377
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells

, , , &
Pages 4080-4091 | Received 08 Jul 2018, Accepted 17 Oct 2018, Published online: 18 Nov 2018

References

  • Ade, R., & Rai, M. K. (2010). Colchicine, current advances and future prospects. Bioscience, 2, 90–96.
  • Andrasko, J., & Forsén, S. (1974). NMR study of rapid water diffusion across lipid bilayers in dipalmitoyl lecithin vesicles. Biochemical Biophysical Research Communications, 60(2), 813–819.
  • Bai, R., Pei, X. F., Boye, O., Getahun, Z., Grover, S., Bekisz, J., … Hamel, E. (1996). Identification of cysteine 354 of beta-tubulin as part of the binding site for the A ring of colchicine. The Journal of Biological Chemistry, 271(21), 12639–12645.
  • Barbier, P., Gregoire, C., Devred, F., Sarrazin, M., & Peyrot, V. (2001). In vitro effect of cryptophycin 5-on microtubule assembly and tubulin: Molecular modeling of the mechanism of action of a new antimitotic drug. Biochemistry, 40(45), 13510–13519.
  • Barker, T. J., Duncan, K. K., Otrubova, K., & Boger, D. L. (2013). Potent vinblastine C20′ ureas displaying additionally improved activity against a vinblastine-resistant cancer cell line. ACS Medicinal Chemistry Letters, 4(10), 985–988.
  • Bemporad, D., Essex, J. W., & Luttmann, C. (2004). Permeation of small molecules through a lipid bilayer: A computer simulation study. The Journal of Physical Chemistry B, 108(15), 4875–4884.
  • Benga, G., Pop, V. I., Popescu, O., & Borza, V. (1990). On measuring the diffusional water permeability of human red blood cells and ghosts by nuclear magnetic resonance. Journal of Biochemical and Biophysical Methods, 21(2), 87–102.
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Hermans, J., & Pullman, B. (2001). Simulation of the spontaneous aggregation of phospholipids into bilayers. Journal of the American Chemical Society, 123, 8638–8639.
  • Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690.
  • Bian, F. Y., Zhang, J. W., Wang, D., & Xu, S. C. (2014). Molecular dynamics simulation of the permeation of methyldopa through POPC phospholipid bilayer membrane. Acta Physico-Chimica Sinica, 30(10), 1947–1956.
  • Bollag, D., McQueney, P., Zhu, J., Hensens, O., Koupal, L., Liesch, J., … Woods, C. (1995). Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Research, 55(11), 2325–2333.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Sampling through velocity-rescaling. Journal of Chemical Physics, 126, 14101–14107.
  • Calligaris, L., Marchetti, F., Tommasini, A., & Ventura, A. (2008). The efficacy of anakinra in an adolescent with colchicine-resistant familial Mediterranean fever. European Journal of Pediatrics, 167(6), 695–696.
  • Chabner, B. A., & Calabresi, P. (1996). Goodman and Gilman’s the pharmacological basis of therapeutics (pp. 1225–1289). New York: McGraw-Hill Publishing Co.
  • Chi, S., Xie, W., Zhang, J. W., & Xu, S. C. (2015). Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. Journal of Biomolecular Structure and Dynamics, 33(10), 2234–2254.
  • Clark, R. D., Strizhev, A., Leonard, J. M., Blake, J. F., & Matthew, J. B. (2002). Consensus scoring for ligand/protein interactions. Journal of Molecular Graphics & Modelling, 20(4), 281–295.
  • Cowden, C. J., & Paterson, I. (1997). Synthetic chemistry. Cancer drugs better than taxol? Nature, 387(6630), 238–239.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog (N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8592.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, Revision A.01. Wallingford. CT: Gaussian, Inc.
  • Freedman, H., Huzil, J. T., Luchko, T., Luduen, R. F., & Tuszynski, J. A. (2009). Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. Journal of Chemical Information and Modeling, 49(2), 424–436.
