441
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies

&
Pages 48-65 | Received 26 Oct 2018, Accepted 27 Dec 2018, Published online: 07 Feb 2019

References

  • Anderson, H. C. (1983). Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52, 24–34.
  • Arora, R., Issar, U., & Kakkar, R. (2018). In silico study of the active site of Helicobacter pylori urease and its inhibition by hydroxamic acids. Journal of Molecular Graphics and Modelling, 83, 64–73. doi: 10.1016/j.jmgm.2018.04.018
  • Badhani, B., & Kakkar, R. (2017). In silico studies on potential MCF-7 inhibitors: A combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. Journal of Biomolecular Structure Dynamics, 35(9), 1950–1967. doi: 10.1080/07391102.2016.1202863
  • Balasubramanian, S., Ramos, J., Luo, W., Sirisawad, M., Verner, E., & Buggy, J. J. (2008). A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia, 22(5), 1026–1034. doi: 10.1038/leu.2008.9
  • Caron, G., & Ermondi, G. (2016). Molecular descriptors for polarity: The need for going beyond polar surface area. Future Medicinal Chemistry, 8(17), 2013–2016. doi: 10.4155/fmc-2016-0165
  • Chakrabarti, A., Melesina, J., Kolbinger, F. R., Oehme, I., Senger, J., Witt, O., … Jung, M. (2016). Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Medicinal Chemistry, 8(13), 1609–1634. doi: 10.4155/fmc-2016-0117
  • Cho, A. E., & Rinaldo, D. (2009). Extension of QM/MM docking and its applications to metalloproteins. Journal of Computational Chemistry, 30(16),2609–2616. doi: 10.1002/jcc.21270
  • Debnath, T., Majumdar, S., Kalle, A. M., Aparna, V., & Debnath, S. (2015). Identification of potent histone deacetylase 8 inhibitors using pharmacophore-based virtual screening, three-dimensional quantitative structure–activity relationship, and docking study. Research and Reports in Medicinal Chemistry, 5,21–39. doi: 10.2147/RRMC.S81388
  • Decroos, C., Bowman, C. M., Moser, J. A., Christianson, K. E., Deardorff, M. A., & Christianson, D. W. (2014). Compromised structure and function of HDAC8 mutants identified in Cornelia de Lange Syndrome spectrum disorders. ACS Chemical Biology, 9(9), 2157–2164. doi: 10.1021/cb5003762
  • Delcuve, G. P., Khan, D. H., & Davie, J. R. (2012). Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clinical Epigenetics, 4(1), 5. doi: 10.1186/1868-7083-4-5
  • Deora, G. S., Joshi, P., Rathore, V., Kumar, K. L., Ohlyan, R., & Kandale, A. (2013). Pharmacophore modeling and 3D QSAR analysis of isothiazolidinedione derivatives as PTP1B inhibitors. Medicinal Chemistry Research, 22(7), 3478–3484. doi: 10.1007/s00044-012-0349-7
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006a). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. doi: 10.1007/s10822-006-9087-6
  • Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006b). PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chemical Biology & Drug Design, 67, 370–372. doi: 10.1111/j.1747-0285.2006.00384.x
  • Drwal, M. N., & Griffith, R. (2013). Combination of ligand and structure-based methods in virtual screening. Drug Discovery Today: Technologies, 10,395–401. doi: 10.1016/j.ddtec.2013.02.002
  • Duvic, M., & Vu, J. (2007). Vorinostat: A new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opinion on Investigational Drugs, 16(7), 1111–1120. doi: 10.1517/13543784.16.7.1111
  • Falkenberg, K. J., & Johnstone, R. W. (2014). Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nature Reviews Drug Discovery, 13(9), 673–691. doi: 10.1038/nrd4360
  • Fenichel, M. P. (2015). FDA approves new agent for multiple myeloma. Journal of the National Cancer Institute, 107(6), djv165. doi: 10.1093/jnci/djv165
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2!. Journal of Molecular Graphics & Modelling, 20(4), 269–276. doi: 10.1016/S1093-3263(01)00123-1
  • Grant, C., Rahman, F., Piekarz, R., Peer, C., Frye, R., Robey, R. W., … Bates, S. E. (2010). Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Review of Anticancer Therapy, 10(7), 997–1008. doi: 10.1586/era.10.88
