340
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation of the alkaloids of Pilocarpus microphyllus species as phytopharmaceuticals for the inhibition of sterol 14α-demethylase protease of Trypanosoma cruzi

, , , , , & show all
Pages 2555-2573 | Received 23 May 2021, Accepted 25 Jan 2022, Published online: 08 Feb 2022

References

  • Abraham, M. J., Van Der Spoel, D., & Lindahl, E. (2018). The GROMACS development team. GROMACS user manual version 2018.1. Retrieved August 3, 2020, from www.gromacs.org
  • Abreu, I. N., Mazzafera, P., Eberlin, M. N., Zullo, M. A. T., & Sawaya, A. C. H. F. (2007). Characterization of the variation in the imidazole alkaloid profile of Pilocarpus microphyllus in different seasons and parts of the plant by electrospray ionization mass spectrometry fingerprinting and identification of novel alkaloids by tandem mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 21(7), 1205–1213. https://doi.org/10.1002/rcm.2942
  • ACD/ChemSketch. (2015). Version 2015.2.5. Advanced Chemistry Development, Inc. Retrieved November 10, 2020, from www.acdlabs.com
  • Agban, Y., Lian, J., Prabakar, S., Seyfoddin, A., & Rupenthal, I. D. (2016). Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride. International Journal of Pharmaceutics, 501(1–2), 96–101. https://doi.org/10.1016/j.ijpharm.2016.01.069
  • Ajay, A., Bermis, G. W., & Murkco, M. A. (1999). Designing libraries with CNS activity. Journal of Medicinal Chemistry, 42(24), 4942–4951. https://doi.org/10.1021/jm990017w
  • Alberts, B., Wilson, J., & Hunt, T. (2008). Molecular biology of the cell (5th ed., p. 1268). Garland Science.
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–41. https://doi.org/10.1093/nar/gks375
  • Arcanjo, D. D. R., Vasconcelos, A. G., Nascimento, L. A., Mafud, A. C., Plácido, A., Alves, M. M. M., Delerue-Matos, C., Bemquerer, M. P., Vale, N., Gomes, P., Oliveira, E. B., Lima, F. C. A., Mascarenhas, Y. P., Carvalho, F. A. A., Simonsen, U., Ramos, R. M., & Leite, J. R. S. A. (2017). Structure-function studies of BPP-BrachyNH 2 and synthetic analogues thereof with Angiotensin I-converting enzyme. European Journal of Medicinal Chemistry, 139, 401–411. https://doi.org/10.1016/j.ejmech.2017.08.019
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Atlam, F. M., Awad, M. K., & El-Bastawissy, E. A. (2014). Computational simulation of the effect of quantum chemical parameters on the molecular docking of HMG-CoA reductase drugs. Journal of Molecular Structure, 1075, 311–326. https://doi.org/10.1016/j.molstruc.2014.06.045
  • Baber, J. C., & Feher, M. (2004). Predicting synthetic accessibility: Application in drug discovery and development. Mini Reviews in Medicinal Chemistry, 4(6), 681–692. https://doi.org/10.2174/1389557043403765
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences USA, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Bakhtyari, N. G., Raitano, G., Benfenati, E., Martin, T. O. D. D., & Young, D. (2013). Comparison of in silico models for prediction of mutagenicity. Journal of Environmental Science and Health, Part C, 31(1), 45–66. https://doi.org/10.1080/10590501.2013.763576
  • Barros, R. O., Junior, F. L., Pereira, W. S., Oliveira, N. M., & Ramos, R. M. (2020). Interaction of drug candidates with various SARS-CoV-2 receptors: An in silico study to combat COVID-19. Journal of Proteome Research, 19(11), 4567–4575. https://doi.org/10.1002/jcc.21256 https://doi.org/10.1021/acs.jproteome.0c00327
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Berman, H. M., Westbrook, J., & Feng, Z. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Biovia, D. S. (2020). Discovery Studio Visualizer, Dassault Systèmes: San Diego. Retrieved October 15, 2020, from https://3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization.html
  • Birch, P. J., Dekker, L. V., James, I. F., Southan, A., & Cronk, D. (2004). Strategies to identify ion channel modulators: Current and novel approaches to target neuropathic pain. Drug Discovery Today, 9(9), 410–418. https://doi.org/10.1016/S1359-6446(04)03043-0
  • Brown, R. D., Hassan, M., & Waldman, M. (2000). Combinatorial library design for diversity, cost efficiency, and drug-like character. Journal of Molecular Graphics & Modelling, 18(4–5), 427–437. https://doi.org/10.1016/S1093-3263(00)00072-3
  • Bruice, P. Y. (2004). Organic chemistry (4th ed., p. 1344). Prentice Hall.
