506
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular investigation of artificial and natural sweeteners as potential anti-inflammatory agents

, , , , , , , , , , , , & ORCID Icon show all
Pages 12608-12620 | Received 18 May 2021, Accepted 23 Aug 2021, Published online: 09 Sep 2021

References

  • Agulló, V., Domínguez-Perles, R., & García-Viguera, C. (2021). Sweetener influences plasma concentration of flavonoids in humans after an acute intake of a new (poly)phenol-rich beverage. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 31(3), 930–938. https://doi.org/10.1016/j.numecd.2020.11.016
  • Avis, I. M., Jett, M., Boyle, T., Vos, M. D., Moody, T., Treston, A. M., Martínez, A., & Mulshine, J. L. (1996). Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. The Journal of Clinical Investigation, 97(3), 806–813. https://doi.org/10.1172/JCI118480
  • Banthiya, S., Kalms, J., Galemou Yoga, E., Ivanov, I., Carpena, X., Hamberg, M., Kuhn, H., & Scheerer, P. (2016). Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa. Biochimica et Biophysica Acta, 1861(11), 1681–1692. https://doi.org/10.1016/j.bbalip08.002.
  • Borbulevych, O. Y., Jankun, J., Selman, S. H., & Skrzypczak-Jankun, E. (2004). Lipoxygenase interactions with natural flavonoid, quercetin, reveal a complex with protocatechuic acid in its X-ray structure at 2.1 A resolution. Proteins, Structure, Function, and genetics, 54(1), 13–19. https://doi.org/10.1002/prot.10579
  • Boyington, J. C., Gaffney, B. J., & Amzel, L. M. (1990). Crystallization and preliminary X-ray analysis of soybean lipoxygenase-1, a non-heme iron-containing dioxygenase. The Journal of Biological Chemistry, 265(22), 12771–12773.
  • Brash, A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. The Journal of Biological Chemistry, 274(34), 23679–23682. https://doi.org/10.1074/jbc.274.34.23679
  • Carter, G. W., Young, P. R., Albert, D. H., Bouska, J., Dyer, R., Bell, R. L., Summers, J. B., & Brooks, D. W. (1991). 5-lipoxygenase inhibitory activity of zileuton. The Journal of Pharmacology and Experimental Therapeutics, 256(3), 929–937.
  • Catalano, A., & Procopio, A. (2005). New aspects on the role of lipoxygenases in cancer progression. Histology and Histopathology, 20(3), 969–975. https://doi.org/10.14670/HH-20.969
  • Chatzikonstantinou, A. V., Chatziathanasiadou, M. V., Ravera, E., Fragai, M., Parigi, G., Gerothanassis, I. P., Luchinat, C., Stamatis, H., & Tzakos, A. G. (2018). Enriching the biological space of natural products and charting drug metabolites, through real time biotransformation monitoring: The NMR tube bioreactor. Biochimica et Biophysica Acta. General Subjects, 1862(1), 1–8. https://doi.org/10.1016/j.bbagen.2017.09.021
  • Choi, J., Jae, K. C., Kim, S., & Shin, W. (2008). Conformational flexibility in mammalian 15S-lipoxygenase: Reinterpretation of the crystallographic data. Proteins Struct Proteins, 70(3), 1023–1032. https://doi.org/10.1002/prot.21590
  • Cicero, A. F. G., & Laghi, L. (2007). Activity and potential role of licofelone in the management of osteoarthritis. Clinical Interventions in Aging, 2(1), 73–79. https://doi.org/10.2147/ciia.2007.2.1.73
  • Claria, J., & Romano, M. (2005). Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways. Impact on inflammation and cancer. Current Pharmaceutical Design, 11(26), 3431–3447. https://doi.org/10.2174/138161205774370753
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dobrian, A. D., Lieb, D. C., Cole, B. K., Taylor-Fishwick, D. A., Chakrabarti, S. K., & Nadler, J. L. (2011). Functional and pathological roles of the 12- and 15-lipoxygenases. Progress in Lipid Research, 50(1), 115–131. https://doi.org/10.1016/j.plipres.2010.10.005
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Feinmark, S. J., & Cornicelli, J. A. (1997). Is there a role for 15-lipoxygenase in atherogenesis? Biochemical Pharmacology, 54(9), 953–959. https://doi.org/10.1016/S0006-2952(97)00135-4
  • Flower, R. (2003). All the things that aspirin does. BMJ (Clinical Research ed.), 327(7415), 572–573.
