324
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Ebselen suitably interacts with the potential SARS-CoV-2 targets: an in-silico approach

, ORCID Icon, , &
Pages 12286-12301 | Received 12 May 2021, Accepted 13 Aug 2021, Published online: 30 Aug 2021

References

  • Adem, Ş., Eyupoglu, V., Sarfraz, I., Rasul, A., Zahoor, A. F., Ali, M., Abdalla, M., Ibrahim, I. M., & Elfiky, A. A. (2021). Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology, 85, 153310. https://doi.org/10.1016/j.phymed.2020.153310
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Azam, F., Taban, I. M., Eid, E. E., Iqbal, M., Alam, O., Khan, Mahmood, D., Anwar, M. J., Khalilullah, H., & Khan, M. U. (2020). An in-silico analysis of ivermectin interaction with potential SARS-CoV-2 targets and host nuclear importin α. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1841028
  • Baby, K., Maity, S., Mehta, C. H., Suresh, A., Nayak, U. Y., & Nayak, Y. (2020). Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19. F1000Research, 9, 1166. https://doi.org/10.12688/f1000research.26359.1
  • Beura, S., & Chetti, P. (2021). In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39(10), 3747–3713. https://doi.org/10.1080/07391102.2020.1772111
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., … Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. IEEE, 43–43. https://doi.org/10.1109/SC.2006.54
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449–3410. https://doi.org/10.1080/07391102.2020.1766572
  • Calina, D., Sarkar, C., Arsene, A. L., Salehi, B., Docea, A. O., Mondal, M., Islam, M. T., Zali, A., & Sharifi-Rad, J. (2020). Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunologic Research, 68(6), 315–324. https://doi.org/10.1007/s12026-020-09154-4
  • Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., Li, Y., Wang, R., & Lai, L. (2007). Computation of octanol-water partition coefficients by guiding an additive model with knowledge. Journal of Chemical Information and Modeling, 47(6), 2140–2148. https://doi.org/10.1021/ci700257y
  • Cherrak, S. A., Merzouk, H., & Mokhtari-Soulimane, N. (2020). Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. Plos One, 15(10), e0240653. https://doi.org/10.1371/journal.pone.0240653
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1023/A:1020444330011
  • Daina, A., & Zoete, V. (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules . ChemMedChem., 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Dariya, B., & Nagaraju, G. P. (2020). Understanding novel COVID-19: Its impact on organ failure and risk assessment for diabetic and cancer patients. Cytokine & Growth Factor Reviews, 53, 43–52. https://doi.org/10.1016/j.cytogfr.2020.05.001
  • Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences, 44(3), 1000–1005. https://doi.org/10.1021/ci034243x
  • Efremov, R. G., Chugunov, A. O., Pyrkov, T. V., Priestle, J. P., Arseniev, A. S., & Jacoby, E. (2007). Molecular lipophilicity in protein modeling and drug design. Current Medicinal Chemistry, 14(4), 393–415. https://doi.org/10.2174/092986707779941050
  • Eid, E., S Alanazi, A., Koosha, S., A Alrasheedy, A., Azam, F., M Taban, I., … A Alshawsh, M. (2019). Zerumbone induces apoptosis in breast cancer cells by targeting αvβ3 integrin upon co-administration with TP5-iRGD peptide. Molecules, 24(14), 2554. https://doi.org/10.3390/molecules24142554
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Gaillard, P., Carrupt, P. A., Testa, B., & Boudon, A. (1994). Molecular lipophilicity potential, a tool in 3D QSAR: Method and applications. Journal of Computer-Aided Molecular Design, 8(2), 83–96. https://doi.org/10.1007/BF00119860
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., Liu, L., Shan, H., Lei, C.-L., Hui, D. S. C., Du, B., Li, L.-J., Zeng, G., Yuen, K.-Y., Chen, R.-C., Tang, C.-L., Wang, T., Chen, P.-Y., Xiang, J., … Zhong, N.-S, China Medical Treatment Expert Group for Covid-19. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032
  • Haddad, E.-B., McCluskie, K., Birrell, M. A., Dabrowski, D., Pecoraro, M., Underwood, S., Chen, B., De Sanctis, G. T., Webber, S. E., Foster, M. L., & Belvisi, M. G. (2002). Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation. Journal of Immunology (Baltimore, Md.: 1950), 169(2), 974–982. https://doi.org/10.4049/jimmunol.169.2.974
