540
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting neuropilin-1 for anticancer application

, , , , , , , & show all
Pages 26-45 | Received 11 Sep 2015, Accepted 09 Dec 2015, Published online: 23 May 2016

References

  • Albini, A., Soldi, R., Giunciuclio, D., Girauo, E., Benelli, R., & Primo, L. (1996). The angiogenesis induced by HIV-1 Tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nature Medicine, 2, 1371–1375. doi:10.1038/nm1296-137110.1038/nm1296-1371
  • Antes, I. (2010). DynaDock: A new molecular dynamics-based algorithm for protein–peptide docking including receptor flexibility. Proteins: Structure, Function, and Bioinformatics, 78, 1084–1104. doi:10.1002/prot.2262910.1002/prot.22629
  • Arun Prasad, P., & Gautham, N. (2008). A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling. Journal of Computer-Aided Molecular Design, 22, 815–829. doi:10.1007/s10822-008-9216-5
  • Bashi, T., Blank, M., Ben-Ami Shor, D. B. A., Fridkin, M., Versini, M., & Gendelman, O. (2015). Successful modulation of murine lupus nephritis with tuftsin-phosphorylcholine. Journal of Autoimmunity, 59, 1–7. doi:10.1016/j.jaut.2015.03.001
  • Benouchan, M., & Colombo, B. M. (2005). Anti-angiogenic strategies for cancer therapy (review). International Journal of Oncology, 27, 563–571. doi:10.3892/ijo.3827.3892.3563
  • Bernatchez, P. N., Rollin, S., Soker, S., & Sirois, M. G. (2002). Relative effects of VEGF-A and VEGF-C on endothelial cell proliferation, migration, and PAF synthesis: Role of neuropilin-1. Journal of Cellular Biochemistry, 85, 629–639. doi:610.1002/jcb.10155
  • Binetruy-Tournaire, R., Demangel, C., Malavaud, B., Vassy, R., Rouyre, S., & Kraemer, M. (2000). Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. The EMBO Journal, 19, 1525–1533. doi:10.1093/emboj/19.7.1525
  • Chen, Y., Simmonds, R. S., & Timkovich, R. (2013). Proposed docking interface between peptidoglycan and the target recognition domain of zoocin A. Biochemical and Biophysical Research Communications, 441, 297–300. doi:10.1016/j.bbrc.2013.09.087
  • Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual screening with AutoDock: Theory and practice. Expert Opinion on Drug Discovery, 5, 597–607. doi:10.1517/17460441.2010.484460
  • D’Andrea, L. D., Del Gatto, A., Pedone, C., & Benedetti, E. (2006). Peptide-based molecules in angiogenesis. Chemical Biology & Drug Design, 67, 115–126. doi:110.1111/j.1747-0285.2006.00356.x
  • Denekamp, J. (1984). Vascular endothelium as the vulnerable element in tumours. Acta Radiologica Oncology, 23, 217–225. doi:10.3109/02841868409136015
  • Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F., Dvorak, A. M., & Yoshiji, H. (1999). Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Current Topics in Microbiology and Immunology, 237, 97–132. doi:1010.2337/diabetes.1048.1011.2229
  • Ewing, T. J., Makino, S., Skillman, A. G., & Kuntz, I. D. (2001). DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design, 15, 411–428. doi:10.1023/A:1011115820450
  • Eyrisch, S., & Helms, V. (2007). Transient pockets on protein surfaces involved in protein−protein interaction. Journal of Medicinal Chemistry, 50, 3457–3464. doi:10.1021/jm070095g
  • Ferrara, N., & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocrine Reviews, 18, 4–25. doi:10.1210/edrv.18.1.0287
  • Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. New England Journal of Medicine, 285, 1182–1186. doi:1110.1056/NEJM197111182852108
  • Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine, 1, 27–30. doi:10.1038/nm0195-27
  • Gao, Y., Su, Q. D., Yi, Y., Jia, Z. Y., Wang, H., & Lu, X. X. ... Bi, S. L. (2015). Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin. PLoS One, 10, e0123400. doi:10.1371/journal.pone.0123400
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity – A rapid access to atomic charges. Tetrahedron, 36, 3219–3228. doi:10.1016/0040-4020(80)80168-2
  • Giordano, R. J., Anobom, C. D., Cardó-Vila, M., Kalil, J., Valente, A. P., & Pasqualini, R. (2005). Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors. Chemistry and Biology, 12, 1075–1083. doi:10.1016/j.chembiol.2005.07.008
  • Giordano, R. J., Cardó-Vila, M., Lahdenranta, J., Pasqualini, R., & Arap, W. (2001). Biopanning and rapid analysis of selective interactive ligands. Nature Medicine, 7, 1249–1253. doi:10.1038/nm1101-1249
  • Gu, C., Limberg, B. J., Brian Whitaker, G., Perman, B., Leahy, D. J., & Rosenbaum, J. S. (2002). Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. Journal of Biological Chemistry, 277, 18069–18076. doi:10.1074/jbc.M201681200
  • Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364. doi:10.1016/S0092-8674(00)80108-7
  • Haspel, N., Zanuy, D., Nussinov, R., Teesalu, T., Ruoslahti, E., & Aleman, C. (2011). Binding of a C-end rule peptide to the neuropilin-1 receptor: A molecular modeling approach. Biochemistry, 50, 1755–1762. doi:10.1021/bi101662j
  • Hetenyi, C., & van der Spoel, D. (2002). Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Science, 11, 1729–1737. doi:10.1110/ps.0202302
  • Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T., & De Bruijn, E. A. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 56, 549–580. doi:10.1124/pr.56.4.3
  • Horváti, K., Bacsa, B., Kiss, Éva, Gyulai, G., Fodor, K., & Balka, G. (2014). Nanoparticle encapsulated lipopeptide conjugate of antitubercular drug isoniazid. In vitro intracellular activity and in vivo efficacy in a guinea pig model of tuberculosis. Bioconjugate Chemistry, 25, 2260–2268. doi:10.1021/bc500476x
  • Huang, Z., & Wong, C. F. (2009). Docking flexible peptide to flexible protein by molecular dynamics using two implicit-solvent models: An evaluation in protein kinase and phosphatase systems. The Journal of Physical Chemistry B, 113, 14343–14354. doi:10.1021/jp907375b
  • Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28, 1145–1152. doi:10.1002/(ISSN)1096-987X
  • Jain, S., Tran, T. H., & Amiji, M. (2015). Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials, 61, 162–177. doi:10.1016/j.biomaterials.2015.05.028
  • Jia, H., Bagherzadeh, A., Hartzoulakis, B., Jarvis, A., Lohr, M., & Shaikh, S. (2006). Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling. Journal of Biological Chemistry, 281, 13493–13502. doi:10.1074/jbc.M512121200
  • Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245, 43–53. doi:10.1016/S0022-2836(95)80037-9
  • Kamarulzaman, E. E., Amirah Mohd Gazzali, A. M., Acherar, S., Frochot, C., Barberi Heyob, M., & Boura, C. (2015). New peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1 for anti-vascular targeted photodynamic therapy. International Journal of Molecular Sciences, 16, 24059–24080. doi:10.3390/ijms161024059.
