173
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Genome sequencing and in silico analysis of isoprene degrading monooxygenase enzymes of Sphingobium sp. BHU LFT2

, &
Pages 3821-3834 | Received 07 Jan 2022, Accepted 17 Mar 2022, Published online: 05 Apr 2022

References

  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep34984
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230–661221. https://doi.org/10.3389/fchem.2021.661230
  • Alvarez, L. A., Exton, D. A., Timmis, K. N., Suggett, D. J., & McGenity, T. J. (2009). Characterization of marine isoprene degrading communities. Environmental Microbiology, 11(12), 3280–3291.
  • Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., & Palmer, P. I. (2008). Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmospheric Chemistry and Physics, 8(16), 4605–4620. https://doi.org/10.5194/acp-8-4605-2008
  • Ashworth, k., Wild, O., & Hewitt, C. N. (2010). Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data. Atmospheric Chemistry and Physics, 10(3), 1193–1201. https://doi.org/10.5194/acp-10-1193-2010
  • Atkinson, R., & Arey, J. (2003). Atmospheric degradation of volatile organic compounds. Chemical Reviews, 103(12), 4605–4638. https://doi.org/10.1021/cr0206420
  • Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., … Zagnitko, O. (2008). The RAST server: rapid annotations using subsystems technology. BMC Genomics, 9(1), 75.
  • Bertoni, G., Martino, M., Galli, E., & Barbieri, P. (1998). Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Applied and Environmental Microbiology, 64(10), 3626–3632.
  • Brettin, T., Davis, J., Disz, T., Edwards, R., Gerdes, S., Olsen, G., Olson, R., Overbeek, R., Parrello, B., Pusch, G., Shukla, M., Thomason, J., Stevens, R., Vonstein, V., Wattam, A., & Xia, F. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5(1), 8365–8366. https://doi.org/10.1038/srep08365
  • Bühler, B., Witholt, B., Hauer, B., & Schmid, A. (2002). Characterization and application of xylene monooxygenase for multistep biocatalysis. Applied and Environmental Microbiology, 68(2), 560–568. https://doi.org/10.1128/AEM.68.2.560-568.2002
  • Carrión, O., Larke-Mejía, N. L., Gibson, L., Haque, M. F. U., Ramiro-García, J., McGenity, T. J., & Murrell, J. C. (2018). Gene probing reveals the widespread distribution, diversity and abundance of isoprene-degrading bacteria in the environment. Microbiome, 6(1), 1–11. https://doi.org/10.1186/s40168-018-0607-0
  • Carrión, O., McGenity, T. J., & Murrell, J. C. (2020). Molecular ecology of isoprene-degrading bacteria. Microorganisms, 8(7), 967. https://doi.org/10.3390/microorganisms8070967
  • Centeno, N. B., Planas-Iglesias, J., & Oliva, B. (2005). Comparative modelling of protein structure and its impact on microbial cell factories. Microbial Cell Factories, 4(1), 20–11.
  • Chaudhary, D. K., Jeong, S. W., & Kim, J. (2017). Sphingobium naphthae sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2986–2993.
  • Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., & Dumka, U. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. The Science of the Total Environment, 579, 1000–1034.
  • Chinnasamy, S., Selvaraj, G., Selvaraj, C., Kaushik, A. C., Kaliamurthi, S., Khan, A., Singh, S. K., & Wei, D. Q. (2020). Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). International Journal of Biological Macromolecules, 144, 53–66. https://doi.org/10.1016/j.ijbiomac.2019.12.091
  • Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., & Maenhaut, W. (2004). Formation of secondary organic aerosols through photooxidation of isoprene. Science, 303(5661), 1173–1176. https://doi.org/10.1126/science.1092805
  • Cleveland, C. C., & Yavitt, J. B. (1997). Consumption of atmospheric isoprene in soil. Geophysical Research Letters, 24(19), 2379–2382. https://doi.org/10.1029/97GL02451
  • Cleveland, C. C., & Yavitt, J. B. (1998). Microbial consumption of atmospheric isoprene in a temperate forest soil. Applied and Environmental Microbiology, 64(1), 172–177. https://doi.org/10.1128/AEM.64.1.172-177.1998
  • Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual screening with AutoDock: Theory and practice. Expert Opinion on Drug Discovery, 5(6), 597–607.