  • Haritha, C. V., Sharun, K., & Jose, B. (2020). Ebselen, a new candidate therapeutic against SARS-CoV-2. International Journal of Surgery (London, England), 84, 53–56. https://doi.org/10.1016/j.ijsu.2020.10.018
  • Huang, J., & MacKerell, A. D. Jr, (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data . Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Huang, Q., Yu, L., Petros, A. M., Gunasekera, A., Liu, Z., Xu, N., Hajduk, P., Mack, J., Fesik, S. W., & Olejniczak, E. T. (2004). Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry, 43(20), 6059–6063. https://doi.org/10.1021/bi036155b
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hüther, A. M., Zhang, Y., Sauer, A., & Parnham, M. J. (1989). Antimalarial properties of ebselen. Parasitology Research, 75(5), 353–360. https://doi.org/10.1007/BF00931130
  • Islam, M. T., Nasiruddin, M., Khan, I. N., Mishra, S. K., Kudrat-E-Zahan, M., Alam Riaz, T., Ali, E. S., Rahman, M. S., Mubarak, M. S., Martorell, M., Cho, W. C., Calina, D., Docea, A. O., & Sharifi-Rad, J. (2020a). A perspective on emerging therapeutic interventions for COVID-19. Frontiers in Public Health, 8, 281 https://doi.org/10.3389/fpubh.2020.00281
  • Islam, M. T., Sarkar, C., El, ‐Kersh, D. M., Jamaddar, S., Uddin, S. J., Shilpi, J. A., & Mubarak, M. S. (2020b). Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research, 34(10), 2471–2492. https://doi.org/10.1002/ptr.6700
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kil, J., Lobarinas, E., Spankovich, C., Griffiths, S. K., Antonelli, P. J., Lynch, E. D., & Le Prell, C. G. (2017). Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: A randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet, 390(10098), 969–979. https://doi.org/10.1016/S0140-6736(17)31791-9
  • Kong, R., Yang, G., Xue, R., Liu, M., Wang, F., Hu, J., Guo, X., & Chang, S. (2020). COVID-19 Docking server: A meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics (Oxford, England), 36(20), 5109–5111. https://doi.org/10.1093/bioinformatics/btaa645
  • Khan, M., Khan, M., Khan, Z., Ahamad, T., & Ansari, W. (2020). Identification of dietary molecules as therapeutic agents to combat COVID-19 using molecular docking studies. Research Square, https://doi.org/10.21203/rs.3.rs-19560/v1
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Littler, D. R., Gully, B. S., Colson, R. N., & Rossjohn, J. (2020). Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. iScience, 23(7), 101258 https://doi.org/10.1016/j.isci.2020.101258
  • Lu, J., Vodnala, S. K., Gustavsson, A.-L., Gustafsson, T. N., Sjöberg, B., Johansson, H. A., Kumar, S., Tjernberg, A., Engman, L., Rottenberg, M. E., & Holmgren, A. (2013). Ebsulfur is a benzisothiazolone cytocidal inhibitor targeting the trypanothione reductase of Trypanosoma brucei. J Biol Chem, 288(38), 27456–27468. https://doi.org/10.1074/jbc.M113.495101
  • Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Yan, L., Zhang, R., & Rao, Z. (2015). Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9436–9441. https://doi.org/10.1073/pnas.1508686112
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mishra, A., Jain, A., & Arora, N. (2016). Mapping B-cell epitopes of major and minor peanut allergens and identifying residues contributing to IgE binding . Journal of the Science of Food and Agriculture, 96(2), 539–547. https://doi.org/10.1002/jsfa.7121
  • Mondal, M., Sarkar, C., Jamaddar, S., Khalipha, A. B. R., Islam, M. T., Mahafzah, A., & Mubarak, M. S. (2020). Evaluation of the binding affinity of anti-viral drugs against main protease of SARS-CoV-2 through a molecular docking study. Infectious Disorders Drug Targets, 20, 1-7. https://doi.org/10.2174/1871526520666201207124408
  • Montanari, F., & Ecker, G. F. (2015). Prediction of drug-ABC-transporter interaction-Recent advances and future challenges. Advanced Drug Delivery Reviews, 86, 17–26. https://doi.org/10.1016/j.addr.2015.03.001
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mukherjee, S., Weiner, W. S., Schroeder, C. E., Simpson, D. S., Hanson, A. M., Sweeney, N. L., Marvin, R. K., Ndjomou, J., Kolli, R., Isailovic, D., Schoenen, F. J., & Frick, D. N. (2014). Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chemical Biology, 9(10), 2393–2403. https://doi.org/10.1021/cb500512z
  • Nemethy, G. (1967). Hydrophobic interactions. Angewandte Chemie International Edition in English, 6(3), 195–206.