  • Klagsbrun, M., & Soker, S. (1993). VEGF/VPF: The angiogenesis factor found?. Current Biology, 3, 699–702. doi:10.1016/0960-9822(93)90073-W
  • Krussel, J. S., Behr, B., Milki, A. A., Hirchenhain, J., Wen, Y., & Bielfeld, P. (2001). Vascular endothelial growth factor (VEGF) mRNA splice variants are differentially expressed in human blastocysts. Molecular Human Reproduction, 7, 57–63. doi:10.1093/molehr/7.1.57
  • Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., & Kmiecik, S. (2015). CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Research, 43, W419–W424. doi:10.1093/nar/gkv456
  • Lange, T., Guttmann-Raviv, N., Baruch, L., Machluf, M., & Neufeld, G. (2003). VEGF162, A new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells. Journal of Biological Chemistry, 278, 17164–17169. doi:10.1074/jbc.M212224200
  • London, N., Raveh, B., Cohen, E., Fathi, G., & Schueler-Furman, O. (2011). Rosetta FlexPepDock web server – High resolution modeling of peptide–protein interactions. Nucleic Acids Research, 39(suppl), W249–W253. doi:10.1093/nar/gkr431
  • Matthies, A. M., Low, Q. E. H., Lingen, M. W., & DiPietro, L. A. (2002). Neuropilin-1 participates in wound angiogenesis. The American Journal of Pathology, 160, 289–296. doi:10.1016/S0002-9440(10)64372-6
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., & Belew, R. K. (1998a). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662. 19:14<1639:Aid-Jcc10>3.0.Co;2-B. doi:10.1002/(ISSN)1096-987X
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., & Belew, R. K. (1998b). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662. doi:10.1002/(ISSN)1096-987X
  • Neufeld, G., Cohen, T., Gengrinovitch, S., & Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB Journal, 13, 9–22. doi:10.1177/1947601911423031
  • Perret, G. Y., Starzec, A., Hauet, N., Vergote, J., Le Pecheur, M., & Vassy, R. (2004). In vitro evaluation and biodistribution of a 99mTc-labeled anti-VEGF peptide targeting neuropilin-1. Nuclear Medicine and Biology, 31, 575–581. doi:10.1016/j.nucmedbio.2004.01.005
  • Poltorak, Z., Cohen, T., Sivan, R., Kandelis, Y., Spira, G., & Vlodavsky, I. (1997). VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. Journal of Biological Chemistry, 272, 7151–7158. doi:10.1074/jbc.272.11.7151
  • Raveh, B., London, N., & Schueler-Furman, O. (2010). Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins, 78, 2029–2040. doi:10.1002/prot.22716
  • Raveh, B., London, N., Zimmerman, L., & Schueler-Furman, O. (2011). Rosetta FlexPepDock ab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One, 6, e18934. doi:10.1371/journal.pone.0018934
  • Rubinstein, M., & Niv, M. Y. (2009). Peptidic modulators of protein-protein interactions: Progress and challenges in computational design. Biopolymers, 91, 505–513. doi:10.1002/bip.21164
  • Sanner, M. F. (2005). A component-based software environment for visualizing large macromolecular assemblies. Structure, 13, 447–462. doi:10.1016/j.str.2005.01.010
  • Shimizu, K., Asai, T., & Oku, N. (2005). Antineovascular therapy, a novel antiangiogenic approach. Expert Opinion on Therapeutic Targets, 9, 63–76. doi:10.1517/ett.2005.9.issue-1
  • Soker, S., Fidder, H., Neufeld, G., & Klagsbrun, M. (1996). Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF via Its exon 7-encoded domain. Journal of Biological Chemistry, 271, 5761–5767. doi:10.1074/jbc.271.10.5761
  • Soker, S., Gollamudi-Payne, S., Fidder, H., Charmahelli, H., & Klagsbrun, M. (1997). Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. Journal of Biological Chemistry, 272, 31582–31588. doi:10.1074/jbc.272.50.31582
  • Soker, S., Miao, H. Q., Nomi, M., Takashima, S., & Klagsbrun, M. (2002). VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. Journal of Cellular Biochemistry, 85, 357–368. doi:10.1002/(ISSN)1097-4644
  • Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., & Klagsbrun, M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 92, 735–745. doi:10.1016/S0092-8674(00)81402-6