  • Heimburg, T., Chakrabarti, A., Lancelot, J., Marek, M., Melesina, J., Hauser, A.-T., … Sippl, W. (2016). Structure-based design and synthesis of novel inhibitors targeting HDAC8 from schistosoma mansoni for the treatment of schistosomiasis. Journal of Medicinal Chemistry, 59(6), 2423–−2435. doi: 10.1021/acs.jmedchem.5b01478
  • Heimburg, T., Kolbinger, F. R., Zeyen, P., Ghazy, E., Herp, D., Schmidtkunz, K., … Sippl, W. (2017). Structure-based design and biological characterization of selective histone deacetylase 8 (HDAC8) inhibitors with anti-neuroblastoma activity. Journal of Medicinal Chemistry, 60(24), 10188–10204. doi: 10.1021/acs.jmedchem.7b01447
  • Hirabayashi, A., Mukaiyama, H., Kobayashi, H., Shiohara, H., Nakayama, S., Ozawa, M., … Isaji, M. (2009). Structure-activity relationship studies of 5-benzylaminoimidazo-[1. C]pyrimidine-8-carboxamide derivatives as potent, highly selective ZAP-70 kinase inhibitors. Bioorganic Medicinal Chemistry, 17(1), 284–294.− doi: 10.1016/j.bmc.2008.10.070
  • Hou, X., Du, J., Liu, R., Zhou, Y., Li, M., Xu, W., & Fang, H. (2015). Enhancing the sensitivity of pharmacophore-based virtual screening by incorporating customized ZBG features: A case study using histone deacetylase 8. Journal of Chemical Information and Modeling, 55(4),861–871. doi: 10.1021/ci500762z
  • Ingham, O. J., Paranal, R. M., Smith, W. B., Escobar, R. A., Yueh, H., Snyder, T., … Beeler, A. B. (2016). Development of a potent and selective HDAC8 inhibitor. ACS Medicinal Chemistry Letters, 7(10), 929–932.
  • Kaiser, F. J., Ansari, M., Braunholz, D., Concepción Gil-Rodríguez, M., Decroos, C., Wilde, J. J., … Deardorff, M. A. (2014). Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance. Human Molecular Genetics, 23(11), 2888–2900. doi: 10.1093/hmg/ddu002
  • Kakkar, R. (2011). Structure-based design of PDHK2 inhibitors from docking studies. International Research Journal of Pharmaceutical Sciences, 1–50. 58.
  • Kakkar, R., Arora, R., Gahlot, P., & Gupta, D. (2014). An insight into pyruvate dehydrogenase kinase (PDHK) inhibition through pharmacophore modeling and QSAR studies. Journal of Computational Sciences, 5, 558–567. doi: 10.1016/j.jocs.2014.04.006
  • Kang, Y., Nian, H., Rajendran, P., Kim, E., Dashwood, W. M., Pinto, J. T., … Dashwood, R. H. (2014). HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death and Disease, 5,e1476. doi: 10.1038/cddis.2014.422
  • Khan, N., Jeffers, M., Kumar, S., Hackett, C., Boldog, F., Khramtsov, N., … Sehested, M. (2008). Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochemical Journal, 409(2), 581–589. doi: 10.1042/BJ20070779
  • Khandelwal, A., Lukacova, V., Comez, D., Kroll, D. M., Raha, S., & Balaz, S. (2005). A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. Journal of Medicinal Chemistry, 48(17), 5437–5447. doi: 10.1021/jm049050v
  • Kim, S., Lee, Y., Kim, S., Lee, S. J., Heo, P. K., Kim, S., … Lee, K. W. (2018). Identification of novel human HDAC8 inhibitors by pharmacophore‐based virtual screening and density functional theory approaches. Bulletin of the Korean Chemical Society, 39(2), 197–206. doi: 10.1002/bkcs.11366
  • Kubinyi, H. (2008). Comparative Molecular Field Analysis (CoMFA). In J. Gasteiger (Ed.), Handbook of Chemoinformatics: From Data to Knowledge in 4 Volumes. Weinheim: Wiley-VCH Verlag GmbH. doi: 10.1002/9783527618279.ch44d
  • Kulandaivelu, U., Chilakamari, L. M., Jadav, S. S., Rao, T. R., Jayaveera, K. N., Shireesha, B., … Jayaprakash, V. (2014). Hydroxamates of para-aminobenzoic acid as selective inhibitors of HDAC8. Bioorganic Chemistry, 57,116–120. doi: 10.1016/j.bioorg.2014.08.005
  • Kumari, T., Issar, U., & Kakkar, R. (2014). Docking modes of BB-3497 into the PDF active site- A comparison of the pure MM and QM/MM based docking strategies. Current Computer Aided-Drug Design, 10(4), 315–326.
