339
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Deep-learning based repurposing of FDA-approved drugs against Candida albicans dihydrofolate reductase and molecular dynamics study

, & ORCID Icon
Pages 8420-8436 | Received 22 Oct 2020, Accepted 28 Mar 2021, Published online: 21 Apr 2021

References

  • Akl, A., El-Henawy, I., Salah, A., & Li, K. (2019). Optimizing deep neural networks hyperparameter positions and values. Journal of Intelligent & Fuzzy Systems, 37(5), 6665–6681. https://doi.org/10.3233/JIFS-190033
  • Askari, B. S., & Krajinovic, M. (2010). Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Current Genomics, 11(8), 578–583. https://doi.org/10.2174/138920210793360925
  • Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(2), 281–305.
  • Brown, G. D., Denning, D. W., & Levitz, S. M. (2012). Tackling human fungal infections. Science, 336(6082), 647. https://doi.org/10.1126/science.1222236
  • Brzankalski, G. E., Najvar, L. K., Wiederhold, N. P., Bocanegra, R., Fothergill, A. W., Rinaldi, M. G., Pattterson, T. F., & Graybill, J. R. (2008). Evaluation of aminocandin and caspofungin against Candida glabrata including isolates with reduced caspofungin susceptibility. The Journal of Antimicrobial Chemotherapy, 62(5), 1094–1100. https://doi.org/10.1093/jac/dkn304
  • Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039
  • de Leuw, P., & Stephan, C. (2017). Protease inhibitors for the treatment of hepatitis C virus infection. GMS Infectious Diseases, 5, Doc08. https://doi.org/10.3205/id000034
  • Dehghani, M., Montazeri, Z., Dhiman, G., Malik, O. P., Morales-Menendez, R., Ramirez-Mendoza, R. A., Dehghani, A., Guerrero, J. M., & Parra-Arroyo, L. (2020). A spring search algorithm applied to engineering optimization problems. Applied Sciences, 10(18), 6173. https://doi.org/10.3390/app10186173
  • Dehghani, M., Montazeri, Z., Givi, H., Guerrero, J. M., & Dhiman, G. (2020). Darts game optimizer: A new optimization technique based on darts game. International Journal of Intelligent Engineering and Systems, 13(5), 286–294. https://doi.org/10.22266/ijies2020.1031.26
  • Dehghani, M., Montazeri, Z., Malik, O. P., Dhiman, G., & Kumar, V. (2019). BOSA: Binary orientation search algorithm. International Journal of Innovative Technology and Exploring Engineering, 9, 5306–5310.
  • Dhiman, G. (2021). ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems. Engineering with Computers, 37(1), 323–331. https://doi.org/10.1007/s00366-019-00826-w
  • Dhiman, G., Garg, M., Nagar, A., Kumar, V., & Dehghani, M. (2020). A novel algorithm for global optimization: Rat swarm optimizer. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02580-0
  • Dhiman, G., & Kaur, A. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82, 148–174. https://doi.org/10.1016/j.engappai.2019.03.021
  • Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014
  • Dhiman, G., & Kumar, V. (2018). Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems, 159, 20–50. https://doi.org/10.1016/j.knosys.2018.06.001
  • Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024
  • Dhiman, G., Oliva, D., Kaur, A., Singh, K. K., Vimal, S., Sharma, A., & Cengiz, K. (2021). BEPO: A novel binary emperor penguin optimizer for automatic feature selection. Knowledge-Based Systems, 211, 106560. https://doi.org/10.1016/j.knosys.2020.106560
  • DiNubile, M. J., Hille, D., Sable, C. A., & Kartsonis, N. A. (2005). Invasive candidiasis in cancer patients: Observations from a randomized clinical trial. Journal of Infection, 50(5), 443–449. https://doi.org/10.1016/j.jinf.2005.01.016
  • Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
  • Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
  • Fanos, V., & Cataldi, L. (2000). Amphotericin B-induced nephrotoxicity: A review. Journal of Chemotherapy, 12(6), 463–470. https://doi.org/10.1179/joc.2000.12.6.463
  • Fisher, J. F., Sobel, J. D., Kauffman, C. A., & Newman, C. A. (2011). Candida urinary tract infections – Treatment. Clinical Infectious Diseases, 52(Suppl 6), S457–S466.
