55
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens

ORCID Icon, & ORCID Icon
Received 18 Jan 2023, Accepted 29 Jan 2024, Published online: 06 May 2024

References

  • WHO. Lack of new antibiotics threatens global efforts to contain drug-resistant infections. 2020. [cited 2020 Dec 11]. Available from https://www.who.int/news/item/17-01-2020-lack-of-new antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections.
  • World Health Organization. Antimicrobial resistance. 2021. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
  • Tiwari P, Khare T, Shriram V, et al. Exploring synthetic biology strategies for producing potent antimicrobial phytochemicals. Biotechnol Adv. 2021;48:107729. doi: 10.1016/j.biotechadv.2021.107729.
  • Tiwari P, Srivastava Y, Bae H. Trends of pharmaceutical design of endophytes as anti-infective. Curr Top Med Chem. 2021;21:1572–1586. doi: 10.2174/1568026621666210524093234.
  • Tiwari P, Srivastava Y, Kumar V. Antimicrobial peptides as effective agents against drug-resistant pathogens. In: Kumar V, Shriram V, Paul A, Thakur M, editors. Antimicrobial resistance. Singapore: Springer; 2022. p. 289–322.
  • World Health Organization. Antimicrobial Resistance: global Report on Surveillance 2014. Geneva: WHO; 2014.
  • European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019.
  • GBD. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2019;2022:s0140-6736(22)02185–02187. Antimicrobial Resistance Collaborators
  • Hernando-Amado S, Coque TM, Baquero F, et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol. 2019;4:1432–1442. doi: 10.1038/s41564-019-0503-9.
  • Sharma A, Mistry V, Kumar V, et al. Production of effective phyto-antimicrobials via metabolic engineering strategies. Curr Top Med Chem. 2022;22:1068–1092. doi: 10.2174/1568026622666220310104645.
  • Wernli D, Jørgensen PS, Morel CM, et al. Mapping global policy discourse on antimicrobial resistance. BMJ Glob Health. 2017;2:e000378. doi: 10.1136/bmjgh-2017-000378.
  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122–S129. doi: 10.1038/nm1145.
  • Yu Z, Tang J, Khare T, et al. The alarming antimicrobial resistance in ESKAPEE pathogens: can essential oils come to the rescue? Fitoterapia. 2020;140:104433. doi: 10.1016/j.fitote.2019.104433.
  • WHO. Critically important antimicrobials for human medicine. 2017. doi: 10.1017/CBO9781107415324.004.
  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0.
  • About Antimicrobial Resistance. 2018. www.cdc.gov.
  • Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. US Department of Health and Human Services, Centres for Disease Control and Prevention. 2019. [accessed 2020 Nov 21]. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
  • Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–3910. doi: 10.2147/IDR.S234610.
  • Pulingam T, Parumasivam T, Mohd Gazzali A, et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022;170:106103. doi: 10.1016/j.ejps.2021.106103.
  • O’Neill J. Review on antimicrobial resistance. Antimicrobial Resistance: tackling a crisis for the health and wealth of nations. The review on antimicrobial resistance chaired by Jim O'Neill (2014). Available from: https://wellcomecollection.org/works/rdpck35v.
  • World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report: 2021. 2021.
  • Diwan V, Tamhankar AJ, Khandal RK, et al. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health. 2010;10:414. doi: 10.1186/1471-2458-10-414.
  • Hartmann A, Golet EM, Gartiser S, et al. Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Arch Environ Contam Toxicol. 1999;36:115–119. doi: 10.1007/s002449900449.
  • Hoffman SJ, Outterson K, Røttingen JA, et al. An international legal framework to address antimicrobial resistance. Bull World Health Organ. 2015;93:66–66. doi: 10.2471/BLT.15.152710.
  • COVID-19: U.S. impact on antimicrobial resistance, special report 2022. CDC; 2022. doi: 10.15620/cdc:117915.
  • Ko KKK, Chng KR, Nagarajan N. Metagenomics-enabled microbial surveillance. Nat Microbiol. 2022;7:486–496. doi: 10.1038/s41564-022-01089-w.
  • WHO recommended surveillance standards. 2nd ed. Geneva: WHO; 1999.
  • (HTM 04-01) safe water in healthcare premises. London: NHS England; 2017.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x.
  • The Pew Charitable Trusts. Tracking the global pipeline of antibiotics in development, April 2020. The Pew Charitable Trusts. 2020. https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2020/04/tracking the-global-pipeline-of-antibiotics-in-development.
  • Beyer P, Paulin S. The antibacterial research and development pipeline need urgent solutions. ACS Infect Dis. 2020;6:1289–1291. doi: 10.1021/acsinfecdis.0c00044.
  • World Health Organization (WHO). Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. 2019. https://apps.who.int/iris/bitstream/handle/10665/330420/9789240000193-eng.pdf.
  • Stincon P, Brandelli A. Marine bacteria as a source of antimicrobial compounds. Crit Rev Biotechnol. 2020;40:306–319. doi: 10.1080/07388551.2019.1710457.
  • Crits-Christoph A, Diamond S, Butterfield CN, et al. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature. 2018;558:440–444. doi: 10.1038/s41586-018-0207-y.
  • Liu G, Catacutan DB, Rathod K, et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat Chem Biol. 2023;19:1342–1350. doi: 10.1038/s41589-023-01349-8.
  • Singh SB, Phillips JW, Wang J. Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Curr Opin Drug Discov Devel. 2007;10:160–166.
  • La Fuente-Núñez C. d, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb). 2017;9:109–122. doi: 10.1039/c6ib00140h.
  • WHO global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2016. [cited 2021 May 1]. Available from https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1.
  • Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26:2671. doi: 10.3390/molecules26092671.
  • Strobel G. The emergence of endophytic microbes and their biological promise. JoF. 2018;4:57. doi: 10.3390/jof4020057.
  • Tiwari P, Srivastava Y, Bajpai M, et al. Bioactive metabolites from natural sources: prospects and significance in drug discovery and research. Bioingene PSJ. 2021;1:1–14.
