592
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification and characterization of small-molecule inhibitors specific to RhoG/Rac1 signaling pathway

ORCID Icon, ORCID Icon & ORCID Icon
Pages 560-580 | Received 20 Mar 2021, Accepted 16 Nov 2021, Published online: 08 Dec 2021

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568.
  • Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y. K. (2005). Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal, 272(20), 5101–5109.
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Amir, M., Ahamad, S., Mohammad, T., Jairajpuri, D. S., Hasan, G. M., Dohare, R., Islam, A., Ahmad, F., & Hassan, M. I. (2021). Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma. Journal of Biomolecular Structure and Dynamics, 39(1), 35–44. https://doi.org/10.1080/07391102.2019.1705186
  • Anitha, D., Suganthi, M., Gnanendra, S., & Govarthanan, M. (2020). Identification of potential carbonic anhydrase inhibitors for glaucoma treatment through an in silico approach. International Journal of Peptide Research and Therapeutics, 26(4), 2147–2154.
  • Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., & Martin, M. J. (2004). UniProt: the universal protein knowledgebase. Nucleic Acids Research, 32(suppl_1), D115–D119. https://doi.org/10.1093/nar/gkh131
  • Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 96(3), 2155–2160.
  • Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10(12), 980–980.
  • Biovia, D. S. (2017). Discovery studio modeling environment (Release 4.5). Dassault Systemes.
  • Bouquier, N., Vignal, E., Charrasse, S., Weill, M., Schmidt, S., Léonetti, J.-P., Blangy, A., & Fort, P. (2009). A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. Chemistry & Biology, 16(6), 657–666.
  • Bowie, J. U., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101.
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics (Oxford, England), 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual screening with AutoDock: theory and practice. Expert Opinion on Drug Discovery, 5(6), 597–607.
  • Dasari, T., Kondagari, B., Dulapalli, R., Abdelmonsef, A. H., Mukkera, T., Padmarao, L. S., Malkhed, V., & Vuruputuri, U. (2017). Design of novel lead molecules against RhoG protein as cancer target - a computational study. Journal of Biomolecular Structure & Dynamics, 35(14), 3119–3139. https://doi.org/10.1080/07391102.2016.1244492
  • Davis, I. W., & Baker, D. (2009). RosettaLigand docking with full ligand and receptor flexibility. Journal of Molecular Biology, 385(2), 381–392.
  • Dipankar, P., Kumar, P., Dash, S. P., & Sarangi, P. P. (2021). Functional and therapeutic relevance of Rho GTPases in innate immune cell migration and function during inflammation: an in silico perspective. Mediators of Inflammation, 2021, 6655412. https://doi.org/10.1155/2021/6655412
  • Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M., Eramian, D., Shen, M. Y., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 15(1), 5.6. 1–5.6. 30. https://doi.org/10.1002/0471250953.bi0506s15
  • Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635. https://doi.org/10.1038/nature01148
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 3502514. https://doi.org/10.1155/2018/3502514
  • Futatsugi, N., & Tsuda, M. (2001). Molecular dynamics simulations of Gly-12→ Val mutant of p21ras: Dynamic inhibition mechanism. Biophysical Journal, 81(6), 3483–3488.
  • Gao, Y., Dickerson, J. B., Guo, F., Zheng, J., & Zheng, Y. (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proceedings of the National Academy of Sciences United States of America, 101(20), 7618–7623.
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics (Oxford, England), 19(1), 163–164. https://doi.org/10.1093/bioinformatics/19.1.163
  • Goicoechea, S. M., Zinn, A., Awadia, S. S., Snyder, K., & Garcia-Mata, R. (2017). A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. Journal of Cell Science, 130(6), 1064–1077.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17–17.
  • Harvey, M., & De Fabritiis, G. (2009). An implementation of the smooth particle mesh Ewald method on GPU hardware. Journal of Chemical Theory and Computation, 5(9), 2371–2377.
  • Hauser, C. A., Der, C. J., & Cox, A. D. (1994). Transcriptional activation analysis of oncogene function. Methods in Enzymology, 238, 271–276.
  • Hubbard, R. E., &Haider, M. K. (2010). Hydrogen bonds in proteins: Role and strength. eLS.
  • Hunter, A. D. (1997). ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its tautomers, dictionary, and 3D plug-ins. ACD/HNMR 2.0; ACD/CNMR 2.0. ACS Publications.
  • Johnson, A. D., Handsaker, R. E., Pulit, S. L., Nizzari, M. M., O'Donnell, C. J., & De Bakker, P. I. (2008). SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics (Oxford, England), 24(24), 2938–2939.
  • Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292(2), 195–202. https://doi.org/10.1006/jmbi.1999.3091