  • Fisher, M. C., Hawkins, N. J., Sanglard, D., & Gurr, S. J. (2018). Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 360(6390), 739–742. https://doi.org/10.1126/science.aap7999
  • Fleming, N. (2018). How artificial intelligence is changing drug discovery. Nature, 557(7707), S55–S57. https://doi.org/10.1038/d41586-018-05267-x
  • Fujitani, S., Ricardo-Dukelow, M., Kamiya, T., Sullivan, L., & Low, L. (2006). Ethnicity and other possible risk factors for candidemia at 3 tertiary care university hospitals in Hawaii. Infection Control & Hospital Epidemiology, 27(11), 1261–1263. https://doi.org/10.1086/508831
  • G-Dayanandan, N., Paulsen, J. L., Viswanathan, K., Keshipeddy, S., Lombardo, M. N., Zhou, W., Lamb, K. M., Sochia, A. E., Alverson, J. B., Priestley, N. D., Wright, D. L., & Anderson, A. C. (2014). Propargyl-linked antifolates are dual inhibitors of Candida albicans and Candida glabrata. Journal of Medicinal Chemistry, 57(6), 2643–2656. https://doi.org/10.1021/jm401916j
  • Goodsell, D. S., Morris, G. M., & Olson, A. J. (1996). Automated docking of flexible ligands: Applications of AutoDock. Journal of Molecular Recognition, 9(1), 1–5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0
  • He, Y., Zhou, L., Gao, C., Han, L., & Xu, Y. (2017). Rifampin enhances the activity of amphotericin B against Fusarium solani species complex and Aspergillus flavus species complex isolates from keratitis patients. Antimicrobial Agents and Chemotherapy, 61(4), e02069-16. https://doi.org/10.1128/AAC.02069-16
  • He, Z., Dong, W., Li, Q., Qin, C., & Li, Y. (2018). Sauchinone prevents TGF-β-induced EMT and metastasis in gastric cancer cells. Biomedicine & Pharmacotherapy, 101, 355–361. https://doi.org/10.1016/j.biopha.2018.02.121
  • Hoagland, D. T., Liu, J., Lee, R. B., & Lee, R. E. (2016). New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Advanced Drug Delivery Reviews, 102, 55–72. https://doi.org/10.1016/j.addr.2016.04.026
  • Holbrook, S. Y. L., Garzan, A., Dennis, E. K., Shrestha, S. K., & Garneau-Tsodikova, S. (2017). Repurposing antipsychotic drugs into antifungal agents: Synergistic combinations of azoles and bromperidol derivatives in the treatment of various fungal infections. European Journal of Medicinal Chemistry, 139, 12–21. https://doi.org/10.1016/j.ejmech.2017.07.030
  • Hutter, F., Lücke, J., & Schmidt-Thieme, L. (2015). Beyond manual tuning of hyperparameters. KI – Künstliche Intelligenz, 29(4), 329–337. https://doi.org/10.1007/s13218-015-0381-0
  • Jiménez, J., Škalič, M., Martínez-Rosell, G., & De Fabritiis, G. (2018). KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. Journal of Chemical Information and Modeling, 58(2), 287–296. https://doi.org/10.1021/acs.jcim.7b00650
  • Joshi, T., Joshi, T., Pundir, H., Sharma, P., Mathpal, S., & Chandra, S. (2020). Predictive modeling by deep learning, virtual screening and molecular dynamics study of natural compounds against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1802341
  • Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020). Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence, 90, 103541. https://doi.org/10.1016/j.engappai.2020.103541
  • Kuk, K., & Taylor-Cousar, J. L. (2015). Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: Current evidence and future prospects. Therapeutic Advances in Respiratory Disease, 9(6), 313–326. https://doi.org/10.1177/1753465815601934