  • Tiwari P, Bajpai M, Sharma A. Antimicrobials from medicinal plants: key examples, success stories and prospects in tackling antibiotic resistance. LDDD. 2023;20:420–438. doi: 10.2174/1570180819666220620102427.
  • Tiwari P, Hanhong B. Endophytic Fungi: key Insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 2022;10:360. doi: 10.3390/microorganisms10020360.
  • Tiwari P, Kang S, Bae H. Plant-endophyte associations: rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res. 2023;266:127241. doi: 10.1016/j.micres.2022.127241.
  • Tiwari P, Chen J-T, Muhammed Adil, et al. Major bioactive metabolites and antimicrobial potential of Orchidaceae Fungal endophytes. In: Tiwari P, Chen J-T, editors. Advances in orchid biology, biotechnology, and omics. Vol. 1. Cham: Springer; 2023.
  • Ngashangva N, Mukherjee P, Sharma KC, et al. Analysis of Antimicrobial peptide metabolome of bacterial endophyte isolated from traditionally used medicinal plant Millettia pachycarpa Benth. Front Microbiol. 2021;12:656896. doi: 10.3389/fmicb.2021.656896.
  • Maciá-Vicente JG, Shi YN, Cheikh-Ali Z, et al. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environ Microbiol. 2018;20:1253–1270. doi: 10.1111/1462-2920.14072.
  • Tiwari P. 2022c. Endophytes: types, Potential Uses, and Mechanisms of Action. Hauppauge (NY): Nova Publishers.
  • Bose SK, Das J, Bajpai M, et al. Endophytic Actinomycetes: overview, distribution, and multi-faceted applications. In: Tiwari P, editor. Endophytes: types, potential uses, and mechanisms of action. Hauppauge (NY): Nova Publishers; 2022.
  • Park SY, Yang D, Ha SH, et al. Metabolic engineering of microorganisms for the production of natural compounds. Adv Biosys. 2017;1700190:1–41.
  • Souli M, Galani I, Giamarellou H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative Bacilli in Europe. Euro Surveill. 2008;13:19045.
  • Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century-a clinical super-challenge. N Engl J Med. 2009;360:439–443. doi: 10.1056/NEJMp0804651.
  • Krause KM, Serio AW, Kane TR, et al. Aminoglycosides: an overview. Cold Spring Harb Perspect Med. 2016;6:a027029. doi: 10.1101/cshperspect.a027029.
  • Pryka RD, Rodvold KA, Rotschafer JC. Teicoplanin: an investigational glycopeptide antibiotic. Clin Pharm. 1988;7:647–658.
  • Beauduy CE, Winsto LG. Beta-lactam and other cell wall- & membrane-active antibiotics. In: katzung, BG, editor. Basic & clinical pharmacology, 14th ed. San Francisco (CA): A Lange Medical Book; McGraw-Hill Education; 2018. p. 795–814.
  • Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151–1161. doi: 10.1128/AAC.45.4.1151-1161.2001.
  • Scaglione F, Rossoni G. Comparative anti-inflammatory effects of roxithromycin, azithromycin, and clarithromycin. J Antimicrob Chemother. 1998;41(Suppl B):47–50. doi: 10.1093/jac/41.suppl_2.47.
  • Eliopoulos GM, Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis. 2001;32:1608–1614. doi: 10.1086/320532.
  • Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol. 2017;133:152–163. doi: 10.1016/j.bcp.2016.09.025.
  • Das S, Li J, Riccobene T, et al. Dose selection and validation for ceftazidime-avibactam in adults with complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia. Antimicrob Agents Chemother. 2019;63:e02187–18. doi: 10.1128/AAC.02187-18.
  • Shields RK, Potoski BA, Haidar G, et al. Clinical outcomes, drug toxicity, and the emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis. 2016;63:1615–1618. doi: 10.1093/cid/ciw636.
  • US Food and Drug Administration. Drug Approval Package: ZEMDRI (plazomicin). South San Francisco (CA): Achaogen, Inc.; 2018. [cited 2020 Jun 8]. Available from https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210303Orig1s000Approv.pdf.
  • Eljaaly K, Alharbi A, Alshehri S, et al. Plazomicin: a novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs. 2019;79:243–269. doi: 10.1007/s40265-019-1054-3.
  • Bonomo RA. Cefiderocol: a novel siderophore cephalosporin defeating carbapenem-resistant pathogens. Clin Infect Dis. 2019;69:S519–S520. doi: 10.1093/cid/ciz823.
  • Donadio S, Maffioli S, Monciardini P, et al. Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot. 2010;63:423–430. doi: 10.1038/ja.2010.62.
  • Karlowsky JA, Laing NM, Baudry T, et al. In vitro activity of API-1252, a novel FabI inhibitor, against clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2007;51:1580–1581. doi: 10.1128/AAC.01254-06.
  • Schneider T, Gries K, Josten M, et al. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother. 2009;53:1610–1618. doi: 10.1128/AAC.01040-08.
  • Stachyra T, Levasseur P, Péchereau MC, et al. In vitro activity of the {beta}-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother. 2009;64:326–329. doi: 10.1093/jac/dkp197.
  • World Health Organization. 2016.[AQ]
  • Gonçalves ASC, Leitão MM, Simões M, et al. The action of phytochemicals in biofilm control. Nat Prod Rep. 2023;40:595–627. doi: 10.1039/d2np00053a.
  • Prasch S, Bucar F. Plant derived inhibitors of bacterial efflux pumps: an update. Phytochem Rev. 2015;14:961–974. doi: 10.1007/s11101-015-9436-y.
  • Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8:48. doi: 10.1186/s40779-021-00343-2.
  • Holaskova E, Galuszka P, Frebort I, et al. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv. 2015;33:1005–1023. doi: 10.1016/j.biotechadv.2015.03.007.
  • Mahlapuu M, Björn C, Jonas Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol. 2020;40:978–992. doi: 10.1080/07388551.2020.1796576.
  • Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32:143–171. doi: 10.3109/07388551.2011.594423.
  • Hardoim PR, Overbeek LS, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320. doi: 10.1128/MMBR.00050-14.
  • Tiwari P, Bae H. Trends in harnessing plant Endophytic microbiome for heavy metal mitigation in plants: a perspective. Plants. 2023c;12:1515. doi: 10.3390/plants12071515.