  • Buckner, F. S. (2008). Sterol 14α-demethylase inhibitors for Trypanosoma cruzi infections. In: Majumder H.K. (Eds.), Drug targets in Kinetoplastid parasites. Advances in experimental medicine and biology (Vol. 625). Springer. https://doi.org/10.1007/978-0-387-77570-8_6
  • Buckner, F. S., & Urbina, J. A. (2012). Recent developments in sterol 14α-demethylase inhibitors for Chagas Disease. International Journal for Parasitology: Drugs and Drug Resistance, 2, 236–242. https://doi.org/10.1016/j.ijpddr.2011.12.002
  • Calvet, C. M., Vieira, D. F., Choi, J. Y., Kellar, D., Cameron, M. D., Siqueira-Neto, J. L., Gut, J., Johnston, J. B., Lin, L., Khan, S., McKerrow, J. H., Roush, W. R., & Podust, L. M. (2014). 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency. Journal of Medicinal Chemistry, 57(16), 6989–7005. https://doi.org/10.1021/jm500448u
  • Chagas, C. (1909). New human trypanosomiasis. Gaceta Medica da Bahia, 40, 433–440.
  • Chami, G. F., & Bundy, D. A. P. (2019). More medicines alone cannot ensure the treatment of neglected tropical diseases. The Lancet Infectious Diseases, 19(9), e330–e336. https://doi.org/10.1016/S1473-3099(19)30160-4
  • Chen, C.-K., Leung, S. S. F., Guilbert, C., Jacobson, M. P., McKerrow, J. H., & Podust, L. M. (2010). Structural characterization of CYP51 from Trypanosoma cruzi and trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Neglected Tropical Diseases, 4(4), e651. https://doi.org/10.1371/journal.pntd.0000651
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 13. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N, log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • de Sá, É. R. A., Costa, A. N., Costa, R. K. M., Souza, J. L., Ramos, R. M., & Lima, F. d. C. A. (2021). In silico study of the interactions of Pilocarpus microphyllus imidazolic alkaloids with the main protease (Mpro) of SARS-CoV-2. Molecular Simulation, 47(1), 74–87. https://doi.org/10.1080/08927022.2021.1873321
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, version 6. Semichem Inc. Retrieved May 6, 2020, from https://gaussian.com/gaussview6/
  • Devi, R., Singh, V., & Chaudhary, A. K. (2010). Antidiabetic activity of Pilocarpus microphyllus extract on streptozotocin-induced diabetic mice. International Journal of Pharmaceutical Sciences Review and Research, 5(1), 87–92. Retrieved July 25, 2020, from https://www.semanticscholar.org/paper/ANTIDIABETIC-ACTIVITY-OF-PILOCARPUS-MICROPHYLLUS-ON-Devi-Singh/9f0c6d63d0de9a46337316684b215293a7e8de7c#citing-papers
  • Dolabela, M. F., Da Silva, A. R. P., Ohashi, L. H., Bastos, M. L. C., Da Silva, M. C. M., & Vale, V. V. (2018). In silico study of the activities of triterpenes and iridoids isolated from Himatanthus articulatus (Vahl) Woodson. Revista Fitos, 12(3), 227–242. https://doi.org/10.17648/2446-4775.2018.602
  • Duke, J. A. (2002). Handbook of medicinal herbs (2nd ed., p. 896). CRC Press.
  • Dunn, L. A., Andrews, K. T., McCarthy, J. S., Wright, J. M., Skinner-Adams, T. S., Upcroft, P., & Upcroft, J. A. (2007). The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis. International Journal of Antimicrobial Agents, 29(1), 98–102. https://doi.org/10.1016/j.ijantimicag.2006.08.026
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Eifler Lima, V. L. (1997). Drugs and chirality: A brief approach. New Chemistry, 20(6), 657–663. https://doi.org/10.1590/S0100-40421997000600015
  • Eifler Lima, V. L., Uriac, P., Huet, J., Sinbandhit, S., & Toupet, L. Reactivity of 4-aminoazetidin-2-one. A synthetic pathway for □-functionalisation of □-substituted enamines. Journal of Chemical Research, 8, 300–301.