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuyper, L. F., Baccanari, D. P., Jones, M. L., Hunter, R. N., Tansik, R. L., Joyner, S. S., Boytos, C. M., Rudolph, S. K., Knick, V., Wilson, H. R., Caddell, J. M., Friedman, H. S., Comley, J. C., & Stables, J. N. (1996). High-affinity inhibitors of dihydrofolate reductase: Antimicrobial and anticancer activities of 7,8-dialkyl-1,3-diaminopyrrolo[3,2-f]quinazolines with small molecular size. Journal of Medicinal Chemistry, 39(4), 892–903. https://doi.org/10.1021/jm9505122
  • Lai, C. C., Tan, C. K., Huang, Y. T., Shao, P. L., & Hsueh, P. R. (2008). Current challenges in the management of invasive fungal infections. Journal of Infection and Chemotherapy, 14(2), 77–85. https://doi.org/10.1007/s10156-007-0595-7
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Lin, H., Long, E., Ding, X., Diao, H., Chen, Z., Liu, R., Huang, J., Cai, J., Xu, S., Zhang, X., Wang, D., Chen, K., Yu, T., Wu, D., Zhao, X., Liu, Z., Wu, X., Jiang, Y., Yang, X., … Liu, Y. (2018). Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. PLoS Medicine, 15(11), e1002674. https://doi.org/10.1371/journal.pmed.1002674
  • Liu, J. Y., Shi, C., Wang, Y., Li, W. J., Zhao, Y., & Xiang, M. J. (2015). Mechanisms of azole resistance in Candida albicans clinical isolates from Shanghai, China. Research in Microbiology, 166(3), 153–161. https://doi.org/10.1016/j.resmic.2015.02.009
  • Liu, Z., Du, J., Fang, J., Yin, Y., Xu, G., & Xie, L. (2019). DeepScreening: A deep learning-based screening web server for accelerating drug discovery. Database, 2019, baz104. https://doi.org/10.1093/database/baz104
  • Long, E., Lin, H., Liu, Z., Wu, X., Wang, L., Jiang, J., An, Y., Lin, Z., Li, X., Chen, J., Li, J., Cao, Q., Wang, D., Liu, X., Chen, W., & Liu, Y. (2017). An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nature Biomedical Engineering, 1(2), 1–8. https://doi.org/10.1038/s41551-016-0024
  • Mai, L., Koliousis, A., Li, G., Brabete, A.-O., & Pietzuch, P. (2019). Taming hyper-parameters in deep learning systems. ACM SIGOPS Operating Systems Review, 53(1), 52–58. https://doi.org/10.1145/3352020.3352029
  • Odds, F. (2005). Genomics, molecular targets and the discovery of antifungal drugs. Revista Iberoamericana de Micologia, 22(4), 229–237. https://doi.org/10.1016/s1130-1406(05)70048-6
  • Odds, F. C., Brown, A. J., & Gow, N. A. (2003). Antifungal agents: Mechanisms of action. Trends in Microbiology, 11(6), 272–279. https://doi.org/10.1016/s0966-842x(03)00117-3
  • Ostrosky-Zeichner, L., Marr, K. A., Rex, J. H., & Cohen, S. H. (2003). Amphotericin B: Time for a new ‘gold standard’. Clinical Infectious Diseases, 37(3), 415–425. https://doi.org/10.1086/376634
  • Otzen, T., Wempe, E. G., Kunz, B., Bartels, R., Lehwark-Yvetot, G., Hansel, W., Schaper, K. J., & Seydel, J. K. (2004). Folate-synthesizing enzyme system as target for development of inhibitors and inhibitor combinations against Candida albicans – Synthesis and biological activity of new 2,4-diaminopyrimidines and 4′-substituted 4-aminodiphenyl sulfones. Journal of Medicinal Chemistry, 47(1), 240–253. https://doi.org/10.1021/jm030931w
  • Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-Zeichner, L., Reboli, A. C., Schuster, M. G., Vazquez, J. A., Walsh, T. J., Zaoutis, T. E., & Sobel, J. D. (2016). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1–e50. https://doi.org/10.1093/cid/civ933
  • Park, B. J., Wannemuehler, K. A., Marston, B. J., Govender, N., Pappas, P. G., & Chiller, T. M. (2009). Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS, 23(4), 525–530. https://doi.org/10.1097/QAD.0b013e328322ffac
  • Park, K. (2019). A review of computational drug repurposing. Translational and Clinical Pharmacology, 27(2), 59–63. https://doi.org/10.12793/tcp.2019.27.2.59
  • Pazhayam, N. M., Chhibber-Goel, J., & Sharma, A. (2019). New leads for drug repurposing against malaria. Drug Discovery Today, 24(1), 263–271. https://doi.org/10.1016/j.drudis.2018.08.006
  • Perlroth, J., Choi, B., & Spellberg, B. (2007). Nosocomial fungal infections: Epidemiology, diagnosis, and treatment. Medical Mycology, 45(4), 321–346. https://doi.org/10.1080/13693780701218689
  • Pfaller, M. A. (2012). Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. The American Journal of Medicine, 125(1 Suppl), S3–S13. https://doi.org/10.1016/j.amjmed.2011.11.001
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Rusk, N. (2016). Deep learning. Nature Methods, 13(1), 35–35. https://doi.org/10.1038/nmeth.3707
  • Sanglard, D., & Odds, F. C. (2002). Resistance of Candida species to antifungal agents: Molecular mechanisms and clinical consequences. The Lancet Infectious Diseases, 2(2), 73–85. https://doi.org/10.1016/s1473-3099(02)00181-0
  • Schonell, M., Dorken, E., & Grzybowski, S. (1972). Rifampin. Canadian Medical Association Journal, 106(7), 783–786.
  • Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148–175. https://doi.org/10.1109/JPROC.2015.2494218
  • Stylianou, M., Kulesskiy, E., Lopes, J. P., Granlund, M., Wennerberg, K., & Urban, C. F. (2014). Antifungal application of nonantifungal drugs. Antimicrobial Agents and Chemotherapy, 58(2), 1055–1062. https://doi.org/10.1128/AAC.01087-13
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D., Jr. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690.
  • Volmer, A. A., Szpilman, A. M., & Carreira, E. M. (2010). Synthesis and biological evaluation of amphotericin B derivatives. Natural Product Reports, 27(9), 1329–1349. https://doi.org/10.1039/b820743g
  • Wang, R., Lai, L., & Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 16(1), 11–26. https://doi.org/10.1023/a:1016357811882
  • Wilson, L. S., Reyes, C. M., Stolpman, M., Speckman, J., Allen, K., & Beney, J. (2002). The direct cost and incidence of systemic fungal infections. Value in Health, 5(1), 26–34. https://doi.org/10.1046/j.1524-4733.2002.51108.x
  • Wright, D. L., & Anderson, A. C. (2011). Antifolate agents: A patent review (2006–2010). Expert Opinion on Therapeutic Patents, 21(9), 1293–1308. https://doi.org/10.1517/13543776.2011.587804
  • Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. https://doi.org/10.1002/jcc.21707
  • Zhang, H., Saravanan, K. M., Yang, Y., Hossain, M. T., Li, J., Ren, X., Pan, Y., & Wei, Y. (2020). Deep learning based drug screening for novel coronavirus 2019-nCov. Interdisciplinary Sciences: Computational Life Sciences, 12(3), 368–376. https://doi.org/10.1007/s12539-020-00376-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.