  • Gigant, B., Wang, C., Ravelli, R. B. G., Roussi, F., Steinmetz, M. O., Curmi, P. A., … Knossow, M. (2005). Structural basis for the regulation of tubulin by vinblastine. Nature, 435(7041), 519–522.
  • Gherbovet, O., Coderch, C., García Alvarez, M. C., Bignon, J., Thoret, S., Martin, M.-T., … Roussi, F. (2013). Synthesis and biological evaluation of a new series of highly functionalized 7'-homo-anhydrovinblastine derivatives. Journal of Medicinal Chemistry, 56(15), 6088–6100.
  • Gigant, B., Curmi, P. A., Martin-Barbey, C., Charbaut, E., Lachkar, S., Lebeau, L., … Knossow, M. (2000). The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell, 102(6), 809–816.
  • Gotoh, H., Duncan, K. K., Robertson, W. M., & Boger, D. L. (2011). 10'-fluorovinblastine and 10'-fluorovincristine: Synthesis of a key series of modified vinca alkaloids. ACS Medicinal Chemistry Letters, 2(12), 948–952.
  • Graziani, Y., & Livne, A. (1972). Water permeability of bilayer lipid membranes: sterol-lipid interaction. The Journal of Membrane Biology, 7(1), 275–284.
  • Gupta, S., & Bhattacharyya, B. (2003). Antimicrotubular drugs binding to vinca domain of tubulin. Molecular and Cellular Biochemistry, 253(1/2), 41–47.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472.
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447.
  • Hub, J. S., De Groot, B. L., & Van Der Spoel, D. (2010). G_wham a free weighted histogram analysis implementation including robust error and autocorrelation estimates. Journal of Chemical Theory and Computation, 6(12), 3713–3720.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics and Modelling, 14(1), 33–38.
  • Ishikawa, H., Colby, D. A., Seto, S., Va, P., Tam, A., Kakei, H., … Boger, D. L. (2009). Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. Journal of the American Chemical Society, 131(13), 4904–4916.
  • Jansen, M., & Blume, A. (1995). A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophysical Journal, 68(3), 997–1008.
  • Jin, Y., Wang, Y., Bian, F. Y., Shi, Q., Ge, M. F., Wang, S., … Xu S. C. (2011). Three-dimensional structure of dopamine 3-subtype receptor with the active site residues for the binding of dopamine. Acta Physico-Chimica Sinica, 27(10), 2432–2446.
  • Johnson, I. S., Armstrong, J. G., Gorman, M., & Burnett, J. P. (1963). The vinca alkaloids: A new class of oncolytic agents. Cancer Research, 23, 1390–1427.
  • Jordan, M. A., Thrower, D., & Wilson, L. (1991). Mechanism of inhibition of cell proliferation by vinca alkaloids. Cancer Research, 51(8), 2212–2222.
  • Khavrutskii, I. V., Gorfe, A. A., Lu, B., & McCammon, J. A. (2009). Free energy for the permeation of Na(+) and Cl(-) ions and their ion-pair through a zwitterionic dimyristoyl phosphatidylcholine lipid bilayer by umbrella integration with harmonic Fourier beads. Journal of the American Chemical Society, 131(5), 1706–1716.
  • Kuppens, I. E. (2006). Current state of the art of new tubulin inhibitors in the clinic. Current Clinical Pharmacology, 1(1), 57–70.
  • Lang, P. T., Moustakas, D., Brozell, S., Carrascal, N., Mukherjee, S., Pegg, S., … Kuntz, I. (2006). DOCK 6.1. San Francisco: University of California.
  • Leggans, E. K., Duncan, K. K., Barker, T. J., Schleicher, K. D., & Boger, D. L. (2013). A remarkable series of vinblastine analogues displaying enhanced activity and an unprecedented tubulin binding steric tolerance: C20' urea derivatives. Journal of Medicinal Chemistry, 56(3), 628–639.
  • Li, A. J., Xie, W., Wang, M., & Xu, S. C. (2017a). Molecular dynamics of dopamine to transmit through molecular channels within D3R. Acta Physico-Chimica Sinica, 33, 927–940.