  • Tiwari P, Bae H. Horizontal gene transfer and endophytes: an implication for the acquisition of novel traits. Plants. 2020;9:305. doi: 10.3390/plants9030305.
  • Tiwari P, Mohd A, Bae H. Endophyte-mediated bioremediation- an efficient biological strategy in ecological subsistence and agriculture. In: Endophytic and arbuscular mycorrhizal fungi and their role in sustainable agriculture. Vol. 1. Hauppauge (NY): Nova Publishers USA; 2023. p. 200.
  • Yu H, Zhang L, Li L, et al. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res. 2010;165:437–449. doi: 10.1016/j.micres.2009.11.009.
  • Caruso DJ, Palombo EA, Moulton SE, et al. Exploring the promise of Endophytic fungi: a review of novel antimicrobial compounds. Microorganisms. 2022;10:1990. doi: 10.3390/microorganisms10101990.
  • Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. Plant Biotechnol Rep. 2023;17:427–457. 2023 doi: 10.1007/s11816-023-00824-x.
  • Joo H-S, Deyrup ST, Shim SH. Endophyte-produced antimicrobials: a review of potential lead compounds with a focus on quorum-sensing disruptors. Phytochem Rev. 2020;20:543–568. doi: 10.1007/s11101-020-09711-7.
  • Zhao J, Zhou L, Wang J, et al. Endophytic fungi for producing bioactive compounds originally from their host plants. In: Current research, technology and education topics in applied microbiology and microbial biotechnology. Vol. 1, 1st ed. Badajoz (Spain): Formatex Research Center, 2010. p. 567–576.
  • Zhao M, Yuan L-Y, Guo D-L, et al. Bioactive halogenated dihydroisocoumarins produced by the endophytic fungus Lachnum palmae isolated from Przewalskia tangutica. Phytochemistry. 2018;148:97–103. 2018 doi: 10.1016/j.phytochem.2018.01.018.
  • Deshmukh SK, Gupta MK, Prakash V, et al. Endophytic fungi: a source of potential antifungal compounds. JoF. 2018;4:77. doi: 10.3390/jof4030077.
  • He J, Li Z-H, Ai H-L, et al. Anti-bacterial chromones from cultures of the endophytic fungus Bipolaris eleusines. Nat Prod Res. 2019;33:3515–3520. doi: 10.1080/14786419.2018.1486313.
  • Rai N, Kumari Keshri P, Verma A, et al. Plant-associated fungal endophytes as a source of natural bioactive compounds. Mycology. 2021;12:139–159. doi: 10.1080/21501203.2020.1870579.
  • Jin Z, Li D, Liu T, et al. Cultural endophytic fungi associated with Dendrobium officinale: identifcation, diversity estimation, and their antimicrobial potential. Curr Sci. 2017;112:1690–1697. doi: 10.18520/cs/v112/i08/1690-1697.
  • Strobel GA, Miller RV, Martinez-Miller C, et al. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology. 1999b;145(Pt 8):1919–1926. doi: 10.1099/13500872-145-8-1919.
  • Zou W, Meng J, Lu H, et al. Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod. 2000;63:1529–1530. doi: 10.1021/np000204t.
  • Zhang G, Sun S, Zhu T, et al. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry. 2011;72:1436–1442. doi: 10.1016/j.phytochem.2011.04.014.
  • Castillo UF, Strobel GA, Ford EJ, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 3052, endophytic on Kennedia nigriscansa. Microbiology. 2002;148:2675–2685. doi: 10.1099/00221287-148-9-2675.
  • Xing YM, Chen J, Cui JL, et al. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam. Curr Microbiol. 2010;62:1218–1224. doi: 10.1007/s00284-010-9848-2.
  • Zhang S-P, Huang R, Li F-F, et al. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia. 2016;112:85–89. doi: 10.1016/j.fitote.2016.05.013.
  • Sunkar S, Nachiyar CV. Isolation and characterization of antimicrobial compounds produced by endophytic fungus Aspergillus sp. isolated from Writhtia tintorica. J Pharm Res. 2011;4:1136–1137.
  • Sudharshana T, Venkatesh H, Nayana B, et al. Anti-microbial and anti-mycotoxigenic activities of endophytic Alternaria alternata isolated from Catharanthus roseus (L.) G. Don.: molecular characterization and bioactive compound isolation. Mycology 2019. 2019;10:40–48. doi: 10.1080/21501203.2018.1541933.
  • Atri N, Rai N, Singh AK, et al. Screening for endophytic fungi with antibacterial efficiency from Moringa oleifera and Withania somnifera. JSR. 2020;64:127–133. doi: 10.37398/JSR.2020.640118.
  • Liu F, Cai X-L, Yang H, et al. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med. 2010;76:185–189. doi: 10.1055/s-0029-1186047.
  • Santos IP, Silva LCN, Silva MV, et al. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol. 2015;6:350. doi: 10.3389/fmicb.2015.00350.
  • Kumar S, Aharwal RP, Shukla H, et al. Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharm Sci. 2014;3:1179–1197.
  • Arivudainambi UE, Anand TD, Shanmugaiah V, et al. Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol. 2011;61:340–345. doi: 10.1111/j.1574-695X.2011.00780.x.
  • Ma YM, Liang XA, Zhang HC, et al. Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. J Agric Food Chem. 2016;64:3789–3793. 2016 doi: 10.1021/acs.jafc.6b01051.
  • Wu H, Yang H, You X, et al. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int J Mol Sci. 2012;13:16255–16266. doi: 10.3390/ijms131216255.
  • Saxena S, Meshram V, Kapoor N. Muscodor tigerii sp. nov.-volatile antibiotic producing endophytic fungus from the North-eastern Himalayas. Ann Microbiol. 2015;65:47–57. doi: 10.1007/s13213-014-0834-y.
  • Zaher AM, Makboul MA, Moharram AM, et al. A new Enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibiot. 2015;68:197–200. doi: 10.1038/ja.2014.129.