  • Eliel, E. L., & Wilen, S. H. (1994). Stereochemistry of organic compounds (p. 1296). John Wiley.
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(8), 1-11. https://doi.org/10.1186/1758-2946-1-8
  • Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science, 240(4854), 889–895. https://doi.org/10.1126/science.3283939
  • Ferreira, E. T., Santos, E. S., & Monteiro, J. S. (2019). The use of medicinal and phytotherapy plants: An integrational review on the nurses performance. Brazilian Journal of Health Review, 2(3), 1511–1523. Retrieved July 20, 2020, from https://www.brazilianjournals.com/index.php/BJHR/article/view/1383
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Fortuna, A., Alves, G., Soares-da-Silva, P., & Falcão, A. (2013). Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: New set of data for predictive in silico ADME models. Epilepsy Research, 107(1–2), 37–50. https://doi.org/10.1016/j.eplepsyres.2013.08.013
  • Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J., & Pople, J. A. (1982). Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics, 77(7), 3654–3665. https://doi.org/10.1063/1.444267
  • Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics, 80(7), 3265–3269. https://doi.org/10.1063/1.447079
  • Frisch, M. J., Trucks, G. W., & Schlegel, H. B. (2010). Gaussian09, revision C.01. Gaussian, Inc. Retrieved June 05, 2020, from https://gaussian.com
  • Fukui, K. (1982). Role of boundary orbitals in chemical reactions. Science, 218 (4574), 747–754. Retrieved October 11, 2021, from http://www.jstor.org/stable/1689733 https://doi.org/10.1126/science.218.4574.747
  • Fukunishi, Y., Kurosawa, T., Mikami, Y., & Nakamura, H. (2014). Prediction of synthetic accessibility based on commercially available compound databases. Journal of Chemical Information and Modeling, 54(12), 3259–3267. https://doi.org/10.1021/ci500568d
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Gil-Montoya, J. A., Silvestre, F. J., Barrios, R., & Silvestre-Rangil, J. (2016). Treatment of xerostomia and hyposalivation in the elderly: A systematic review. Medicina Oral Patología Oral y Cirugia Bucal, 21(3), e355–e366. https://doi.org/10.4317/medoral.20969
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server issue), w368–w371. https://doi.org/10.1093/nar/gki464
  • Govindarajan, M., Karabacak, M., Suvitha, A., & Periandy, S. (2012a). FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on 4-chloro-3-nitrotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89, 137–148. https://doi.org/10.1016/j.saa.2011.12.067
  • Govindarajan, M., Periandy, S., & Carthigayen, K. (2012b). FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 411–422. https://doi.org/10.1016/j.saa.2012.06.028
  • Guedes-da-Silva, F. H., Batista, D. G. J., Da Silva, C. F., De Araújo, J. S., Pavão, B. P., Simões-Silva, M. R., Batista, M. M., Demarque, K. C., Moreira, O. C., Britto, C., Lepesheva, G. I., & Soeiro, M. N. C. (2017). Antitrypanosomal activity of sterol 14α-demethylase (CYP51) inhibitors VNI and VFV in the Swiss mouse models of Chagas disease induced by the Trypanosoma cruzi Y strain. Antimicrobial Agents and Chemotherapy, 61(4), e0209816. https://doi.org/10.1128/AAC.02098-16
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Guimarães, M. A., Campelo, Y. D. M., Véras, L. M. C., Colhone, M. C., Lima, D. F., Ciancaglini, P., Kuckelhaus, S. S., Lima, F. C. A., de Moraes, J., & de S. A. Leite, J. R. (2014). Nanopharmaceutical approach of epiisopiloturine alkaloid carried in liposome system: Preparation and in vitro schistosomicidal activity. Journal of Nanoscience and Nanotechnology, 14(6), 4519–4528. https://doi.org/10.1166/jnn.2014.8248
