368
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent progression of cyanobacteria and their pharmaceutical utility: an update

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4219-4252 | Received 24 Dec 2021, Accepted 29 Mar 2022, Published online: 12 Apr 2022

References

  • Abarzua, S., Jakubowski, S., Eckert, S., & Fuchs, P. (1999). Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Botanica Marina, 42(5), 459–465. https://doi.org/10.1515/BOT.1999.053
  • Abdelghany, T. M., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M. M., Magdah, A. G., Helmy, E. A., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8(1), 5–16. https://doi.org/10.1007/s12668-017-0413-3
  • Abdel-Raouf, N., Al-Enazi, N. M., Ibraheem, I. B. M., Alharbi, R. M., & Alkhulaifi, M. M. (2019). Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi Journal of Biological Sciences, 26(6), 1207–1215. https://doi.org/10.1016/j.sjbs.2018.01.007
  • Aboelfetoh, E. F., El-Shenody, R. A., & Ghobara, M. M. (2017). Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment, 189(7), 1–15. https://doi.org/10.1007/s10661-017-6033-0
  • Adebayo-Tayo, B., Salaam, A., & Ajibade, A. (2019). Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon, 5(10), e02502. https://doi.org/10.1016/j.heliyon.2019.e02502
  • Agnihotri, S., & Dhiman, N. K. (2017). Development of nano-antimicrobial biomaterials for biomedical applications. In Advances in Biomaterials for Biomedical Applications (pp. 479–545). Springer. https://doi.org/10.1007/978-981-10-3328-5_12
  • Ahmed, E. A., Hafez, A., Ismail, F., Elsonbaty, M., Abbas, H., & Eldin, R. S. (2015). Biosynthesis of silver nanoparticles by Spirulina platensis and Nostoc sp. Global Advanced Research Journal of Microbiology, 4(4), 36–49. https://doi.org/10.4172/2167-0412.1000163
  • Akram, F. E., El-Tayeb, T., Abou-Aisha, K., & El-Azizi, M. (2016). A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Annals of Clinical Microbiology and Antimicrobials, 15(1), 1–13. https://doi.org/10.1186/s12941-016-0164-y
  • Al Rashed, S., Al Shehri, S., & Moubayed, N. (2018). Extracellular biosynthesis of silver nanoparticles from Cyanobacteria. Biomedical Research, 29(13). https://doi.org/10.4066/biomedicalresearch.29-17-3209
  • Ali, D. M., Sasikala, M., Gunasekaran, M., & Thajuddin, N. (2011). Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Digest Journal of Nanomaterials and Biostructures, 6(2), 385–390.
  • AL-Jobory, H. S., Kareem, K. M. H. Z. H., & Alkaim, A. F. (2019). Green synthesis of silver nanoparticles and its antibacterial activity: A review. Plant Archives, 19(2), 2363–2367.
  • AL-Katib, M., Al-Shahri, Y., & Al-Niemi, A. (2015). Biosynthesis of silver nanoparticles by cyanobacterium Gloeocapsa sp. International Journal of Enhanced Research in Science Technology & Engineering, 4(9), 60–73. https://doi.org/10.1155/2015/539494
  • Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Antimicrobial activities of microalgae: an invited review. Science against Microbial Pathogens: communicating Current Research and Technological Advances, 3, 1272–1284.
  • Andrianasolo, E. H., Gross, H., Goeger, D., Musafija-Girt, M., McPhail, K., Leal, R. M., Mooberry, S. L., & Gerwick, W. H. (2005). Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Organic Letters, 7(7), 1375–1378. https://doi.org/10.1021/ol050188x
  • Arad, S., & Levy-Ontman, O. (2010). Red microalgal cell-wall polysaccharides: Biotechnological aspects. Current Opinion in Biotechnology, 21(3), 358–364. https://doi.org/10.1016/j.copbio.2010.02.008
  • Asthana, R. K., Srivastava, A., Kayastha, A. M., Nath, G., & Singh, S. P. (2006). Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing Neem tree bark. World Journal of Microbiology and Biotechnology, 22(5), 443–448. https://doi.org/10.1007/s11274-005-9054-8
  • Asthana, R. K., Tripathi, M. K., Srivastava, A., Singh, A. P., Singh, S. P., Nath, G., … Srivastava, B. S. (2009). Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. Journal of Applied Phycology, 21(1), 81–88. https://doi.org/10.1007/s10811-008-9328-2
  • Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., Heys, K. A., Hughes, C., Lasch, P., Martin-Hirsch, P. L., Obinaju, B., Sockalingum, G. D., Sulé-Suso, J., Strong, R. J., Walsh, M. J., Wood, B. R., Gardner, P., & Martin, F. L. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9(8), 1771–1791. https://doi.org/10.1038/nprot.2014.110