  • Crombie, A. T., Larke-Mejia, N. L., Emery, H., Dawson, R., Pratscher, J., Murphy, G. P., McGenity, T. J., & Murrell, J. C. (2018). Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proceedings of the National Academy of Sciences of the United States of America, 115(51), 13081–13086. https://doi.org/10.1073/pnas.1812668115
  • Dawson, R. A., Larke-Mejía, N. L., Crombie, A. T., Ul Haque, M. F., & Murrell, J. C. (2020). Isoprene oxidation by the Gram-negative model bacterium Variovorax sp. WS11. Microorganisms, 8(3), 349. https://doi.org/10.3390/microorganisms8030349
  • Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
  • Duffy, B. L., Nelson, P. F., Ye, Y., & Weeks, I. A. (1999). Speciated hydrocarbon profiles and calculated reactivities of exhaust and evaporative emissions from 82 in-use light-duty Australian vehicles. Atmospheric Environment, 33(2), 291–307. https://doi.org/10.1016/S1352-2310(98)00163-0
  • El Khawand, M., Crombie, A. T., Johnston, A., Vavlline, D. V., McAuliffe, J. C., Latone, J. A., Primak, Y. A., Lee, S. K., Whited, G. M., McGenity, T. J., & Murrell, J. C. (2016). Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing . Environmental Microbiology, 18(8), 2743–2753. https://doi.org/10.1111/1462-2920.13345
  • Ewels, P., Magnusson, M., Lundin, S., Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048.
  • Exton, D. A., Suggett, D. J., McGenity, T. J., & Steinke, M. (2013). Chlorophyll-normalized isoprene production in laboratory cultures of marine microalgae and implications for global models. Limnology and Oceanography, 58(4), 1301–1311. https://doi.org/10.4319/lo.2013.58.4.1301
  • Fall, R., & Copley, S. D. (2000). Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environmental Microbiology, 2(2), 123–130.
  • Feng, R., Zhao, G., Yang, Y., Xu, M., Huang, S., Sun, G., Guo, J., & Li, J. (2019). Enhanced biological removal of intermittent VOCs and deciphering the roles of sodium alginate and polyvinyl alcohol in biofilm formation. PloS One, 14(5), e0217401.
  • Fiser, A. (2010) Template-based protein structure modeling. In D. Fenyö (Eds), Computational biology. Methods in molecular biology (methods and protocols) (Vol. 673). Humana Press. https://doi.org/10.1007/978-1-60761-842-3z6
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788.
  • Gibson, L., Larke-Mejía, N. L., & Murrell, J. C. (2020). Complete genome of isoprene degrading Nocardioides sp. WS12. Microorganisms, 8(6), 889. https://doi.org/10.3390/microorganisms8060889
  • Gray, C. M., Helmig, D., Fierer, N., Zak, D. R., & Groffman, P. M. (2015). Bacteria and fungi associated with isoprene consumption in soil. Elementa: Science of the Anthropocene, 3, 000053.
  • Gray, C. M., Monson, R. K., & Fierer, N. (2014). Biotic and abiotic controls on biogenic volatile organic compound fluxes from a subalpine forest floor. Journal of Geophysical Research: Biogeosciences, 119(4), 547–556. https://doi.org/10.1002/2013JG002575
  • Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2. 1): An extended and updated framework for modelling biogenic emissions. Geoscientific Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012
  • Guterres, H., & Im, W. (2020). Improving protein-ligand docking results with high-throughput molecular dynamics simulations. Journal of Chemical Information and Modeling, 60(4), 2189–2198.
  • Han, S. R., Jang, S. M., Chi, Y. M., Kim, B., Jung, S. H., Lee, Y. M., Uetake, J., Lee, J. H., Park, H., & Oh, T. J. (2020). Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach. Genes & Genomics, 42(9), 1087–1096.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD - Visual Molecular Dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Iqbal, J., & Shah, S. J. A. (2018). Molecular dynamic simulations reveal structural insights into substrate and inhibitor binding modes and functionality of ecto-nucleoside triphosphate diphosphohydrolases. Scientific Reports, 8(1), 2581.