  • Ibrahim D, Lee CC, Yenn TW, et al. Effect of the extract of endophytic fungus, Nigrospora sphaerica CL-OP 30, against the growth of methicillin- resistant Staphylococcus aureus (MRSA) and Klebsiella pneumonia cells. Trop J Pharm Res. 2015;14:2091–2097. doi: 10.4314/tjpr.v14i11.20.
  • Bin G, Yanping C, Hong Z, et al. Isolation, characterization, and anti-multiple drug-resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum. Trop J Pharm Res. 2014;13:593–599. doi: 10.4314/tjpr.v13i4.16.
  • Ukwatta KM, Lawrence JL, Wijayarathna CD. The study of antimicrobial, anti-cancer, anti-inflammatory and α-glucosidase inhibitory activities of Nigronapthaphenyl, isolated from an extract of Nigrospora sphaerica. Mycology. 2019;10:222–228. doi: 10.1080/21501203.2019.1620892.
  • Jasim B, Sreelakshmi S, Mathew J, et al. Identification of endophytic Bacillus mojavensis with highly specialized broad-spectrum antibacterial activity. 3 Biotech. 2016;6:187. doi: 10.1007/s13205-016-0508-5.
  • Tejesvi MV, Segura DR, Schnorr KM, et al. An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fungal Diversity. 2013;60:153–159. doi: 10.1007/s13225-013-0227-8.
  • Sharaf MH, Abdelaziz AM, Kalaba MH, et al. Antimicrobial, antioxidant, cytotoxic activities and phytochemical analysis of fungal endophytes isolated from Ocimum basilicum. Appl Biochem Biotechnol. 2022;194:1271–1289. doi: 10.1007/s12010-021-03702-w.
  • Nisa H, Kamili AN, Nawchoo IA, et al. Fungal endophytes as prolific source phytochemicals and other bioactive natural products: a review. Microb Pathog. 2015;82:50–59. doi: 10.1016/j.micpath.2015.04.001.
  • Bezerra JD, Nascimento CC, Barbosa RDN, et al. Endophytic fungi from medicinal plant Bauhinia forficata: diversity and biotechnological potential. Braz J Microbiol. 2015;46:49–57. 2015 doi: 10.1590/S1517-838246120130657.
  • El-Moslamy SH. Bioprocessing strategies for the cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent. Sci Rep. 2018;8:3820. doi: 10.1038/s41598-018-22134-x.
  • Zin WWM, Buttachon S, Dethoup T, et al. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry. 2017;141:86–97. doi: 10.1016/j.phytochem.2017.05.015.
  • Wang Q-X, Li S-F, Zhao F, et al. Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia. 2011;82:777–781. doi: 10.1016/j.fitote.2011.04.002.
  • Dissanayake RK, Ratnaweera PB, Williams DE, et al. Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology. 2016a;7:1–8. doi: 10.1080/21501203.2015.1136708.
  • Dissanayake RK, Ratnaweera PB, Williams DE, et al. Antimicrobial activities of mycoleptodiscin B isolated from endophytic fungus Mycoleptodiscus sp. of Calamus thwaitesii Becc. J Appl Pharm Sci. 2016b;6:1–6.
  • Shi S, Li Y, Ming Y, et al. Biological activity and chemical composition of the endophytic fungus Fusarium sp. TP-G1 obtained from the root of Dendrobium officinale Kimura et Migo. RecNatProd. 2018;12:549–556. doi: 10.25135/rnp.62.17.12.201.
  • Abdou R, Shaker K. Bioactive metabolites of the endophyte Khuskia oryzae isolated from the medicinal plant Bidens bipinnata. Asian J Pharm Life. 2013;3:137–145.
  • Sun P, Huo J, Kurtán T, et al. Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality. 2013;25:141–148. doi: 10.1002/chir.22128.
  • Zhang J, Liu D, Wang H, et al. Fusartricin, a sesquiterpenoid ether produced by an endophytic fungus Fusarium tricinctum Salicorn 19. Eur Food Res Technol. 2015;240:805–814. doi: 10.1007/s00217-014-2386-6.
  • Vaz ABM, Mota RC, Bomfim MRQ, et al. Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol. 2009;55:1381–1391. doi: 10.1139/W09-101.
  • Figueroa M, Jarmusch AK, Raja HA, et al. Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod. 2014;77:1351–1358. doi: 10.1021/np5000704.
  • Guo W, Zhang Z, Zhu T, et al. Penicyclones A–E, antibacterial polyketides from the deep-sea-derived fungus Penicillium sp. F23-2. J Nat Prod. 2015;78:2699–2703. doi: 10.1021/acs.jnatprod.5b00655.
  • Tedsree N, Likhitwitayawuid K, Sritularak B, et al. Antifungal activity of endophytic Streptomyces strains from Dendrobium orchids and the secondary metabolites of strain DR7-3 with its genome analysis. J Appl Pharm Sci. 2022;12:031–041.
  • Castillo U, Harper JK, Strobel GA, et al. Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett. 2003;224:183–190. doi: 10.1016/S0378-1097(03)00426-9.
  • Hoffman AM, Mayer SG, Strobel GA, et al. Purification, identification, and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry. 2008;69:1049–1056. doi: 10.1016/j.phytochem.2007.10.031.
  • Supong K, Thawai C, Choowong W, et al. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.). Res Microbiol. 2016;167:290–298. 2016 doi: 10.1016/j.resmic.2016.01.004.
  • Mangunwardoyo W, Suciatmih S, Gandjar I. Frequency of endophytic fungi isolated from Dendrobium crumenatum (Pigeon orchid) and antimicrobial activity. Biodiversitas. 2012;13:34–39.
  • Ratnaweera PB, Williams DE, de Silva ED, et al. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology. 2014;5:23–28. doi: 10.1080/21501203.2014.892905.
  • Meng L-H, Li X-M, Liu Y, et al. Antimicrobial alkaloids produced by the mangrove endophyte Penicillium brocae MA-231 using the OSMAC approach. RSC Adv. 2017;7:55026–55033. doi: 10.1039/C7RA12081H.
  • Rukachaisirikul V, Sommart U, Phongpaichit S, et al. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry. 2008;69:783–787. doi: 10.1016/j.phytochem.2007.09.006.