  • Guimarães, M. A., de Oliveira, R. N., Véras, L. M. C., Lima, D. F., Campelo, Y. D. M., Campos, S. A., Kuckelhaus, S. A. S., Pinto, P. L. S., Eaton, P., Mafud, A. C., Mascarenhas, Y. P., Allegretti, S. M., de Moraes, J., Lolić, A., Verbić, T., & Leite, J. R. S. A. (2015). Anthelmintic activity in vivo of epiisopiloturine against juvenile and adult worms of Schistosoma mansoni. PLoS Neglected Tropical Diseases, 9(3), e0003656. https://doi.org/10.1371/journal.pntd.0003656
  • Hwang, S., Shin, H. K., Shin, S. E., Seo, M., Jeon, H.-N., Yim, D.-E., Kim, D.-H., & No, K. T. (2020). PreMetabo: An in silico phase I and II drug metabolism prediction platform. Drug Metabolism and Pharmacokinetics, 35(4), 361–367. https://doi.org/10.1016/j.dmpk.2020.05.007
  • Janak, J. F. (1978). Proof that in density-functional theory. Physical Review B, 18(12), 7165–7168. https://doi.org/10.1103/PhysRevB.18.7165
  • Jänne, P., Gray, N., & Settleman, J. (2009). Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nature Reviews. Drug Discovery, 8(9), 709–723. https://doi.org/10.1038/nrd2871
  • Kongsted, J., & Ryde, U. (2009). An improved method to predict the entropy term with the MM/PBSA approach. Journal of Computer-Aided Molecular Design, 23(2), 63–71. https://doi.org/10.1007/s10822-008-9238-z
  • Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. Basis set for correlated wave-functions. The Journal of Chemical Physics, 72(1), 650–654. https://doi.org/10.1063/1.438955
  • Kubo, S., & Kaji, H. (2018). Parameter-free multiscale simulation realising quantitative prediction of hole and electron mobilities in organic amorphous system with multiple Frontier orbitals. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-31722-w
  • Kumar, A., Srivastava, A. K., Gangwar, S., Misra, N., Mondal, A., & Brahmachari, G. (2015). Combined experimental (FT-IR, UV–visible spectra, NMR) and theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces, reactivity descriptor and molecular docking of Phomarin. Journal of Molecular Structure, 1096, 94–101. https://doi.org/10.1016/j.molstruc.2015.04.031
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuruvilla, T. K., Prasana, J. C., Muthu, S., George, J., & Mathew, S. A. (2018). Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 382–393. https://doi.org/10.1016/j.saa.2017.07.029
  • Laeeq, S., Sirbaiya, A. K., & Siddiqui, H. H. (2014). An overview of the computer aided drug designing. World Journal of Pharmaceutical Sciences, 3(5), 963–994. Retrieved August 05, 2020, from https://www.researchgate.net/profile/Shainda-Laeeq/publication/273762350_AN_OVERVIEW_OF_THE_COMPUTER_AIDED_DRUG_DESIGNING/links/550af2120cf290bdc1115aa8/AN-OVERVIEW-OF-THE-COMPUTER-AIDED-DRUG-DESIGNING.pdf
  • Lagorce, D., Bouslama, L., Becot, J., Miteva, M. A., & Villoutreix, B. O. (2017a). FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics, 33(22), 3658–3660. https://doi.org/10.1093/bioinformatics/btx491
  • Lagorce, D., Douguet, D., Miteva, M. A., & Villoutreix, B. O. (2017b). Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/srep46277
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lee, S. K., Lee, I. H., & Kim, H. J. (2003). The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. EuroQSAR, 1, 410–420.