  • Parnham, M., & Sies, H. (2000). Ebselen: Prospective therapy for cerebral ischaemia. Expert Opinion on Investigational Drugs, 9(3), 607–619. https://doi.org/10.1517/13543784.9.3.607
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pyrkov, T. V., Ozerov, I. V., Balitskaya, E. D., & Efremov, R. G. (2010). Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes. Russian Journal of Bioorganic Chemistry, 36(4), 446–455. https://doi.org/10.1134/S1068162010040023
  • Renson, M., Etschenberg, E., & Winkelmann, J. (1982). U.S. Patent No. 4,352,799. Washington, DC: U.S. Patent and Trademark Office.
  • Rogstam, A., Nyblom, M., Christensen, S., Sele, C., Talibov, V. O., Lindvall, T., … Kozielski, F. (2020). Crystal Structure of Non-Structural Protein 10 from Severe Acute Respiratory Syndrome Coronavirus-2. International Journal of Molecular Sciences, 21(19), 7375. https://doi.org/10.3390/ijms21197375
  • Rut, W., Lv, Z., Zmudzinski, M., Patchett, S., Nayak, D., Snipas, S. J., … Olsen, S. K. (2020). Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances, 6(42), 1-12. https://doi.org/10.1126/sciadv.abd4596
  • Sarkar, C., Jamaddar, S., Mollick, B., Akter, M., Ahmed, T., Mahir, M. I., … Islam, M. T. (2019). Importance and the unique aspects of modalities for conducting non-clinical and pre-clinical studies of compartmental and non-compartmental analysis. Pharmacologyonline, 3, 1–15.
  • Sarkar, C., Mondal, M., Torequl Islam, M., Martorell, M., Docea, A. O., Maroyi, A., Sharifi-Rad, J., & Calina, D. (2020). Potential therapeutic options for COVID-19: Current status, challenges, and future perspectives. Frontiers in Pharmacology, 11, 572870. https://doi.org/10.3389/fphar.2020.572870
  • Sarkar, C., Jamaddar, S., Mondal, M., Khalipha, A. B. R., Islam, M. T., & Mubarak, M. S. (2020b). Natural products as anti-COVID-19 agents: An in silico study. Coronaviruses, 2(5), 10–17. https://doi.org/10.2174/2666796701999201116124851
  • Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharm, 2012, 195727. https://doi.org/10.5402/2012/195727
  • Schenone, M., Dančík, V., Wagner, B. K., & Clemons, P. A. (2013). Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol, 9(4), 232–240. https://doi.org/10.1038/nchembio.1199
  • Sies, H. (1993). Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radical Biology & Medicine, 14(3), 313–323. https://doi.org/10.1016/0891-5849(93)90028-S
  • Sies, H., & Parnham, M. J. (2020). Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radical Biology & Medicine, 156, 107–112. https://doi.org/10.1016/j.freeradbiomed.2020.06.032
  • Simanjuntak, Y., Liang, J. J., Chen, S. Y., Li, J. K., Lee, Y. L., Wu, H. C., & Lin, Y. L. (2018). Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission. PLoS Pathogens, 14(2), e1006854. https://doi.org/10.1371/journal.ppat.1006854
  • Singh, N., Sharpley, A. L., Emir, U. E., Masaki, C., Herzallah, M. M., Gluck, M. A., Sharp, T., Harmer, C. J., Vasudevan, S. R., Cowen, P. J., & Churchill, G. C. (2016). Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep, and emotional processing in humans. Neuropsychopharmacology : official Publication of the American College of Neuropsychopharmacology, 41(7), 1768–1778. https://doi.org/10.1038/npp.2015.343
  • Szakács, G., Váradi, A., Özvegy-Laczka, C., & Sarkadi, B. (2008). The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today, 13(9/10), 379–393. https://doi.org/10.1016/j.drudis.2007.12.010