  • Garreta, A., Val-Moraes, S. P., García-Fernández, Q., Busquets, M., Juan, C., Oliver, A., Ortiz, A., Gaffney, B. J., Fita, I., Manresa, À., & Carpena, X. (2013). Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27(12), 4811–4821. https://doi.org/10.1096/fj.13-235952
  • Gheorghe, K. R., Korotkova, M., Catrina, A. I., Backman, L., af Klint, E., Claesson, H.-E., Rådmark, O., & Jakobsson, P.-J. (2009). Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids. Arthritis Research & Therapy, 11(3), R83. https://doi.org/10.1186/ar2717
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Gilbert, N. C., Bartlett, S. G., Waight, M. T., Neau, D. B., Boeglin, W. E., Brash, A. R., & Newcomer, M. E. (2011). The structure of human 5-lipoxygenase. Science (New York, N.Y.), 331(6014), 217–219. https://doi.org/10.1126/science.1197203
  • Gilbert, N. C., Gerstmeier, J., Schexnaydre, E. E., Börner, F., Garscha, U., Neau, D. B., Werz, O., & Newcomer, M. E. (2020). Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nature Chemical Biology, 16(7), 783–790. https://doi.org/10.1038/s41589-020-0544-7
  • Gillmor, S. A., Villaseñor, A., Fletterick, R., Sigal, E., & Browner, M. F. (1997). The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nature Structural Biology, 4(12), 1003–1009. https://doi.org/10.1038/nsb1297-1003
  • Gupta, P., Tiwari, A., & Mishra, M. K. (2017). Taste masking of drugs: An extended approach. International Journal of Current Advanced Research, 6(3), 2571–2578. https://doi.org/10.24327/ijcar.2017.2578.0051
  • Haeggström, J. Z., & Funk, C. D. (2011). Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chemical Reviews, 111(10), 5866–5898. https://doi.org/10.1021/cr200246d
  • Hu, C., & Ma, S. (2018). Recent development of lipoxygenase inhibitors as anti-inflammatory agents. Medchemcomm, 9(2), 212–225. https://doi.org/10.1039/c7md00390k
  • Humphreys, D. D., Friesner, R. A., & Berne, B. J. (1994). A multiple-time-step Molecular Dynamics algorithm for macromolecules. The Journal of Physical Chemistry, 98(27), 6885–6892. https://doi.org/10.1021/j100078a035
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Karatas, H., & Cakir-Aktas, C. (2019). 12/15 lipoxygenase as a therapeutic target in brain disorders. Noro Psikiyatri Arsivi, 56(4), 288–291. https://doi.org/10.29399/npa.23646
  • Katsori, A. M., Chatzopoulou, M., Dimas, K., Kontogiorgis, C., Patsilinakos, A., Trangas, T., & Hadjipavlou-Litina, D. (2011). Curcumin analogues as possible anti-proliferative & anti-inflammatory agents. European Journal of Medicinal Chemistry, 46(7), 2722–2735. https://doi.org/10.1016/j.ejmech.2011.03.060
  • Khanapure, S. P., & Gordon Letts, L. (2004). Perspectives and clinical significance of the biochemical and molecular pharmacology of eicosanoids. In The Eicosanoids (pp. 129–162). John Wiley &Sons.
  • Kobe, M. J., Neau, D. B., Mitchell, C. E., Bartlett, S. G., & Newcomer, M. E. (2014). The structure of human 15-lipoxygenase-2 with a substrate mimic. The Journal of Biological Chemistry, 289(12), 8562–8569. https://doi.org/10.1074/jbc.M113.543777
  • Lim, U. (2016). Artificial sweeteners and cancer - national cancer institute.