  • Leeson, P. D. (2016). Molecular inflation, attrition and the rule of five. Advanced Drug Delivery Reviews, 101, 22–33. https://doi.org/10.1016/j.addr.2016.01.018
  • Lepesheva, G. I., Friggeri, L., & Waterman, M. R. (2018). CYP51 as drug targets for fungi and protozoan parasites: Past, present and future. Parasitology, 145(14), 1820–1836. https://doi.org/10.1017/S0031182018000562
  • Lepesheva, G. I., Hargrove, T. Y., Anderson, S., Kleshchenko, Y., Furtak, V., Wawrzak, Z., Villalta, F., & Waterman, M. R. (2010). Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi. The Journal of Biological Chemistry, 285(33), 25582–25590. https://doi.org/10.1074/jbc.M110.133215
  • Lepesheva, G. I., & Waterman, M. R. (2007). Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochimica et Biophysica Acta, 1770(3), 467–477. https://doi.org/10.1016/j.bbagen.2006.07.018
  • Lepesheva, G. I., & Waterman, M. R. (2011). Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis. Current Topics in Medicinal Chemistry, 11(16), 2060–2071. https://doi.org/10.2174/156802611796575902
  • Lima, D. F., de Lima, L. I., Rocha, J. A., de Andrade, I. M., Grazina, L. G., Villa, C., Meira, L., Véras, L. M. C., Azevedo, I. F. S., Biase, A. G., Costa, J., Oliveira, M. B. P. P., Mafra, I., & Leite, J. R. d. S. d. A. (2017). Seasonal change in main alkaloids of jaborandi (Pilocarpus microphyllus Stapf ex Wardleworth), an economically important species from the Brazilian flora. PLoS One, 12(2), e0170281. https://doi.org/10.1371/journal.pone.0170281
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Mafud, A. C., Silva, M. P. N., Nunes, G. B. L., de Oliveira, M. A. R., Batista, L. F., Rubio, T. I., Mengarda, A. C., Lago, E. M., Xavier, R. P., Gutierrez, S. J. C., Pinto, P. L. S., da Silva Filho, A. A., Mascarenhas, Y. P., & de Moraes, J. (2018). Antiparasitic, structural, pharmacokinetic, and toxicological properties of riparin derivatives. Toxicology in Vitro, 50, 1–10. https://doi.org/10.1016/j.tiv.2018.02.012
  • Mansoldo, F. R. P., Carta, F., Angeli, A., Cardoso, V. d S., Supuran, C. T., & Vermelho, A. B. (2020). Chagas disease: Perspectives on the past and present and challenges in drug discovery. Molecules, 25(22), 5483. https://doi.org/10.3390/molecules25225483
  • Martinez, R. (2006). Update on the use of antifungal agents. Brazilian Journal of Pulmonology, 32(5), 449–460. https://doi.org/10.1590/S1806-37132006000500013
  • Mclean, A. D., & Chandler, G. S. (1980). Contracted Gaussian-basis sets for molecular calculations. 1. Second row atoms, Z = 11–18. The Journal of Chemical Physics, 72(10), 5639–5648. https://doi.org/10.1063/1.438980
  • Molina, I., Gómez I Prat, J., Salvador, F., Treviño, B., Sulleiro, E., Serre, N., Pou, D., Roure, S., Cabezos, J., Valerio, L., Blanco-Grau, A., Sánchez-Montalvá, A., Vidal, X., & Pahissa, A. (2014). Randomized trial of posaconazole and benznidazole for chronic Chagas' disease. New England Journal of Medicine, 370(20), 1899–1908. https://doi.org/10.1056/NEJMoa1313122
  • Molinspiration Cheminformatics. (2020). Calculation of molecular properties and bioactivity score. Retrieved November 03, 2020, from http://www.molinspiration.com/cgi-bin/properties
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Nicolau, L. A. D., Carvalho, N. S., Pacífico, D. M., Lucetti, L. T., Aragão, K. S., Véras, L. M. C., Souza, M. H. L. P., Leite, J. R. S. A., & Medeiros, J. V. R. (2017). Epiisopiloturine hydrochloride, an imidazole alkaloid isolated from Pilocarpus microphyllus leaves, protects against naproxen-induced gastrointestinal damage in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 87, 188–195. https://doi.org/10.1016/j.biopha.2016.12.101
  • Nisha, C. M., Kumar, A., Vimal, A., Bai, B. M., Pal, D., & Kumar, A. (2016). Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. Journal of Molecular Graphics & Modelling, 65, 100–107. https://doi.org/10.1016/j.jmgm.2016.03.001
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Ottaviani, G., Gosling, D. J., Patissier, C., Rodde, S., Zhou, L., & Faller, B. (2010). What is modulating solubility in simulated intestinal fluids? European Journal of Pharmaceutical Sciences, 41(3–4), 452–457. https://doi.org/10.1016/j.ejps.2010.07.012