  • Testa, B., Carrupt, P. A., Gaillard, P., Billois, F., & Weber, P. (1996). Lipophilicity in molecular modeling. Pharmaceutical Research, 13(3), 335–343. https://doi.org/10.1023/A:1016024005429
  • Testa, B., & Krämer, S. D. (2007). The Biochemistry of Drug metabolism-an introduction: part 3. Reactions of hydrolysis and their enzymes. Chemistry & Biodiversity, 4(9), 2031–2122. https://doi.org/10.1002/cbdv.200790169
  • Thenin-Houssier, S., de Vera, I. M. S., Pedro-Rosa, L., Brady, A., Richard, A., Konnick, B., Opp, S., Buffone, C., Fuhrmann, J., Kota, S., Billack, B., Pietka-Ottlik, M., Tellinghuisen, T., Choe, H., Spicer, T., Scampavia, L., Diaz-Griffero, F., Kojetin, D. J., & Valente, S. T. (2016). Ebselen, a small-molecule capsid inhibitor of HIV-1 replication. Antimicrobial Agents and Chemotherapy, 60(4), 2195–2208. https://doi.org/10.1128/AAC.02574-15
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • van Waterschoot, R. A., & Schinkel, A. H. (2011). A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: Recent insights from knockout and transgenic mice. Pharmacological Reviews, 63(2), 390–410. https://doi.org/10.1124/pr.110.002584
  • Verma, K., Lahariya, A. K., Dubey, S., Verma, A. K., Das, A., Schneider, K. A., & Bharti, P. K. (2021). An integrated virtual screening and drug repurposing strategy for the discovery of new antimalarial drugs against Plasmodium falciparum phosphatidylinositol 3‐kinase. Journal of Cellular Biochemistry, https://doi.org/10.1002/jcb.29954
  • Wade, R. C., & Goodford, P. J. (1989). The role of hydrogen-bonds in drug binding. Progress in Clinical and Biological Research, 289, 433–444.
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
  • Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S., & Lu, L. (2020). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion . Cell Research, 30(4), 343–355. https://doi.org/10.1038/s41422-020-0305-x
  • Yamaguchi, T., Sano, K., Takakura, K., Saito, I., Shinohara, Y., Asano, T., & Yasuhara, H. (1998). Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group Stroke, 29(1), 12–17. https://doi.org/10.1161/01.str.29.1.12
  • Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y.-C., Tian, G., Jiang, H.-W., Tao, S.-C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science (New York, N.Y.), 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Yu, W., & MacKerell, A. D. (2017). Computer-aided drug design methods. Antibiotics, 1520, 85–106. https://doi.org/10.1007/978-1-4939-6634-9_5
  • Zhang, D. W., Yan, H. L., Xu, X. S., Xu, L., Yin, Z. H., Chang, S., & Luo, H. (2020). The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 906–912. https://doi.org/10.1080/14756366.2020.1743282
  • Zhao, Y. H., Abraham, M. H., Le, J., Hersey, A., Luscombe, C. N., Beck, G., Sherborne, B., & Cooper, I. (2002). Rate-limited steps of human oral absorption and QSAR studies. Pharmaceutical Research, 19(10), 1446–1457. https://doi.org/10.1023/A:1020444330011
  • Zinzula, L., Basquin, J., Bohn, S., Beck, F., Klumpe, S., Pfeifer, G., Nagy, I., Bracher, A., Hartl, F. U., & Baumeister, W. (2021). High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochemical and Biophysical Research Communications, 538, 54–62. https://doi.org/10.1016/j.bbrc.2020.09.131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.