  • Sotriffer, C. A., Flader, W., Winger, R. H., Rode, B. M., Liedl, K. R., & Varga, J. M. (2000). Automated docking of ligands to antibodies: methods and applications. Methods, 20, 280–291. doi:10.1006/meth.1999.0922
  • Starzec, A., Ladam, P., Vassy, R., Badache, S., Bouchemal, N., & Navaza, A. (2007). Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF165 binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex. Peptides, 28, 2397–2402. doi:10.1016/j.peptides.2007.09.013
  • Starzec, A., Vassy, R., Martin, A., Lecouvey, M., Di Benedetto, M., & Crépin, M. (2006). Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sciences, 79, 2370–2381. doi:10.1016/j.lfs.2006.08.005
  • Thomas, N., Pernot, M., Vanderesse, R., Becuwe, P., Kamarulzaman, E., & Da Silva, D. (2010). Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties. Biochemical Pharmacology, 80, 226–235. doi:10.1016/j.bcp.2010.03.036
  • Tirand, L., Frochot, C., Vanderesse, R., Thomas, N., Trinquet, E., & Pinel, S. (2006). A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. Journal of Controlled Release, 111, 153–164. doi:10.1016/j.jconrel.2005.11.017
  • Ueyama, H., Horibe, T., Nakajima, O., Ohara, K., Kohno, M., & Kawakami, K. (2011). Semaphorin 3A lytic hybrid peptide binding to neuropilin-1 as a novel anti-cancer agent in pancreatic cancer. Biochemical and Biophysical Research Communications, 414, 60–66. doi:10.1016/j.bbrc.2011.09.021
  • Vander Kooi, C. W., Jusino, M. A., Perman, B., Neau, D. B., Bellamy, H. D., & Leahy, D. J. (2007). Structural basis for ligand and heparin binding to neuropilin B domains. Proceedings of the National Academy of Sciences, 104, 6152–6157. doi:10.1073/pnas.0700043104
  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, 52, 609–623. doi:10.1002/prot.10465
  • Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Freer, S. T., & Rose, P. W. (2002). Complexity and simplicity of ligand–macromolecule interactions: The energy landscape perspective. Current Opinion in Structural Biology, 12, 197–203. doi:10.1016/S0959-440X(02)00310-X
  • Von Wronski, M. A., Raju, N., Pillai, R., Bogdan, N. J., Marinelli, E. R., & Nanjappan, P. (2006). Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor. The Journal of Biological Chemistry, 281, 5702–5710. doi:5710.1074/jbc.M511941200
  • de Vries, S. J., van Dijk, M., & Bonvin, A. M. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5, 883–897. doi:10.1038/nprot.2010.32
  • Wahab, H. A., Choong, Y. S., Ibrahim, P., Sadikun, A., & Scior, T. (2009). Elucidating isoniazid resistance using molecular modeling. Journal of Chemical Information and Modeling, 49, 7–107. doi:110.1021/ci8001342
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein Engineering, Design and Selection, 8, 127–134. doi:10.1093/protein/8.2.127
  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., & Alagona, G. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106, 765–784. doi:10.1021/ja00315a051
  • Whitaker, G. B., Limberg, B. J., & Rosenbaum, J. S. (2001). Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF165 and VEGF121. Journal of Biological Chemistry, 276, 25520–25531. doi:10.1074/jbc.M102315200
  • Whittle, C., Gillespie, K., Harrison, R., Mathieson, P. W., & Harper, S. J. (1999). Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clinical Science, 97, 303–312. doi:10.1042/cs0970303
  • Woo, H. J., & Roux, B. (2005). Calculation of absolute protein–ligand binding free energy from computer simulations. Proceedings of the National Academy of Sciences, 102, 6825–6830. doi:10.1073/pnas.0409005102
  • Woolard, J., Wang, W. Y., Bevan, H. S., Qiu, Y., Morbidelli, L., & Pritchard-Jones, R. O. (2004). VEGF165b, an inhibitory vascular endothelial growth factor splice variant: Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Research, 64, 7822–7835. doi:10.1158/0008-5472.CAN-04-0934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.