  • Qi X, Li X, Zhao J, et al. GKK1032C, a new alkaloid compound from the endophytic fungus Penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus. J Antibiot (Tokyo). 2019;72:237–240. doi: 10.1038/s41429-019-0144-5.
  • Subban K, Subramani R, Johnpaul M. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res. 2013;27:1445–1449. doi: 10.1080/14786419.2012.722091.
  • Zhang W, Wei W, Shi J, et al. Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity. Bioorg Med Chem Lett. 2015;25:2698–2701. doi: 10.1016/j.bmcl.2015.04.044.
  • Kharwar RN, Verma VC, Kumar A, et al. Javanicin, an antibacterial Naphthaquinone from an Endophytic fungus of Neem, Chloridium sp. Curr Microbiol. 2009;58:233–238. doi: 10.1007/s00284-008-9313-7.
  • Khiralla A, Spina R, Varbanov M, et al. Evaluation of antiviral, antibacterial and antiproliferative activities of the endophytic fungus Curvularia papendorfii, and isolation of a new polyhydroxyacid. Microorganisms. 2020;8:1353. doi: 10.3390/microorganisms8091353.
  • Liu L, Liu S, Chen X, et al. Pestalofones A–E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem. 2009;17:606–613. doi: 10.1016/j.bmc.2008.11.066.
  • Oide S, Turgeon BG. Natural roles of nonribosomal peptide metabolites in fungi. Mycoscience. 2020;61:101–110. doi: 10.1016/j.myc.2020.03.001.
  • Xu W-F, Hou X-M, Yao F-H, et al. Xylapeptide A, an antibacteria cyclopentapeptide with an uncommon L-pipecolinic acid moiety from the associated fungus Xylaria sp. (GDG-102). Sci Rep. 2017;7:6937. doi: 10.1038/s41598-017-07331-4.
  • Guo J, Ran H, Zeng J, et al. Tafuketide, a phylogeny-guided discovery of a new polyketide from Talaromyces funiculosus Salicorn 58. Appl Microbiol Biotechnol. 2016;100:5323–5338. doi: 10.1007/s00253-016-7311-4.
  • Shi X-S, Wang D-J, Li X-M, et al. Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv. 2017;7:51335–51342. doi: 10.1039/C7RA11122C.
  • Jouda J-B, Kusari S, Lamshöft M, et al. Penialidins A–C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis. Fitoterapia. 2014;98:209–214. doi: 10.1016/j.fitote.2014.08.011.
  • Shi X-S, Meng L-H, Li X-M, et al. Antimicrobial Cadinane sesquiterpenes from Trichoderma virens QA-8, an endophytic fungus obtained from the medicinal plant Artemisia argyi. J Nat Prod. 2019;82:2470–2476. doi: 10.1021/acs.jnatprod.9b00139.
  • Ramos HP, Braun GH, Pupo MT, et al. Antimicrobial activity from endophytic fungi Arthrinium state of Apiospora montagnei Sacc. and Papulaspora immersa. Braz Arch Biol Technol. 2010;53:629–632. doi: 10.1590/S1516-89132010000300017.
  • Tonial F, Maia BH, Gomes-Figueiredo JA, et al. Influence of culturing conditions on bioprospecting and the antimicrobial potential of endophytic fungi from Schinus terebinthifolius. Curr Microbiol. 2016;72:173–183. doi: 10.1007/s00284-015-0929-0.
  • Guo B, Dai JR, Ng S, et al. Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod. 2000;63:602–604. doi: 10.1021/np990467r.
  • Strobel G, Ford E, Worapong J, et al. Ispoestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry. 2002;60:179–183. doi: 10.1016/s0031-9422(02)00062-6.
  • Zhang BG, Salituro D, Szalkowski Z, et al. Discovery of small molecule insulin mimetic with antidiabetic activity in mice. Science. 1999;284:974–977. doi: 10.1126/science.284.5416.974.
  • Borel JF, Kis ZL. The discovery and development of cyclosporine. Transplant Proc. 1991;23:1867–1874.
  • Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents VI. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93:2325–2327. doi: 10.1021/ja00738a045.
  • Toofanee SB, Dulymamode R. Fungal endophytes associated with Cordemoya integrifolia. Fungal Divers. 2002;11:169–175.
  • Christina A, Christapher V, Bhore SJ. Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev. 2013;7:11–16. doi: 10.4103/0973-7847.112833.
  • Elfaky MA, Nasr H, Touiss I, et al. Streptomyces: a potential source of natural antimicrobial drug leads. In: Eco-friendly biobased products used in microbial diseases. 1st ed. Boca Raton (FL): CRC Press; 2022.
  • Takahashi S, Takeuchi M, Arai M, et al. Studies on biosynthesis of pentalenolactone. V isolation of deoxypentalenylglucuron. J Antibiot. 1983;36:226–228. doi: 10.7164/antibiotics.36.226.
  • Liu Y, Liu W, Liang Z. Endophytic bacteria from Pinellia ternata, a new source of purine alkaloids and bacterial manure. Pharm Biol. 2015;53:1545–1548. doi: 10.3109/13880209.2015.1016580.
  • Singh M, Kumar A, Singh R, et al. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 2017;7:315. doi: 10.1007/s13205-017-0942-z.
  • Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. Endophytes as sources of antibiotics. Biochem Pharmacol. 2017;134:1–17. doi: 10.1016/j.bcp.2016.10.010.
  • Chang S, Sievert DM, Hageman JC, et al. Vancomycin-resistant Staphylococcus aureus investigative team: infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003;348:1342–1347. 2003 doi: 10.1056/NEJMoa025025.
  • Sriravali K, Jindal AB, Singh BP, et al. Plant-associated endophytic fungi and its secondary metabolites against drug-resistant pathogenic microbes. In: Kumar V, Shriram V, Paul A, Thakur M, editors. Antimicrobial Resistance. Singapore: Springer; 2022.
  • Yang H-Y, Duan Y-Q, Yang Y-K, et al. Three new napthalene derivatives from the endophytic fungus Phomopsis fukushii. Phytochem Lett. 2017;22:266–269. doi: 10.1016/j.phytol.2017.10.021.
