288
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Virtual screening of a natural compound library at orthosteric and allosteric binding sites of the neurotensin receptor

, , &
Pages 4494-4506 | Received 09 Feb 2018, Accepted 19 Nov 2018, Published online: 09 Jan 2019

References

  • Ali, M. R., Sadoqi, M., Møller, S. G., Boutajangout, A., & Mezei, M. (2017). Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies. Journal of Molecular Graphics and Modeling, 76, 36–42. doi: 10.1016/j.jmgm.2017.06.027
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. doi: 10.1063/1.448118
  • Bowman, G. R., Bolin, E. R., Hart, K. M., Maguire, B. C., & Marqusee, S. (2015). Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Proceedings of the National Academy of Sciences, 112(9), 2734–2739. doi: 10.1073/pnas.1417811112
  • Chaput, L., Martinez-Sanz, J., Saettel, N., & Mouawad, L. (2016). Benchmark of four popular virtual screening programs: Construction of the active/decoy dataset remains a major determinant of measured performance. Journal of Cheminformatics, 8, 56. doi: 10.1186/s13321-016-0167-x
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The AMBER biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. doi: 10.1002/jcc.20290
  • Case, D. A. (2012). AMBER 12. San Francisco, CA: University of California. Retrieved from http://ambermd.org/
  • Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual screening with AutoDock: Theory and practice. Expert Opinion in Drug Discovery, 5(6), 597–607. doi: 10.1517/17460441.2010.484460
  • Deller, M. C., Kong, L., & Rupp, B. (2016). Protein stability: A crystallographer’s perspective. Acta Crystallography F Structural Biology Communication, 72(2), 72–95. doi: 10.1107/S2053230X15024619
  • Egloff, P., Hillenbrand, M., Klenk, C., Batyuk, A., Heine, P., Balada, S., … Plückthun, A. (2014). Structure of signaling-competent neurotensin receptor1 obtained by directed evolution in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 111, 655–662. doi: 10.1073/pnas.1317903111
  • Feher, V. A., Durrant, J. D., Adam, T., Wart, V., & Amaro, R. E. (2014). Computational approaches to mapping allosteric pathways. Current Opinion in Structural Biology, 25, 98–103. doi: 10.1016/j.sbi.2014.02.004
  • Garbuzynskiy, S. O., Melnik, B. S., Lobanov, M. Y., Finkelstein, A. V., & Galzitskaya, O. V. (2005). Comparison of X-ray and NMR structures: Is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Proteins: Structure, Function, and Bioinformatics, 60(1), 139–147. doi: 10.1002/prot.20491
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity – A rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. doi: 10.1016/0040-4020(80)80168-2
  • Harding, P. J., Attrill, H., Boehringer, J., Ross, S., Wadhams, G. H., Smith, E., … Watts, A. (2009). Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor1, reconstituted into phospholipid bilayers. Biophysical Journal, 96(3), 964–973. doi: 10.1016/j.bpj.2008.09.054
  • Hershberger, P. M., Hedrick, M. P., Peddibhotla, S., Mangravita-Novo, A., Gosalia, P., Li, Y., … Roth, G. P. (2014). Imidazole-derived agonists for the neurotensin 1 receptor. Bio-Organic Medicinal Chemistry Letters, 24(1), 262–267. doi: 10.1016/j.bmcl.2013.11.026
  • Hertig, S., Latorraca, N. R., & Dror, R. O. (2016). Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations. PLOS Computational Biology, 12(6), e1004746. doi: 10.1371/journal.pcbi.1004746
  • Huang, N., Brian, K., Shoichet, B. K., & Irwin, J. J. (2006). Benchmarking sets for molecular docking. Journal of Medicinal Chemistry, 49(23), 6789–6801. doi: 10.1021/jm0608356
  • Huang, S. Y., & Zou, X. (2006). Efficient molecular docking of NMR structures: Application to HIV-1 protease. Protein Science, 16(1), 43–51. doi: 10.1110/ps.062501507
  • Huber, S., Casagrande, F., Hug, M. N., Wang, L., Heine, P., Kummer, L., … Hennig, M. (2017). SPR-based fragment screening with neurotensin receptor1 generates novel small molecule ligands. PLoS One, 12(5), e0175842. doi: 10.1371/journal.pone.0175842
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(33–38), 27–28. doi: 10.1016/0263-7855(96)00018-5
  • Jakalian, A., Bush, B. L., Jack, D. B., & Bayly, C. I. (2000). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. method. Journal of Computational Chemistry, 21(2), 132–146. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.3.CO;2-G