  • Panigrahi, S. K. (2008). Strong and weak hydrogen bonds in protein-ligand complexes of kinases: A comparative study. Amino Acids, 34(4), 617–633. https://doi.org/10.1007/s00726-007-0015-4
  • Panigrahi, S. K., & Desiraju, G. R. (2007). Strong and weak hydrogen bonds in the protein–ligand interface. Proteins: Structure, Function, and Bioinformatics, 67(1), 128–141. https://doi.org/10.1002/prot.21253
  • Parr, R. G., & Chattaraj, P. K. (1991). Principle of maximum hardness. Journal of the American Chemical Society, 113(5), 1854–1855. https://doi.org/10.1021/ja00005a072
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity Index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Perdew, J. P., Parr, R. G., Levy, M., & Balduz, J. L. (1982). Density-functional theory for fractional particle number: Derivative discontinuities of the energy. Physical Review Letters, 49(23), 1691–1694. https://doi.org/10.1103/PhysRevLett.49.1691
  • Perez-Molina, J. A., & Molina, I. (2018). Chagas disease. The Lancet, 391(10115), 82–94. https://doi.org/10.1016/S0140-6736(17)31612-4
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 9(5), 663–669. https://doi.org/10.1023/A:1015810312465
  • Ramos, R. M., Perez, J. M., Baptista, L. A., & de Amorim, H. L. N. (2012). Interaction of wild type, G68R and L125M isoforms of the arylamineN-acetyltransferase from Mycobacterium tuberculosis with isoniazid: A computational study on a new possible mechanism of resistance. Journal of Molecular Modeling, 18(9), 4013–4024. https://doi.org/10.1007/s00894-012-1383-6
  • Reigada, C., Sayé, M., Valera-Vera, E., Miranda, M. R., & Pereira, C. A. (2019). Repurposing of terconazole as an anti Trypanosoma cruzi agent. Heliyon, 5(6), e01947. https://doi.org/10.1016/j.heliyon.2019.e01947
  • Rocha, J. A., Andrade, I. M., Véras, L. M. C., Quelemes, P. V., Lima, D. F., Soares, M. J. S., Pinto, P. L. S., Mayo, S. J., Ivanova, G., Rangel, M., Correia, M., Mafud, A. C., Mascarenhas, Y. P., Delerue-Matos, C., de Moraes, J., Eaton, P., & Leite, J. R. S. A. (2017). Anthelmintic, antibacterial and cytotoxicity activity of imidazole alkaloids from Pilocarpus microphyllus leaves. Phytotherapy Research: PTR, 31(4), 624–630. https://doi.org/10.1002/ptr.5771
  • Rocha, J. A., Rego, N. C. S., Carvalho, B. T. S., Silva, F. I., Sousa, J. A., Ramos, R. M., Passos, I. N. G., de Moraes, J., Leite, J. R. S. A., & Lima, F. C. A. (2018). Computational quantum chemistry, molecular docking, and ADMET predictions of imidazole alkaloids of Pilocarpus microphyllus with schistosomicidal properties. PLoS One, 13(6), e0198476. https://doi.org/10.1371/journal.pone.0198476
  • Rodrigues, A. M. X., Costa, R. K. M., Machado, R. S., Gutierrez, S. J. C., Lima, F. D. C. A., & de Oliveira, A. P. (2020). In-silico studies of Riparin B in the design of drugs: Physicochemical, pharmacokinetic and pharmacodynamic parameters. bioRxiv, 1–35. https://doi.org/10.1101/2020.04.24.059626
  • Romkes, M., Faletto, M. B., Blaisdell, J. A., Raucy, J. L., & Goldstein, J. A. (1991). Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry, 30(13), 3247–3255. https://doi.org/10.1021/bi00227a012
  • Santos, A. P., & Moreno, P. R. H. (2004). Pilocarpus spp.: A survey of its chemical constituents and biological activities. Brazilian Journal of Pharmaceutical Sciences, 40(2), 115–137. https://doi.org/10.1590/S1516-93322004000200002
  • Sayin, K., & Karakaş, D. (2018). Investigation of structural, electronic properties and docking calculations of some boron complexes with norfloxacin: A computational research. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 202, 276–283. https://doi.org/10.1016/j.saa.2018.05.055
  • Schneider, G., & Fechner, U. (2005). Computer-based de novo design of drug-like molecules. Nature Reviews. Drug Discovery, 4(8), 649–663. https://doi.org/10.1038/nrd1799
  • Shtaiwi, A., Adnan, R., Khairuddean, M., & Khan, S. U. (2019). Computational investigations of the binding mechanism of novel benzophenone imine inhibitors for the treatment of breast câncer. RSC Advances, 9(61), 35401–35416. https://doi.org/10.1039/C9RA04759J