  • Nurunnabi TR, Nahar L, Al‐Majmaie S, et al. Anti‐MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes. Phytother Res. 2018;32:348–354. doi: 10.1002/ptr.5983.
  • Xu J. Bioactive natural products derived from mangrove-associated microbes. RSC Adv. 2015;5:841–892. doi: 10.1039/C4RA11756E.
  • Ratnaweera PB, de Silva ED, Williams DE, et al. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med. 2015;15:220. doi: 10.1186/s12906-015-0722-4.
  • Arora P, Wani ZA, Nalli Y, et al. Antimicrobial Potential of Thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Microb Ecol. 2016;72:802–812. doi: 10.1007/s00248-016-0805-x.
  • Macías-Rubalcava ML, Sánchez-Fernández RE. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol. 2017;33:15. doi: 10.1007/s11274-016-2174-5.
  • Cadelis MM, Geese S, Uy BB, et al. Antimicrobial metabolites against methicillin-resistant Staphylococcus aureus from the endophytic fungus Neofusicoccum australe. Molecules. 2021;26:1094. doi: 10.3390/molecules26041094.
  • Silva N, Igrejas G, Rodrigues P, et al. Molecular characterization of vancomycin-resistant Enterococci and extended-spectrum β-lactamase-containing Escherichia coli isolates in wild birds from the Azores Archipelago. Avian Pathol. 2011;40:473–479. 2011 doi: 10.1080/03079457.2011.599061.
  • Ola ARB, Debbab A, Aly AH, et al. Absolute configuration and antibiotic activity of neosartorin from the endophytic fungus Aspergillus fumigatiaffinis. Tetrahedron Lett. 2014;55:1020–1023. 2014 doi: 10.1016/j.tetlet.2013.12.070.
  • Ola ARB, Thomy D, Lai D, et al. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod. 2013;76:2094–2099. doi: 10.1021/np400589h.
  • Hemberger Y, Xu J, Wray V, et al. Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene‐cyclopaldic acid hybrids from Pestalotiopsis sp. Chemistry. 2013;19:15556–15564. doi: 10.1002/chem.201302204.
  • Chen H-L, Zhao W-T, Liu Q-P, et al. Preisomide: a new alkaloid featuring a rare naturally occurring tetrahydro-2H-1, 2-oxazin skeleton from an endophytic fungus Preussia isomera by using OSMAC strategy. Fitoterapia. 2020;141:104475. (±) doi: 10.1016/j.fitote.2020.104475.
  • Yang S, Zhao W, Chen H, et al. Aureonitols A and B, two new C13‐polyketides from Chaetomium globosum, an endophytic fungus in Salvia miltiorrhiza. Chem Biodivers. 2019;16:e1900364. 2019 doi: 10.1002/cbdv.201900364.
  • Singh MP, Janso JE, Luckman SW, et al. Biological activity of guanacastepene, a novel diterpenoid antibiotic produced by an unidentified fungus CR115. J Antibiot (Tokyo). 2000;53:256–261. doi: 10.7164/antibiotics.53.256.
  • Ariantari NP, Ancheeva E, Frank M, et al. Didymellanosine, a new decahydrofluorene analogue, and ascolactone C from Didymella sp. IEA-3B. 1, an endophyte of Terminalia catappa. RSC Adv. 20202020;10:7232–7240. doi: 10.1039/c9ra10685e.
  • Vivas R, Barbosa AAT, Dolabela SS, et al. Multidrug-resistant bacteria and alternative methods to control them: an overview. Microb Drug Resist. 2019;25:890–908. doi: 10.1089/mdr.2018.0319.
  • Kim S, Shin D-S, Lee T, et al. Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod. 2004;67:448–450. doi: 10.1021/np030384h.
  • Ymele-Leki P, Cao S, Sharp J, et al. A high-throughput screen identifies a new natural product with broad-spectrum antibacterial activity. PLoS One. 2012;7:e31307. doi: 10.1371/journal.pone.0031307.
  • Yamazaki H, Wewengkang DS, Kanno S, et al. Papuamine and haliclonadiamine, obtained from an Indonesian sponge Haliclona sp., inhibited cell proliferation of human cancer cell lines. Nat Prod Res. 2013;27:1012–1015. doi: 10.1080/14786419.2012.688050.
  • Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol. 2020;8:467. doi: 10.3389/fbioe.2020.00467.
  • Adeleke BS, Babalola OO. Pharmacological potential of fungal endophytes associated with medicinal plants: a review. JoF. 2021;7:147. doi: 10.3390/jof7020147.
  • Davis RA, Carroll AR, Andrews KT, et al. Pestalactams A-C: novel caprolactams from the endophytic fungus Pestalotiopsis sp. Org Biomol Chem. 2010;8:1785–1790. doi: 10.1039/b924169h.
  • Kornsakulkarn J, Choowong W, Rachtawee P, et al. Bioactive hydroanthraquinones from endophytic fungus Nigrospora sp. BCC 47789. Phytochem Lett. 2018;24:46–50. doi: 10.1016/j.phytol.2018.01.015.
  • Ibrahim SRM, Asfour HZ. Bioactive gamma-butyrolactones from endophytic fungus Aspergillus versicolor. Int J Pharmacol. 2018;14:437–443. doi: 10.3923/ijp.2018.437.443.
  • Aharwal RP, Kumar S, Sandhu SS. Endophytic mycoflora as a source of biotherapeutic compounds for disease treatment. J App Pharm Sci. 2016;6:242–254. doi: 10.7324/JAPS.2016.601034.
  • Wang L-W, Wang J-L, Chen J, et al. A novel derivative of (-) mycousnine produced by the endophytic fungus Mycosphaerella nawae, exhibits high and selective immunosuppressive activity on T cells. Front Microbiol. 2017;8:1251. doi: 10.3389/fmicb.2017.01251.
  • Ferreira MC, Cantrell CL, Wedge DE, et al. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Mem Inst Oswaldo Cruz. 2017;112:692–697. doi: 10.1590/0074-02760170144.