  • Lizunkova, P., Enuwosa, E., & Chichger, H. (2019). Activation of the sweet taste receptor T1R3 by sucralose attenuates VEGF-induced vasculogenesis in a cell model of the retinal microvascular endothelium. Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie, 257(1), 71–81. https://doi.org/10.1007/s00417-018-4157-8
  • Lomelino, C. L., Murray, A. B., Supuran, C. T., & McKenna, R. (2018). Sweet Binders: Carbonic Anhydrase IX in Complex with Sucralose. ACS Medicinal Chemistry Letters, 9(7), 657–661. https://doi.org/10.1021/acsmedchemlett.8b00100
  • Luo, J., Chuang, T., Cheung, J., Quan, J., Tsai, J., Sullivan, C., Hector, R. F., Reed, M. J., Meszaros, K., King, S. R., Carlson, T. J., & Reaven, G. M. (1998). Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). European Journal of Pharmacology, 346(1), 77–79. https://doi.org/10.1016/S0014-2999(98)00139-3
  • Lyman, E., & Zuckerman, D. M. (2006). Ensemble-based convergence analysis of biomolecular trajectories. Biophysical Journal, 91(1), 164–172. https://doi.org/10.1529/biophysj.106.082941
  • Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., Spencer, P. S., Waddell, W. J., Walker, R., & Williams, G. M. (2007). Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology, 37(8), 629–727. https://doi.org/10.1080/10408440701516184
  • Mahon, B. P., Hendon, A. M., Driscoll, J. M., Rankin, G. M., Poulsen, S. A., Supuran, C. T., & McKenna, R. (2015). Saccharin: A lead compound for structure-based drug design of carbonic anhydrase IX inhibitors. Bioorganic & Medicinal Chemistry, 23(4), 849–854. https://doi.org/10.1016/j.bmc.2014.12.030
  • Maillet, E. L., Cui, M., Jiang, P., Mezei, M., Hecht, E., Quijada, J., Margolskee, R. F., Osman, R., & Max, M. (2015). Characterization of the binding site of aspartame in the human sweet taste receptor. Chemical Senses, 40(8), 577–586. https://doi.org/10.1093/chemse/bjv045
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. Journal of Chemical Physics., 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Mashima, R., & Okuyama, T. (2015). The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biology, 6, 297–310. https://doi.org/10.1016/j.redox.2015.08.006
  • Mayer, M., & Meyer, B. (2001). Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. Journal of the American Chemical Society, 123(25), 6108–6117. https://doi.org/10.1021/ja0100120
  • Murphy, R. C., & Gijon, M. A. (2007). Biosynthesis and metabolism of leukotrienes. The Biochemical Journal, 405(3), 379–395. https://doi.org/10.1042/BJ20070289
  • Murray, J. J., Tonnel, A. B., Brash, A. R., Roberts, L. J., Gosset, P., Workman, R., Capron, A., & Oates, J. A. (1986). Release of prostaglandin D2 into human airways during acute antigen challenge. The New England Journal of Medicine, 315(13), 800–804. https://doi.org/10.1056/nejm09253151304.
  • Offenbacher, A. R., Hu, S., Poss, E. M., Carr, C. A. M., Scouras, A. D., Prigozhin, D. M., Iavarone, A. T., Palla, A., Alber, T., Fraser, J. S., & Klinman, J. P. (2017). Hydrogen-Deuterium exchange of lipoxygenase uncovers a relationship between distal, solvent exposed protein motions and the thermal activation barrier for catalytic proton-coupled electron tunneling. ACS Central Science, 3(6), 570–579. https://doi.org/10.1021/acscentsci.7b00142
  • Oprea, T. I., Bauman, J. E., Bologa, C. G., Buranda, T., Chigaev, A., Edwards, B. S., Jarvik, J. W., Gresham, H. D., Haynes, M. K., Hjelle, B., Hromas, R., Hudson, L., Mackenzie, D. A., Muller, C. Y., Reed, J. C., Simons, P. C., Smagley, Y., Strouse, J., Surviladze, Z., … Sklar, L. A. (2011). Drug repurposing from an academic perspective. Drug Discovery Today. Therapeutic Strategies, 8(3-4), 61–69. https://doi.org/10.1016/j.ddstr.2011.10.002
  • Li, P., Wang, Z., Lam, S. M., & Shui, G. (2021). Rebaudioside a enhances resistance to oxidative stress and extends lifespan and healthspan in caenorhabditis elegans. Antioxidants, 10, 262. https://doi.org/10.3390/antiox10020262
  • Pattar, S. V., Adhoni, S. A., Kamanavalli, C. M., & Kumbar, S. S. (2020). In silico molecular docking studies and MM/GBSA analysis of coumarin-carbonodithioate hybrid derivatives divulge the anticancer potential against breast cancer. Beni-Suef University Journal of Basic and Applied Sciences, 9, 36-46. https://doi.org/10.1186/s43088-020-00059-7
  • Praticò, D., Zhukareva, V., Yao, Y., Uryu, K., Funk, C. D., Lawson, J. A., Trojanowski, J. Q., & Lee, V. M. Y. (2004). 12/15-Lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. The American Journal of Pathology, 164(5), 1655–1662. https://doi.org/10.1016/S0002-9440(10)63724-8
  • Protein Data Bank. (2021). Protein Data Bank RCSB PDB: Homepage.
  • Rana, R., Sharma, R., & Kumar, A. (2019). Repurposing of fluvastatin against candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy: An in silico and in vitro study. Current Molecular Medicine, 19(7), 506–524. https://doi.org/10.2174/1566524019666190520094644
  • Ribeiro, D., Freitas, M., Tomé, S. M., Silva, A. M. S., Porto, G., Cabrita, E. J., Marques, M. M. B., & Fernandes, E. (2014). Inhibition of LOX by flavonoids: A structure-activity relationship study. European Journal of Medicinal Chemistry, 72, 137–145. https://doi.org/10.1016/j.ejmech.2013.11.030
  • Rioux, N., & Castonguay, A. (1998). Inhibitors of lipoxygenase: A new class of cancer chemopreventive agents. Carcinogenesis, 19(8), 1393–1400. https://doi.org/10.1093/carcin/19.8.1393
  • Rouzer, C. A., & Marnett, L. J. (2009). Cyclooxygenases: Structural and functional insights. Journal of Lipid Research, 50 Suppl, S29–S34. https://doi.org/10.1194/jlr.r800042-jlr200
  • Schrödinger LigPrep. (2018). Schrödinger. Schrödinger Release 2018–2.