  • Silva, V. G., Silva, R. O., Damasceno, S. R. B., Carvalho, N. S., Prudêncio, R. S., Aragão, K. S., Guimarães, M. A., Campos, S. A., Véras, L. M. C., Godejohann, M., Leite, J. R. S. A., Barbosa, A. L. R., & Medeiros, J.-V. R. (2013). Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus. Journal of Natural Products, 76(6), 1071–1077. https://doi.org/10.1021/np400099m
  • Souza, J., Freitas, Z. M. F., & Storpirtis, S. (2007). In vitro models for the determination of drug absorption and a prediction of dissolution/absorption relationships. Brazilian Journal of Pharmaceutical Sciences, 43(4), 515–527. https://doi.org/10.1590/S1516-93322007000400004
  • Stroet, M., Caron, B., Visscher, K. M., Geerke, D. P., Malde, A. K., & Mark, A. E. (2018). Automated Topology Builder version 3.0: Prediction of solvation free enthalpies in water and hexane. Journal of Chemical Theory and Computation, 14(11), 5834–5845. https://doi.org/10.1021/acs.jctc.8b00768
  • Suvitha, A., Periandy, S., Boomadevi, S., & Govindarajan, M. (2014). Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117(117), 216–224. https://doi.org/10.1016/j.saa.2013.07.080
  • Torrico, F., Gascon, J., Ortiz, L., Alonso-Vega, C., Pinazo, M.-J., Schijman, A., Almeida, I. C., Alves, F., Strub-Wourgaft, N., Ribeiro, I., Santina, G., Blum, B., Correia, E., Garcia-Bournisen, F., Vaillant, M., Morales, J. R., Pinto Rocha, J. J., Rojas Delgadillo, G., Magne Anzoleaga, H. R., … Jimenez, W. (2018). Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: A proof-of-concept, randomised, placebo-controlled trial. The Lancet Infectious Diseases, 18(4), 419–430. https://doi.org/10.1016/S1473-3099(17)30538-8
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, P. J. (2005). XMGRACE, version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology. Retrieved September 10, 2020, from https://plasma-gate.weizmann.ac.il/Grace/
  • Van der Spoel, D., Van Maaren, P. J., & Berendsen, H. J. C. (1998). A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. The Journal of Chemical Physics, 108(24), 10220–10230. https://doi.org/10.1063/1.476482
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Velasco-Chong, J. R., Herrera-Calderón, O., Rojas-Armas, J. P., Hañari-Quispe, R. D., Figueroa-Salvador, L., Peña-Rojas, G., Andía-Ayme, V., Yuli-Posadas, R. Á., Yepes-Perez, A. F., & Aguilar, C. (2020). TOCOSH FLOUR (Solanum tuberosum L.): A toxicological assessment of traditional Peruvian fermented potatoes. Foods, 9(6), 719–716. (https://doi.org/10.3390/foods9060719
  • Véras, L. M. C., Cunha, V. R. R., Lima, F. C. D. A., Guimarães, M. A., Vieira, M. M., Campelo, Y. D. M., Sakai, V. Y., Lima, D. F., Carvalho, P. S., Ellena, J. A., Silva, P. R. P., Vasconcelos, L. C., Godejohann, M., Petrilli, H. M., Constantino, V. R. L., Mascarenhas, Y. P., & de Souza de Almeida Leite, J. R. (2013). Industrial scale isolation, structural and spectroscopic characterization of epiisopiloturine from Pilocarpus microphyllus stapf leaves: A promising alkaloid against schistosomiasis. PLoS One, 8(6), e66702. https://doi.org/10.1371/journal.pone.0066702
  • Walsh, R., Martin, E., & Darvesh, S. (2011). Limitations of conventional inhibitor classifications. Integrative Biology, 3(12), 1197–1201. https://doi.org/10.1039/c1ib00053e
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • World Health Organization. (2021). Chagas disease (also known as American trypanosomiasis). Retrieved August 20, 2021, from https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
  • Yazdanian, M., Glynn, S. L., Wright, J. L., & Hawi, A. (1998). Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharmaceutical Research, 15(9), 1490–1494. https://doi.org/10.1023/a:1011930411574
  • Yearley, E. J., Zhurova, E. A., Zhurov, V. V., & Alan Pinkerton, A. (2008). Experimental electron density studies of non-steroidal synthetic estrogens: Diethylstilbestrol and dienestrol. Journal of Molecular Structure, 890(1–3), 240–248. https://doi.org/10.1016/j.molstruc.2008.03.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.