  • Lee, H., Rezai-Zadeh, N., & Seto, E. (2004). Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Molecular Cell Biology, 24(2), 765–773. doi: 10.1128/MCB.24.2.765-773.2004
  • Li, Y., Wang, Y., & Zhang, F. (2010). Pharmacophore modelling and 3D-QSAR analysis of phosphoinositide 3-kinase p110α inhibitors. Journal of Molecular Modeling, 16(9), 1449–1460. doi: 10.1007/s00894-010-0659-y
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. doi: 10.1016/S0169-409X(96)00423-1
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26, 46(1–3), 3. doi: 10.1016/j.addr.2012.09.019
  • Marek, M., Shaik, T. B., Heimburg, T., Chakrabarti, A., Lancelot, J., Ramos-Morales, E., … Romier, C. (2018). Characterization of histone deacetylase 8 (HDAC8) selective inhibition reveals specific active site structural and functional determinants. Journal of Medicinal Chemistry, 61(22), 10000–10016. doi: 10.1021/acs.jmedchem.8b01087
  • Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Reviews Cancer, 6, 38–51. doi: 10.1038/nrc1779
  • Negmeldin, A. T., & Pflum, M. K. H. (2017). The structural requirements of histone deacetylase inhibitors: SAHA analogs modified at the C5 position display dual HDAC6/8 selectivity. Bioorganic & Medicinal Chemistry Letters, 27, 3254–3258. doi: 10.1016/j.bmcl.2017.06.033
  • Negmeldin, A. T., Knoff, J. R., & Pflum, M. K. H. (2018). The structural requirements of histone deacetylase inhibitors: C4-modified SAHA analogs display dual HDAC6/HDAC8 selectivity. European Journal of Medicinal Chemistry, 143, 1790–1806. doi: 10.1016/j.ejmech.2017.10.076
  • Negmeldin, A. T., Padige, G., Bieliauskas, A. V., & Pflum, M. K. H. (2017). Structural requirements of HDAC inhibitors: SAHA analogues modified at the C2 position display HDAC6/8 selectivity. ACS Medicinal Chemistry Letters, 8(3), 281–286. doi: 10.1021/acsmedchemlett.6b00124
  • Oehme, I., Deubzer, H. E., Wegener, D., Pickert, D., Linke, J.-P., Hero, B., … Witt, O. (2009). Histone deacetylase 8 in neuroblastoma tumorigenesis. Clinical Cancer Research, 15(1), 91–−99. doi: 10.1158/1078-0432.CCR-08-0684
  • Okamoto, K., Ikemori-Kawada, M., Jestel, A., von König, K., Funahashi, Y., Matsushima, T., … Matsui, J. (2015). Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Medicinal Chemistry Letters, 6(1), 89–94. doi: 10.1021/ml500394m
  • Olson, D. E., Wagner, F. F., Kaya, T., Gale, J. P., Aidoud, N., Davoine, E. L., … Holson, E. B. (2013). Discovery of the first histone deacetylase 6/8 dual inhibitors. Journal of Medicinal Chemistry, 56(11), 4816–4820. doi: 10.1021/jm400390r
  • Poole, R. M. (2014). Belinostat: first global approval. Drugs, 74(13),1543–1554. doi: 10.1007/s40265-014-0275-8
  • Roche, J., & Bertrand, P. (2016). Inside HDACs with more selective HDAC inhibitors. European Journal of Medicinal Chemistry, 121, 451–483. doi: 10.1016/j.ejmech.2016.05.047
  • Sanguinetti, M. C., & Tristani-Firouzi, M. (2006). hERG potassium channels and cardiac arrhythmia. Nature, 440(7083),463–469. doi: 10.1038/nature04710