  • Kumarihamy M, Ferreira D, Croom EM, Jr, et al. Antiplasmodial and cytotoxic cytochalasins from an endophytic fungus, Nemania sp. UM10M, isolated from a diseased Torreya taxifolia leaf. Molecules. 2019;24:777. doi: 10.3390/molecules24040777.
  • Ateba JET, Toghueo RMK, Awantu AF, et al. Antiplasmodial properties and cytotoxicity of endophytic fungi from Symphonia globulifera (Clusiaceae). JoF. 2018;4:70. doi: 10.3390/jof4020070.
  • Toghueo RMK, Kemgne EAM, Eke P, et al. Antiplasmodial potential and GC-MS fingerprint of endophytic fungal extracts derived from Cameroonian Annona muricata. J Ethnopharmacol. 2019;235:111–121. doi: 10.1016/j.jep.2019.02.010.
  • Kaushik N, Murali T, Sahal D, et al. A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitol. 2014;59:745–757. doi: 10.2478/s11686-014-0307-2.
  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S, et al. Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry. 2008;69:1900–1902. doi: 10.1016/j.phytochem.2008.04.003.
  • Chen LZ, Chen JM, Zheng XS, et al. Identification and antifungal activity of the metabolite of endophytic fungi isolated from Llex cornuta. Chinese Journal of Pesticide Science. 2007;9:143–148.
  • Dai J, Krohn K, Flörke U, et al. Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. Eur J Org Chem. 2006;2006:3498–3506. doi: 10.1002/ejoc.200600261.
  • Macías-Rubalcava ML, Hernández-Bautista BE, Jiménez-Estrada M, et al. Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry. 2008;69:1185–1196. doi: 10.1016/j.phytochem.2007.12.006.
  • Cui HB, Mei WL, Miao CD, et al. Antibacterial constituents from the endophytic fungus Penicillium sp. 0935030 of mangrove plant Acrostichum aureurm. Chem J Chin Univ. 2008;33:407–410.
  • Ruhe JJ, Monson T, Bradsher RW, et al. Use of long-acting tetracyclines for methicillin-resistant Staphylococcus aureus infections: case series and review of the literature. Clin Infect Dis. 2005;40:1429–1434. (pg. doi: 10.1086/429628.
  • Blanco AR, Nostro A, D'Angelo V, et al. Efficacy of a fixed combination of tetracycline, chloramphenicol, and colistimethate sodium for treatment of Candida albicans keratitis. Invest Ophthalmol Vis Sci. 2017;58:4292–4298. 2017 doi: 10.1167/iovs.17-22047.
  • Tan J, Jiang S, Tan L, et al. Antifungal activity of minocycline and azoles against fluconazole-resistant Candida species. Front Microbiol. 2021;12:649026. doi: 10.3389/fmicb.2021.649026.
  • Kumar G, Chandra P, Choudhary M. Endophytic fungi: a potential source of bioactive compounds. Chem Sci Rev Lett. 2017;6:2373–2381.
  • Kamana S, Hemalatha K, Chandanavineela K, et al. Endophytic fungi: as the source of bioactive compound. World J Pharmacol Pharm Sci. 2016;5:1026–1040.
  • Kouipou Toghueo RM, Boyom FF. Endophytic fungi from Terminalia species: a comprehensive review. JoF. 2019;5:43. doi: 10.3390/jof5020043.
  • LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 2013;77:73–111. doi: 10.1128/MMBR.00046-12.
  • Mookherjee A, Singh S, Maiti MK. Quorum sensing inhibitors: can endophytes be prospective sources? Arch Microbiol. 2018;200:355–369. doi: 10.1007/s00203-017-1437-3.
  • Johann S, Rosa LH, Rosa CA, et al. Antifungal activity of altenusin isolated from the endophytic fungus Alternaria sp. against the pathogenic fungus Paracoccidioides brasiliensis. Rev Iberoam Micol. 2012;29:205–209. doi: 10.1016/j.riam.2012.02.002.
  • Tanvir R, Sajid I, Hasnain S, et al. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation. Microbiol Res. 2016;185:22–35. doi: 10.1016/j.micres.2016.01.003.
  • Sun Z-L, Zhang M, Zhang J-F, et al. Antifungal and cytotoxic activities of the secondary metabolites from endophytic fungus Massrison sp. Phytomedicine. 2011;18:859–862. doi: 10.1016/j.phymed.2011.01.019.
  • Chomcheon P, Wiyakrutta S, Aree T, et al. Curvularides A–E: antifungal hybrid peptide–polyketides from the endophytic fungus Curvularia geniculata. Chemistry. 2010;16:11178–11185. doi: 10.1002/chem.201000652.
  • Barriuso J. Quorum sensing mechanisms in fungi. AIMS Microbiol. 2015;1:37–47. doi: 10.3934/microbiol.2015.1.37.
  • Albuquerque P, Casadevall A. Quorum sensing in fungi-a review. Med Mycol. 2012;50:337–345. doi: 10.3109/13693786.2011.652201.
  • Hall RA, Cottier F, Mühlschlegel FA. Molecular networks in the fungal pathogen Candida albicans. Adv Appl Microbiol. 2009;67:191–212. doi: 10.1016/S0065-2164(08)01006-X.
  • Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signaling in bacteria. FEMS Microbiol Rev. 2013;37:156–181. doi: 10.1111/j.1574-6976.2012.00345.x.
  • Severin FF, Hyman AA. Pheromone induces programmed cell death in S. cerevisiae. Curr Biol. 2002;12:233–235.
  • Lyon GJ, Mayville P, Muir TW, et al. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci U S A. 2000;97:13330–13335. doi: 10.1073/pnas.97.24.13330.
  • Mishra, Sushma, Sharma, Shilpi, Priyanka, 2022. Metabolomic insights into Endophyte-derived bioactive compounds. Front Microbiol. 13, 835931 doi: 10.3389/fmicb.2022.835931.
  • Rajesh PS, Ravishankar Rai V. Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatal Agric Biotechnol. 2013;2:120–124. doi: 10.1016/j.bcab.2013.01.002.
  • Martín-Rodríguez AJ, Reyes F, Martín J, et al. Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs. 2014;12:5503–5526. doi: 10.3390/md12115503.