  • Schrödinger LLC Prime. (2014). Schrödinger LLC Prime, version 3.5. New York.
  • Schrödinger LLC. (2011). Schrödinger Llc New York Ny Glide, version 5.7. Glid. Schrödinger LLC.
  • Schrödinger Maestro. (2018). Schrödinger. Schrödinger Release 2018–2.
  • Schrodinger, L.L.C. (2013). MacroModel, Version 10.2. New York.
  • Schrodinger. (2015). Schrodinger software release 2015-2 induced fit docking. Schrodinger Press.
  • Sharma, N., Singh, A., & Sharma, R. (2020). Repurposing of auranofin against bacterial infections: An In silico and In vitro study. Curr Comput Aided Drug Des.
  • Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A., & Farid, R. (2006). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry, 49(2), 534–553. https://doi.org/10.1021/jm050540c
  • Skrzypczak-Jankun, E., Borbulevych, O. Y., Zavodszky, M. I., Baranski, M. R., Padmanabhan, K., Petricek, V., & Jankun, J. (2006). Effect of crystal freezing and small-molecule binding on internal cavity size in a large protein: X-ray and docking studies of lipoxygenase at ambient and low temperature at 2.0 A resolution. Acta Crystallographica. Section D, Biological Crystallography, 62(Pt 7), 766–775. https://doi.org/10.1107/S0907444906016982
  • Sladek, V., Kóňa, J., & Tokiwa, H. (2017). In silico analysis of interaction pattern switching in ligandreceptor binding in Golgi α-mannosidase II induced by the protonated states of inhibitors . Physical Chemistry Chemical Physics : PCCP, 19(19), 12527–12537. https://doi.org/10.1039/c7cp01200d
  • Sostres, C., Gargallo, C. J., Arroyo, M. T., & Lanas, A. (2010). Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Practice & Research. Clinical Gastroenterology, 24(2), 121–132. https://doi.org/10.1016/j.bpg.2009.11.005
  • Tardif, J.-C., L'Allier, P. L., Ibrahim, R., Grégoire, J. C., Nozza, A., Cossette, M., Kouz, S., Lavoie, M.-A., Paquin, J., Brotz, T. M., Taub, R., & Pressacco, J. (2010). Treatment with 5-lipoxygenase inhibitor VIA-2291 (atreleuton) in patients with recent acute coronary syndrome.110.937169. Circulation: Cardiovascular Imaging, 3(3), 298–307. https://doi.org/10.1161/CIRCIMAGING
  • US Food & Drug Administration. (n.d.). US food & drug administration additional information about high-intensity sweeteners permitted for use in food in the United States.
  • Valentovic, M. Z. (2007). In xPharm: The comprehensive pharmacology reference.
  • Version, D.D. (2021). Version, D.D. Desmond Tutorial. Schroedinger., https://doi.org/10.1162/rest_a_00790
  • West, M., Mhatre, M., Ceballos, A., Floyd, R. A., Grammas, P., Gabbita, S. P., Hamdheydari, L., Mai, T., Mou, S., Pye, Q. N., Stewart, C., West, S., Williamson, K. S., Zemlan, F., & Hensley, K. (2004). The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice . Journal of Neurochemistry, 91(1), 133–143. https://doi.org/10.1111/j.1471-415902700.x.
  • Xu, S., Mueser, T. C., Marnett, L. J., & Funk, M. O. (2012). Crystal structure of 12-Lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure (London, England : 1993), 20(9), 1490–1497. https://doi.org/10.1016/j.str.2012.06.003
  • Zhao, Y., Wang, W., Wang, Q., Zhang, X., & Ye, L. (2012). Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-κB in hepatoma cells. Biochemical and Biophysical Research Communications, 418(4), 647–651. https://doi.org/10.1016/j.bbrc.2012.01.068
  • Zuo, L., Christofi, F. L., Wright, V. P., Bao, S., & Clanton, T. L. (2004). Lipoxygenase-dependent superoxide release in skeletal muscle. Journal of Applied Physiology (Bethesda, Md. : 1985), 97(2), 661–668. https://doi.org/10.1152/japplphysiol.00096.2004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.