  • Johnston, A., Crombie, A. T., El Khawand, M., Sims, L., Whited, G. M., McGenity, T. J., & Colin Murrell, J. (2017). Identification and characterisation of isoprene‐degrading bacteria in an estuarine environment. Environmental Microbiology, 19(9), 3526–3537. https://doi.org/10.1111/1462-2920.13842
  • Kertesz, M. A., & Kawasaki, A. (2010). Hydrocarbon-degrading sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In K. N. Timmis (Ed.) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_119
  • Keskin, O., & Nussinov, R. (2007). Similar binding sites and different partners: Implications to shared proteins in cellular pathways. Structure (London, England : 1993), 15(3), 341–354. https://doi.org/10.1016/j.str.2007.01.007
  • Kim, M., Singh, D., Lai-Hoe, A., Go, R., Rahim, R. A., Ainuddin, A. N., Chun, J., & Adams, J. M. (2012). Distinctive phyllosphere bacterial communities in tropical trees. Microbial Ecology, 63(3), 674–681. https://doi.org/10.1007/s00248-011-9953-1
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Larke-Mejía, N. L., Carrión, O., Crombie, A. T., McGenity, T. J., & Murrell, J. C. (2020). Sphingopyxis sp. strain OPL5, an isoprene-degrading bacterium from the Sphingomonadaceae family isolated from oil palm leaves. Microorganisms, 8(10), 1557. https://doi.org/10.3390/microorganisms8101557
  • Larke-Mejía, N. L., Crombie, A. T., Pratscher, J., McGenity, T. J., & Murrell, J. C. (2019). Novel isoprene-degrading Proteobacteria from soil and leaves identified by cultivation and metagenomics analysis of stable isotope probing experiments. Frontiers in Microbiology, 10, 2700.
  • Lee, H. S., Jo, S., Lim, H. S., & Im, W. (2012). Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors. Journal of Chemical Information and Modeling, 52(7), 1821–1832. https://doi.org/10.1021/ci3000997
  • Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D., & Williams, J. (2008). Atmospheric oxidation capacity sustained by a tropical forest. Nature, 452(7188), 737–740.
  • Li, X., Chen, L., Zhou, H., Wang, J., Zhao, C., & Pang, X. (2022). PFOA regulate adenosine receptors and downstream concentration-response cAMP-PKA pathway revealed by integrated omics and molecular dynamics analyses. Science of the Total Environment, 803(2022), 149910–149913. https://doi.org/10.1016/j.scitotenv.2021.149910
  • Liu, X., Xue, Q., Zhang, H., Fu, J., & Zhang, A. (2021). Structural basis for molecular recognition of G protein-coupled estrogen receptor by selected bisphenols. Science of the Total Environment, 793(2021), 148558–148510. https://doi.org/10.1016/j.scitotenv.2021.148558
  • Lobanov, I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706.
  • Maxwell, P. I., & Popelier, P. L. (2017). Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective. Journal of Computational Chemistry, 38(29), 2459–2474.
  • McGenity, T. J., Crombie, A. T., & Murrell, J. C. (2018). Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. The ISME Journal, 12(4), 931–941.
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.
  • Mikou, A., Cabayé, A., Goupil, A., Bertrand, H. O., Mothet, J. P., & Acher, F. C. (2020). Asc-1 transporter (SLC7A10): homology models and molecular dynamics insights into the first steps of the transport mechanism. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-60617-y
  • Mochalski, P., King, J., Kupferthaler, A., Unterkofler, K., Hinterhuber, H., & Amann, A. (2011). Measurement of isoprene solubility in water, human blood and plasma by multiple headspace extraction gas chromatography coupled with solid phase microextraction. Journal of Breath Research, 5(4), 046010.
  • Mu, Y., Pang, X., Quan, J., & Zhang, X. (2007). Atmospheric carbonyl compounds in Chinese background area: A remote mountain of the Qinghai Tibetan Plateau. Journal of Geophysical Research, 112(D22), D22302. https://doi.org/10.1029/2006JD008211
  • Novikov, F. N., Stroganov, O. V., Khaliullin, I. G., Panin, N. V., Shapovalova, I. V., Chilov, G. G., & Švedas, V. K. (2013). Molecular modeling of different substrate binding modes and their role in penicillin acylase catalysis. The FEBS Journal, 280(1), 115–126.
  • Opo, F. A. D. M., Rahman, M. M., Ahammad, F., Ahmed, I., Bhuiyan, M. A., & Asiri, A. M. (2021). Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-83626-x
  • Overbeek, R., Olson, R., Pusch, G., Olsen, G., Davis, J., Disz, T., Edwards, R., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A., Xia, F., & Stevens, R. (2014). The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(Database issue), D206–D214. https://doi.org/10.1093/nar/gkt1226
  • Pacifico, F., Harrison, S. P., Jones, C. D., & Sitch, S. (2009). Isoprene emissions and climate. Atmospheric Environment, 43(39), 6121–6135. https://doi.org/10.1016/j.atmosenv.2009.09.002
  • Pandey, A. K., & Verma, S. (2022). An in-silico evaluation of dietary components for structural inhibition of SARS-Cov-2 main protease. Journal of Biomolecular Structure and Dynamics, 40(1), 136–142. https://doi.org/10.1080/07391102.2020.1809522
  • Pucci, F., Kwasigroch, J. M., & Rooman, M. (2017). SCooP: an accurate and fast predictor of protein stability curves as a function of temperature. Bioinformatics (Oxford, England), 33(21), 3415–3422.