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side‐chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins: Structure, Function, and Bioinformatics, 77(S9), 114–122. https://doi.org/10.1002/prot.22570
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kumawat, A., Chakrabarty, S., & Kulkarni, K. (2017). Nucleotide dependent switching in rho GTPase: conformational heterogeneity and competing molecular interactions. Scientific Reports, 7(1), 1–11.
  • Kwiatkowska, A., Didier, S., Fortin, S., Chuang, Y., White, T., Berens, M. E., Rushing, E., Eschbacher, J., Tran, N. L., Chan, A., & Symons, M. (2012). The small GTPase RhoG mediates glioblastoma cell invasion. Molecular Cancer, 11(1), 65. https://doi.org/10.1186/1476-4598-11-65
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England), 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85.
  • Meller, J., Vidali, L., & Schwartz, M. A. (2008). Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration. Journal of Cell Science, 121(Pt 12), 1981–1989. https://doi.org/10.1242/jcs.025130
  • Montalvo-Ortiz, B. L., Castillo-Pichardo, L., Hernández, E., Humphries-Bickley, T., De La Mota-Peynado, A., Cubano, L. A., Vlaar, C. P., & Dharmawardhane, S. (2012). Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. Journal of Biological Chemistry, 287(16), 13228–13238. https://doi.org/10.1074/jbc.M111.334524
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814.
  • Nygaard, M., Terkelsen, T., Vidas Olsen, A., Sora, V., Salamanca Viloria, J., Rizza, F., Bergstrand-Poulsen, S., Di Marco, M., Vistesen, M., Tiberti, M., & Lambrughi, M. (2016). The mutational landscape of the oncogenic MZF1 SCAN domain in cancer. Frontiers in Molecular Biosciences, 3, 78. https://doi.org/10.3389/fmolb.2016.00078
  • Parri, M., & Chiarugi, P. (2010). Rac and Rho GTPases in cancer cell motility control. Cell Communication and Signaling, 8(1), 23.
  • Pérez, L., & Danishefsky, S. J. (2007). Chemistry and biology in search of antimetastatic agents. ACS Chemical Biology, 2(3), 159–162.
  • Pontius, J., Richelle, J., & Wodak, S. J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology, 264(1), 121–136.
  • Prieto-Sánchez, R. M., & Bustelo, X. R. (2003). Structural basis for the signaling specificity of RhoG and Rac1 GTPases. The Journal of Biological Chemistry, 278(39), 37916–37925.
  • Schaefer, C., & Rost, B. (2012). Predict impact of single amino acid change upon protein structure. BMC Genomics, 13(4), 1–10. https://doi.org/10.1186/1471-2164-13-S4-S4
  • Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3(2), 214–218. https://doi.org/10.1002/jcc.540030212
  • Schrodinger, L. (2010). The PyMOL molecular graphics system. Version, 1(5), 0.
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355–1363.
  • Shan, D., Chen, L., Njardarson, J. T., Gaul, C., Ma, X., Danishefsky, S. J., & Huang, X.-Y. (2005). Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proceedings of the National Academy of Sciences United States of America, 102(10), 3772–3776.
  • Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G. L., Edwards, K. J., Day, I. N., & Gaunt, T. R. (2013). Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human Mutation, 34(1), 57–65. https://doi.org/10.1002/humu.22225
  • Singh, N., Dalal, V., & Kumar, P. (2020). Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. Molecular Simulation, 46(1), 9–21. https://doi.org/10.1080/08927022.2019.1662002
  • Van Aalten, D. M., Bywater, R., Findlay, J. B., Hendlich, M., Hooft, R. W., & Vriend, G. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 10(3), 255–262.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.
  • van Gunsteren, W. F., Billeter, S., Eising, A., Hünenberger, P., Krüger, P., Mark, A., Scott, W. R. P., & Tironi, I. (1996). Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an Der ETH Zürich, Zürich, 86, 1–1044.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508.
  • Wang, L., Kuang, L., Pan, X., Liu, J., Wang, Q., Du, B., Li, D., Luo, J., Liu, M., Hou, A., & Qian, M. (2010). Isoalvaxanthone inhibits colon cancer cell proliferation, migration and invasion through inactivating Rac1 and AP-1. International Journal of Cancer, 127(5), 1220–1229. https://doi.org/10.1002/ijc.25119
  • Wennerberg, K., Ellerbroek, S. M., Liu, R.-Y., Karnoub, A. E., Burridge, K., & Der, C. J. (2002). RhoG signals in parallel with Rac1 and Cdc42. Journal of Biological Chemistry, 277(49), 47810–47817.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410.
  • Yadav, T. C., Kumar, N., Raj, U., Goel, N., Vardawaj, P. K., Prasad, R., & Pruthi, V. (2020). Exploration of interaction mechanism of tyrosol as a potent anti-inflammatory agent. Journal of Biomolecular Structure & Dynamics, 38(2), 382–397. https://doi.org/10.1080/07391102.2019.1575283
  • Zhao, Y., Zeng, C., & Massiah, M. A. (2015). Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain. PLoS One, 10(4), e0124377. https://doi.org/10.1371/journal.pone.0124377

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.