  • Kusari S, Singh S, Jayabaskaran C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 2014;32:297–303. doi: 10.1016/j.tibtech.2014.03.009.
  • Tourneroche A, Lami R, Hubas C, et al. Bacterial-fungal interactions in the kelp endomicrobiota drive autoinducer-2 quorum sensing. Front Microbiol. 2019;10:1693. doi: 10.3389/fmicb.2019.01693.
  • Eid SY, El-Readi MZ, Eldin EEMN, et al. Influence of combinations of digitonin with selected phenolics, terpenoids, and alkaloids on the expression and activity of P-glycoprotein in leukemia and colon cancer cells. Phytomedicine. 2013;21:47–61. doi: 10.1016/j.phymed.2013.07.019.
  • Lee S-Y, Rhee Y-H, Jeong S-J, et al. H. Hydrocinchonine, cinchonine, and quinidine potentiate paclitaxel-induced cytotoxicity and apoptosis via multidrug resistance reversal in MES-SA/DX5 uterine sarcoma cells. Environ Toxicol. 2011;26:424–431. doi: 10.1002/tox.20568.
  • Kennedy MJ, Armstrong DK, Huelskamp AM, et al. Phase I and pharmacologic study of the alkylating agent modulator novobiocin in combination with high-dose chemotherapy for the treatment of metastatic breast cancer. J Clin Oncol. 1995;13:1136–1143. doi: 10.1200/JCO.1995.13.5.1136.
  • Xu Y, Qiu L. Nonspecifically enhanced therapeutic effects of vincristine on multidrug-resistant cancers when co-encapsulated with quinine in liposomes. Int J Nanomedicine. 2015;10:4225–4237. doi: 10.2147/IJN.S84555.
  • Paterson I, Anderson EA. The Renaissance of natural products as drug candidates. Science. 2005;310:451–453. doi: 10.1126/science.1116364.
  • Garyali S, Tandon P, Sudhakara Reddy M, et al. Exploitation of Fungal endophytes as bio-factories for production of functional metabolites through metabolic engineering; emphasizing on Taxol production. In: Saran S, Babu V, Chaubey A, editor. High value fermentation products: human health. New York: Wiley Publication; 2019. doi: 10.1002/9781119460053.
  • Miller CM, Miller RV, Garton-Kenny D, et al. Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol. 1998;84:937–944. doi: 10.1046/j.1365-2672.1998.00415.x.
  • Harrison L, Teplow DB, Rinaldi M, et al. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad‑spectrum antifungal activity. J Gen Microbiol. 1991;137:2857–2865. doi: 10.1099/00221287-137-12-2857.
  • Kusari S, Zühlke S, Kosuth J, et al. Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod. 2009;72:1825–1835. doi: 10.1021/np9002977.
  • Tiwari P, Mohd A, Basavegowda N, et al. 2022d. Plant-associated endophytes: molecular mechanisms and significance in promoting sustainable agriculture. In: Tiwari P, editor., Endophytes: types, potential uses, and mechanisms of action. Hauppauge (NY): Nova Publishers.
  • Bowater L. Antimicrobial stewardship: the role of scientists? J Antimicrob Chemother. 2015;70:1925–1927. doi: 10.1093/jac/dkv071.
  • Zhang R, Li C, Wang J, et al. Microbial production of small medicinal molecules and biologics: from nature to synthetic pathways. Biotechnol Adv. 2018;36:2219–2231. doi: 10.1016/j.biotechadv.2018.10.009.
  • Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast. Science. 2015;349:1095–1100. doi: 10.1126/science.aac9373.
  • Kotopka BJ, Li Y, Smolke CD. Synthetic biology strategies toward heterologous phytochemical production. Nat Prod Rep. 2018;35:902–920. doi: 10.1039/c8np00028j.
  • Li R, Li R, Li X, et al. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J. 2018;16:415–427. doi: 10.1111/pbi.12781.
  • Li S, Li Y, Smolke CD. Strategies for microbial synthesis of high-value phytochemicals. Nature Chem. 2018;10:395–404. 2018 Aprdoi: 10.1038/s41557-018-0013-z.
  • Becker J, Wittmann C. Systems metabolic engineering of Escherichia coli for the heterologous production of high-value molecules- a veteran at new shores. Curr Opin Biotechnol. 2016;42:178–188. doi: 10.1016/j.copbio.2016.05.004.
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14:49–55. doi: 10.1038/nrm3486.
  • Ledford H. CRISPR: gene editing is just the beginning. Nature. 2016;531:156–159. doi: 10.1038/531156a.
  • Gomaa A, Klumpe H, Luo M, et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. Am. Soc. Microbiol. 2013;5:e00928–e01013.
  • Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–1150. doi: 10.1038/nbt.3043.
  • Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014;32:1141–1145. doi: 10.1038/nbt.3011.
  • Kim J, Cho D, Park M, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26:394–401. doi: 10.4014/jmb.1508.08080.
  • Müller V, Rajer F, Frykholm K, et al. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci Rep. 2016;6:37938. doi: 10.1038/srep37938.
  • Li L, He Z, Wei X, et al. Challenges in CRISPR/Cas9 delivery: potential roles of nonviral vectors. Hum Gene Ther. 2015;26:452–462. doi: 10.1089/hum.2015.069.
  • Ali J, Rafiq QA, Ratcliffe E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci OA. 2018;4: FSO290. (2018) doi: 10.4155/fsoa-2017-0109.
  • Goh S, Loeffler A, Lloyd DH, et al. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol. 2015;15:262. doi: 10.1186/s12866-015-0599-x.
  • Bhargava P, Collins JJ. Boosting bacterial metabolism to combat antibiotic resistance. Cell Metab. 2015;21:154–155. doi: 10.1016/j.cmet.2015.01.012.
  • Zurawski D, Reinhart A, Alamneh Y, et al. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant XDR-Acinetobacter baumannii. Antimicr. Agents Chemother. 2017;61:e01239-17. pii:
  • Draughn GL, Allen CL, Routh P, et al. Evaluation of a 2-aminoimidazole variant as adjuvant treatment for dermal bacterial infections. Drug Des Devel Ther. 2017;11:153–162. doi: 10.2147/DDDT.S111865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.