  • Sharkey, T. D., Wiberley, A. E., & Donohue, A. R. (2008). Isoprene emission from plants: why and how. Annals of Botany, 101(1), 5–18.
  • Sharman, I. M. (1978). Isoprene units: their role in structure and function of terpenes, carotenoids, and other fat soluble vitamins. World Review of Nutrition and Dietetics, 31, 10–15.
  • Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science : a Publication of the Protein Society, 27(1), 135–145.
  • Singh, P. K., & Shukla, P. (2012). Molecular modeling and docking of microbial inulinases towards perceptive enzyme–substrate interactions. Indian Journal of Microbiology, 52(3), 373–380.
  • Singh, W., Karabencheva-Christova, T. G., Black, G. W., Ainsley, J., Dover, L., & Christov, C. Z. (2016). Conformational dynamics, ligand binding and effects of mutations in NirE an S-adenosyl-L-methionine dependent methyltransferase. Scientific Reports, 6, 20107. https://doi.org/10.1038/srep20107
  • Singh, A., Srivastava, N., & Dubey, S. K. (2019). Molecular characterization and kinetics of isoprene degrading bacteria. Bioresource Technology, 278, 51–56.
  • Srivastva, N., Shukla, A. K., Singh, R. S., Upadhyay, S. N., & Dubey, S. K. (2015). Characterization of bacterial isolates from rubber dump site and their use in biodegradation of isoprene in batch and continuous bioreactors. Bioresource Technology, 188, 84–91.
  • Srivastva, N., Singh, A., Bhardwaj, Y., & Dubey, S. K. (2018). Biotechnological potential for degradation of isoprene: A review. Critical Reviews in Biotechnology, 38(4), 587–599.
  • van Hylckama Vlieg, J. E., Leemhuis, H., Spelberg, J. H. L., & Janssen, D. B. (2000). Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. Journal of Bacteriology, 182(7), 1956–1963. https://doi.org/10.1128/JB.182.7.1956-1963.2000
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, Jr, A. D. (2010). CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM allatom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690.
  • Verma, H., Kumar, R., Oldach, P., Sangwan, N., Khurana, J. P., Gilbert, J. A., & Lal, R. (2014). Comparative genomic analysis of nine Sphingobium strains: Insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genomics, 15(1), 1014–1019. https://doi.org/10.1186/1471-2164-15-1014
  • Wang, J. L., Chew, C., Chang, C. Y., Liao, W. C., Lung, S. C. C., Chen, W. N., Lee, P. J., Lin, P. H., & Chang, C. C. (2013). Biogenic isoprene in subtropical urban settings and implications for air quality. Atmospheric Environment, 79, 369–379. https://doi.org/10.1016/j.atmosenv.2013.06.055
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(5), 5.6.1–5.6.37.
  • Whited, G. M., & Gibson, D. T. (1991). Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. Journal of Bacteriology, 173(9), 3010–3016.
  • Wu, Y., Shi, W., Xia, P., Zhang, X., & Yu, H. (2017). Qualitative and quantitative simulation of androgen receptor antagonists: A case study of polybrominated diphenyl ethers. Science of the Total Environment, 603–604(2017), 495–501. https://doi.org/10.1016/j.scitotenv.2017.06.106
  • Yadav, S., Pandey, A. K., & Dubey, S. K. (2021). Molecular modeling, docking and simulation dynamics of β-glucosidase reveals high-efficiency, thermo-stable, glucose tolerant enzyme in Paenibacillus lautus BHU3 strain. International Journal of Biological Macromolecules, 168, 371–382.
  • Yin, C., Xiong, W., Qiu, H., Peng, W., Deng, Z., Lin, S., & Liang, R. (2020). Characterization of the phenanthrene-degrading Sphingobium yanoikuyae SJTF8 in heavy metal co-existing liquid medium and analysis of its metabolic pathway. Microorganisms, 8(6), 946. https://doi.org/10.3390/microorganisms8060946
  • Zhexin, X. (2006). Advances in homology protein structure modeling. Current Protein & Peptide Science, 7(3), 217–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.