostii RHA1 and its evaluation for the biotransformation of drug molecules. Bioorg Med Chem. 2015;23:5603–5609. doi: 10.1016/j.bmc.2015.07.025.
  • Datta S, Singh S, Kumar V, et al. Endophytic bacteria in xenobiotic degradation. In: Microbial endophytes: prospects for sustainable agriculture. Amsterdam: Elsevier; 2020. p. 125–156.
  • Sabullah MK, Rahman MF, Ahmad SA, et al. Isolation and characterization of a molybdenum-reducing and glyphosate-degrading Klebsiella oxytoca strain saw-5 in soils from Sarawak. Agrivita J Agric Sci. 2016;38:1–13.
  • Chefetz B, Marom R, Salton O, et al. Transformation of lamotrigine by white-rot fungus Pleurotus ostreatus. Environ Pollut. 2019;250:546–553. doi: 10.1016/j.envpol.2019.04.057.
  • Budeli P, Ekwanzala MD, Unuofin JO, et al. Endocrine disruptive estrogens in wastewater: revisiting bacterial degradation and zymoremediation. Environ Technol Innov. 2021;21:101248.
  • Mishra S, Lin Z, Pang S, et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol. 2021;9:632059. doi: 10.3389/fbioe.2021.632059.
  • Singh M, Jayant K, Bhutani S, et al. Bioremediation-a sustainable tool for diverse contaminants management: current scenario and future aspects. J App Biol Biotech. 2022;10:48–63. doi: 10.7324/JABB.2022.10s205.
  • Arora PK, Srivastava A, Garg SK, et al. Recent advances in degradation of chloronitrophenols. Bioresour Technol. 2018;250:902–909. doi: 10.1016/j.biortech.2017.12.007.
  • Skariyachan S, Patil AA, Shankar A, et al. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab. 2018;149:52–68. doi: 10.1016/j.polymdegradstab.2018.01.018.
  • Osman M, Satti SM, Luqman A, et al. Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. J Polym Environ. 2018;26:301–310. doi: 10.1007/s10924-017-0954-0.
  • Satchanska G, Topalova Y, Dimkov R, et al. Phenol degradation by environmental bacteria entrapped in cryogels. Biotechnol Biotechnol Equip. 2015;29:514–521. http://mc.manuscriptcentral.com/tbeq.
  • Gu Q, Wu Q, Zhang J, et al. Isolation and transcriptome analysis of phenol-degrading bacterium from carbon-sand filters in a full-scale drinking water treatment plant. Front Microbiol. 2018;9:2162. doi: 10.3389/fmicb.2018.02162.
  • Hegedüs B, Kós PB, Bende G, et al. Starvation- and xenobiotic-related transcriptomic responses of the sulfanilic acid-degrading bacterium, Novosphingobium resinovorum SA1. Appl Microbiol Biotechnol. 2018;102:305–318. doi: 10.1007/s00253-017-8553-5.
  • Perruchon C, Vasileiadis S, Rousidou C, et al. Metabolic pathway and cell adaptation mechanisms revealed through genomic, proteomic and transcription analysis of a Sphingomonas haloaromaticamans strain degrading ortho-phenylphenol. Sci Rep. 2017;7:6449. 2017;7:doi: 10.1038/s41598-017-06727-6.
  • Arora J, Ranjan A, Chauhan A, et al. Surfactant pollution, an emerging threat to ecosystem: approaches for effective bacterial degradation. J Appl Microbiol. 2022;133:1229–1244. doi: 10.1111/jam.15631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.