  • Schmidt, S., Gonzalez, D., & Derendorf, H. (2010). Significance of protein binding in pharmacokinetics and pharmacodynamics. Journal of Pharmaceutical Sciences, 99(3), 1107–1122. doi: 10.1002/jps.21916
  • Scope, W. C., Anderson, H. C., Berens, P. H., & Wilson, K. R. (1982). A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. Journal of Chemical Physics, 76, 637–649. doi: 10.1063/1.442716
  • Somoza, J. R., Skene, R. J., Katz, B. A., Mol, C., Ho, J. D., Jennings, A. J., … Tari, L. W. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 12(7), 1325–1334. doi: 10.1016/j.str.2004.04.012
  • Sundarapandian, T., Shalini, J., Sugunadevi, S., & Woo, L. K. (2010). Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery. Journal of Molecular Graphics and Modelling, 29(3),382–395. doi: 10.1016/j.jmgm.2010.07.007
  • Suzuki, T., Muto, N., Bando, M., Itoh, Y., Masaki, A., Ri, M., … Miyata, N. (2014). Design, synthesis, and biological activity of NCC149 derivatives as histone deacetylase 8 selective inhibitors. ChemMedChem, 9(3), 657–664. doi: 10.1002/cmdc.201300414
  • Suzuki, T., Ota, Y., Ri, M., Bando, M., Gotoh, A., Itoh, Y., … Miyata, N. (2012). Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. Journal of Medicinal Chemistry, 55(22), 9562–9575. doi: 10.1021/jm300837y
  • Taha, T. Y., Aboukhatwa, S. M., Knopp, R. C., Ikegaki, N., Abdelkarim, H., Neerasa, J., … Petukhov, P. A. (2017). Design, synthesis, and biological evaluation of tetrahydroisoquinoline-based histone deacetylase 8 selective inhibitors. ACS Medicinal Chemistry Letters, 8(8), 824–829. doi: 10.1021/acsmedchemlett.7b00126
  • Teli, M. K., & Rajanikant, G. K. (2012). Pharmacophore generation and atom-based 3D-QSAR of N-isopropyl pyrrole-based derivatives as HMG-CoA reductase inhibitors. Organic and Medicinal Chemistry Letters, 2,1–10. doi: 10.1186/2191-2858-2-25
  • Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48, 159–205. doi: 10.1016/j.csda.2004.03.005
  • Vannini, A., Volpari, C., Filocamo, G., Casavola, E. C., Brunetti, M., Renzoni, D., … Di Marco, S. (2004). Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proceedings of the National Academy of Sciences USA, 101(42), 15064–15069. doi: 10.1073/pnas.0404603101
  • Zhang, Y., Feng, J., Jia, Y., Wang, X., Zhang, L., Liu, C., … Xu, W. (2011). Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. Journal of Medicinal Chemistry, 54(8), 2823–2838. doi: 10.1021/jm101605z
  • Zhao, C., Zang, J., Ding, Q., Inks, E. S., Xu, W., Chou, C. J., & Zhang, Y. (2018). Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors. European Journal of Medicinal Chemistry, 150, 282–291. doi: 10.1016/j.ejmech.2018.03.002
  • Zwergel, C., Stazi, G., Valente, S., & Mai, A. (2016). Histone deacetylase inhibitors: updated studies in various epigenetic-related diseases. Journal of Clinical Epigenetics, 2,1–15. doi: 10.21767/2472-1158.100015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.