  • Jakalian, A., Jack, D. B., & Bayly, C. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. doi: 10.1002/jcc.10128
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. doi: 10.1021/ja9621760
  • Kaufman, L., & Rousseeuw, P. (1990). Finding groups in data: An introduction to cluster analysis. Hoboken, NJ: Wiley-VCH Verlag GmbH & Co.
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. http://www.nature.com/nrd/journal/v3/n11/suppinfo/nrd1549_S1.html doi: 10.1038/nrd1549
  • Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., … Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10(5), 733–755. doi: 10.1038/nprot.2015.043
  • Kozakov, D., Hall, D. R., Chuang, G.-Y., Cencic, R., Brenke, R., Grove, L. E., … Vajda, S. (2011). Structural conservation of druggable hot spots in protein–protein interfaces. Proceedings of the National Academy of Sciences, 108(33), 13528–13533. doi: 10.1073/pnas.1101835108
  • Krumm, B. E., Lee, S., Bhattacharya, S., Botos, I., White, C. F., Du, H., … Grisshammer, R. (2016). Structure and dynamics of a constitutively active neurotensin receptor. Nature Scientific Reports, 6, 38564. doi: 10.1038/srep38564
  • Lee, S., Bhattacharya, S., Tate, C. G., Grisshammer, R., & Vaidehi, N. (2015). Structural dynamics and thermostabilization of neurotensin receptor 1. Journal of Physical Chemistry B, 119(15), 4917–4928. doi: 10.1021/jp510735f
  • Lengauer, T., & Rarey, M. (1996). Computational methods for biomolecular docking. Current Opinion in Structural Biology, 6(3), 402–406. doi: 10.1016/S0959-440X(96)80061-3
  • Loncharich, R. J., Brooks, B. R., & Pastor, R. W. (1992). Langevin dynamics of peptides: The frictional dependence of isomerization rates of N‐acetylalanyl‐N′‐methylamide. Biopolymers, 32(5), 523–535. doi: 10.1002/bip.360320508
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer Aided-Drug Design, 7(2), 146–157. doi: 10.2174/157340911795677602
  • Mezei, M. S. (2010). A simulation facilitator and analysis program. Journal of Computational Chemistry, 31(14), 2658–2668. doi: 10.1002/jcc.21551
  • Mezei, M., & Zhou, M. M. (2010). DOCKRES: A computer program that analyzes the output of virtual screening of small molecules. Source Code for Biology and Medicine, 5(1), 2. doi: 10.1186/1751-0473-5-2
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi: 10.1002/jcc.21256
  • Motlagh, H. N., Wrabl, J. O., Li, J., & Hilser, V. J. (2014). The ensemble nature of allostery. Nature, 508(7496), 331–339. doi: 10.1038/nature13001
  • Pelaprat, D. (2006). Interactions between neurotensin receptors and G proteins. Peptides, 27(10), 2476–2487. doi: 10.1016/j.peptides.2006.04.027
  • Tautermann, C. S., Seeliger, D., & Kriegl, J. M. (2015). What can we learn from molecular dynamics simulations for GPCR drug design? Computational and Structural Biotechnology Journal, 13, 111–121. doi: 10.1016/j.csbj.2014.12.002
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multi-threading. Journal of Computational Chemistry, 31, 455–461. doi: 10.1002/jcc.21334
  • Vincent, J. P., Mazella, J., & Kitabgi, P. (1999). Neurotensin and neurotensin receptors. Trends in Pharmacological Sciences, 4, 302–309. doi: 10.1016/S0165-6147(99)01357-7
  • White, J. F., Noinaj, N., Shibata, Y., Love, J., Kloss, B., Xu, F., … Grisshammer, R. (2012). Structure of the agonist-bound neurotensin receptor. Nature, 490(7421), 508–513. doi: 10.1038/nature11558
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247–260. doi: 10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general AMBER force field. Journal of Computational Chemistry, 25(9), 1157–1174. doi: 10.1002/jcc.20035
  • Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., … Houae, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics, 18(18), 12964. doi: 10.1039/C6CP01555G
  • Wong, S. E., & Lightstone, F. C. (2011). Accounting for water molecules in drug design. Expert Opinion on Drug Discovery, 6(1), 65–74. doi: 10.1517/17460441.2011.534452
  • Yuan, S., Filipek, S., Palczewski, K., & Vogel, H. (2014). Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 5, 4733. doi: 10.1038/ncomms5733

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.