  • Li, A. J., Xie, W., Wang, M., & Xu, S. C. (2017b). Molecular mechanism and dynamics of s-deoxyephedrine moving through molecular channels within D3R. ACS Omega, 2(12), 8896–8910.
  • Lobert, S., Boyd, C. A., & Correia, J. J. (1997). Divalent cation and ionic strength effects on Vinca alkaloid-induced tubulin self-association. Biophysical Journal, 72(1), 416–427.
  • Lobert, S., Vulevic, B., & Correia, J. J. (1996). Interaction of vinca alkaloids with tubulin: A comparison of vinblastine, vincristine, and vinorelbine. Biochemistry, 35(21), 6806–6814.
  • Marrink, S. J., & Berendsen, H. J. (1994). Simulation of water transport through a lipid membrane. The Journal of Physical Chemistry, 98(15), 4155–4168.
  • Marrink, S. J., Jähnig, F., & Berendsen, H. J. (1996). Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophysical Journal, 71(2), 632–647.
  • Miyamoto, S., & Kollman, P. A. (1992). SETTLE an analytical version of the shake and rattle algorithms for rigid water models. Journal of Computational Chemistry, 13(8), 952–962.
  • Nettles, J. H., Li, H., Cornett, B., Krahn, J. M., Snyder, J. P., & Downing, K. H. (2004). The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science (New York, N.Y.), 305(5685), 866–869.
  • Nichols, J. W., & Deamer, D. W. (1980). Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. Proceedings of the National Academy of Sciences of United States of America, 77(4), 2038–2042.
  • Noble, R. L., Beer, C. T., & Cutts, J. H. (1958). Role of chance observations in chemotherapy: Vinca rosea. Annals of the New York Academy of Sciences, 76(3), 882–894.
  • Owellen, R. J., Owens, A. H., Jr., & Donigian, D. W. (1972). The binding of vincristine, vinblastine and colchicine to tubulin. Biochemical and Biophysical Research Communications, 47(4), 685–691.
  • Owellen, R. J., Hartke, C. A., Dickerson, R. M., & Hains, F. O. (1976). Inhibition of tubulin-microtubule polymerization by drugs of the vinca alkaloid class. Cancer Research, 36(4), 1499–1502.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Rai, S. S., & Wolff, J. (1996). Localization of the vinblastine-binding site on beta-tubulin. The Journal of Biological Chemistry, 271(25), 14707–14711.
  • Ravelli, R. B., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A., & Knossow, M. (2004). Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 428(6979), 198–202.
  • Schiff, P. B., Fant, J., & Horwitz, S. B. (1979). Promotion of microtuble assembly in vitro by taxol. Nature, 277(5698), 665–667.
  • Sertel, S., Fu, Y., Zu, Y., Rebacz, B., Konkimalla, B., Plinkert, P. K., … Efferth, T. (2011). Molecular docking and pharmacogenomics of vinca alkaloids and their monomeric precursors, vindoline and catharanthine. Biochemical Pharmacology, 81(6), 723–735.
  • Shearwin, K. E., & Timasheff, S. N. (1994). Effect of colchicine analogues on the dissociation of alpha beta tubulin into subunits: The locus of colchicine binding. Biochemistry, 33(4), 894–901.
  • Sheng, L. X., Da, Y. X., Long, Y., Hong, L. Z., & Cho, T. P. (2008). Synthesis and biological evaluation of C-12′ substituted vinflunine derivatives. Bioorganic & Medicinal Chemistry Letters, 18(16), 4602–4605.
  • Shi, G., Wang, Y., Jin, Y., Chi, S., Shi, Q., Ge, M., … Xu, S. (2012). Structural insight into the mechanism of epothilone A bound to beta-tubulin and its mutants at Arg282Gln and Thr274Ile. Journal of Biomolecular Structure & Dynamics, 30(5), 559–573.
  • Shinoda, W., Mikami, M., Baba, T., & Hato, M. (2004). Molecular dynamics study on the effects of chain branching on the physical properties of lipid bilayers: 2. permeability. Journal of Physical Chemistry B, 108(26), 9346–9356.
  • SYBYL. (2006). SYBYL Molecular Modeling System, Version 7.2. St. Louis, MO: Tripos Inc.
  • Uppuluri, S., Knipling, L., Sackett, D. L., & Wolff, J. (1993). Localization of the colchicine-binding site of tubulin . Proceedings of the National Academy of Sciences of the United States of America, 90(24), 11598–11602.
  • Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). Gromacs: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.
  • Van der Spoel, D., Lindahl, E., Hess, B., van Buuren, A. R., Apol, E., Meulenhoff, P. J., & Berendsen, H. J. (2005). User Manual version 3.2. www.gromacs.org.
  • Van Gunsteren, W., Billeter, S., Eising, A., Hunenberger, P., Kruger, P., Mark, A. … Tironi, I. (1996). Biomolecular simulation: The Gromos 96 manual and user guide, 1st ed. Zurich, Switzerland: Hochschulverlag AG an der ETH Zurich.
  • Vulevic, B., Lobert, S., & Correia, J. J. (1997). Role of guanine nucleotides in the vinblastine-induced self-association of tubulin: Effects of guanosine alpha,beta-methylenetriphosphate and guanosine alpha,beta-methylenediphosphate. Biochemistry, 36(42), 12828–12835.
  • Wang, M., Xie, W., Li, A., & Xu, S. C. (2016). Structural basis and mechanism of chiral benzedrine molecules interacting with third dopamine receptor. Chirality, 28(10), 674–685.
  • Wang, Y., Bian, F. Y., Deng, S. R., Shi, Q., Ge, M. F., Wang, S., … Xu, S. C. (2011). The key residues of active sites on the catalytic fragment for paclitaxel interacting with poly(ADP-Ribose) polymerase. Journal of Biomolecular Structure and Dynamics, 28(6), 881–895.
  • Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from taxus brevifolia. Journal of the American Chemical Society, 93(9), 2325–2327.
  • World Health Report. (2010). World Health Organization (WHO).
  • Xie, W., Xu, Z. R., Wang, M., & Xu, S. C. (2016). Molecular dynamics simulation for levo-benzedrine to transmit through molecular channels within D3R. Acta Physico-Chimica Sinica, 32(4), 907–920.
  • Xie, W., Wang, M., Li, A. J., & Xu, S. C. (2017). Molecular dynamics simulation of d-benzedrine transmitting through molecular channels within D3R. Journal of Biomolecular Structure and Dynamics, 35(8), 1672–1684.
  • Xu, S. C., Chi, S. M., Jin, Y., Shi, Q., Ge, M. F., Wang, S., & Zhang, X. K. (2012). Molecular dynamics simulation and density functional theory studies on the active pocket for the binding of paclitaxel to tubulin. Journal of Molecular Modeling, 18, 377–391.
  • Xu, S. C., Deng, S. R., Ma, L. Y., Shi, Q., Ge, M. F., & Zhang, X. K. (2009). Active sites for retinal binding to bovine rhodopsin. Acta Physico-Chimica Sinica, 25, 1290–1296.
  • Yue, Q. X., Liu, X. A., & Guo, D. A. (2010). Microtubule-binding natural products for cancer therapy. Planta Medica, 76(11), 1037–1043.
  • Yun-San Yip, A., Yuen-Yuen Ong, E., & Chow, L. W. C. (2008). Vinflunine: Clinical perspectives of an emerging anticancer agent. Expert Opinion on Investigational Drugs, 17(4), 583–591.
  • Zahn, D., & Brickmann, J. (2002). Molecular dynamics study of water pores in a phospholipid bilayer. Chemical Physics Letters, 352(5-6), 441–446.
  • Zhang, J. W., Bian, F. Y., Shi, G. J., & Xu, S. C. (2014). Molecular dynamics simulation for dopamine to diffuse within and permeate through POPC phospholipid bilayer membrane. Acta Physico-Chimica Sinica, 30(1), 183–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.