  • Banker, R., & Carmeli, S. (1998). Tenuecyclamides A-D, Cyclic Hexapeptides from the Cyanobacterium Nostoc spongiaeforme var. tenue. Journal of Natural Products, 61(10), 1248–1251. https://doi.org/10.1021/np980138j
  • Barabadi, H., Kobarfard, F., & Vahidi, H. (2018). Biosynthesis and characterization of biogenic tellurium nanoparticles by using Penicillium chrysogenum PTCC 5031: A novel approach in gold biotechnology. Iranian Journal of Pharmaceutical Research: IJPR, 17(Suppl2), 87–97. https://pubmed.ncbi.nlm.nih.gov/31011345/
  • Barbaras, D., Kaiser, M., Brun, R., & Gademann, K. (2008). Potent and selective antiplasmodial activity of the cyanobacterial alkaloid nostocarboline and its dimers. Bioorganic & Medicinal Chemistry Letters, 18(15), 4413–4415. https://doi.org/10.1016/j.bmcl.2008.06.049
  • Barchi, J. J., Jr, Moore, R. E., & Patterson, G. M. (1984). Acutiphycin and 20, 21-didehydroacutiphycin, new antineoplastic agents from the cyanophyte Oscillatoria acutissima. Journal of the American Chemical Society, 106(26), 8193–8197. https://doi.org/10.1021/ja00338a031
  • Bazhin, P. M., Stolin, A. M., & Alymov, M. I. (2014). Preparation of nanostructured composite ceramic materials and products under conditions of a combination of combustion and high-temperature deformation (SHS extrusion). Nanotechnologies in Russia, 9(11–12), 583–600. https://doi.org/10.1134/S1995078014060020
  • Bernardo, P. H., Chai, C. L., Le Guen, M., Smith, G. D., & Waring, P. (2007). Structure-activity delineation of quinones related to the biologically active Calothrixin B. Bioorganic & Medicinal Chemistry Letters, 17(1), 82–85. https://doi.org/10.1016/j.bmcl.2006.09.090
  • Bhadury, P., & Wright, P. C. (2004). Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta, 219(4), 561–578. https://doi.org/10.1007/s00425-004-1307-5
  • Bhagavathy, S., Sumathi, P., & Jancy Sherene Bell, I. (2011). Green algae Chlorococcumhumicola—A new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), S1–S7. https://doi.org/10.1016/S2221-1691(11)60111-1
  • Bhatia, S. (2016). Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In Natural Polymer Drug Delivery Systems (pp. 33–93). Springer. https://doi.org/10.1007/978-3-319-41129-3_2
  • Bhushan, B., & Marti, O. (2017). Scanning probe microscopy—Principle of operation, instrumentation, and probes. In Nanotribology and Nanomechanics (pp. 33–93). Springer. https://doi.org/10.1007/978-3-319-51433-8_2
  • Bindhu, M. R., & Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 373–378. https://doi.org/10.1016/j.saa.2014.07.045
  • Bin-Meferij, M. M., & Hamida, R. S. (2019). Bio-fabrication and antitumor activity of silver nanoparticles utilizing novel Nostoc sp. Bahar M. International Journal of Nanomedicine, 14, 9019–9029. https://doi.org/10.2147/IJN.S230457
  • Bishoyi, A. K., Mahapatra, M., Paidesetty, S. K., & Padhy, R. N. (2021a). Design, molecular docking, and antimicrobial assessment of newly synthesized phytochemical thymol Mannich base derivatives. Journal of Molecular Structure, 1244, 130908. https://doi.org/10.1016/j.molstruc.2021.130908
  • Bishoyi, A. K., Sahoo, C. R., Sahoo, A. P., & Padhy, R. N. (2021b). Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Applied Nanoscience, 11(2), 389–398. https://doi.org/10.1007/s13204-020-01593-7
  • Biswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., & Faupel, F. (2012). Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science, 170(1-2), 2–27. https://doi.org/10.1016/j.cis.2011.11.001
  • Boenigk, J., Beisser, D., Zimmermann, S., Bock, C., Jakobi, J., Grabner, Da. n. iel., Großmann, L., Rahmann, S., Barcikowski, S., & Sures, B. (2014). Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS One, 9(4), e95340. https://doi.org/10.1371/journal.pone.0107092
  • Bokesch, H. R., O’Keefe, B. R., McKee, T. C., Pannell, L. K., Patterson, G. M. L., Gardella, R. S., Sowder, R. C., Turpin, J., Watson, K., Buckheit, R. W., & Boyd, M. R. (2003). A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry, 42(9), 2578–2584. https://doi.org/10.1021/bi0205698
  • Bonjouklian, R., Smitka, T. A., Doolin, L. E., Molloy, R., Debono, M., Shaffer, S. A., Moore, R. E., Stewart, J. B., & Patterson, G. M. (1991). Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron, 47(37), 7739–7750. https://doi.org/10.1016/S0040-4020(01)81932-3
  • Bonnard, I., Rolland, M., Salmon, J. M., Debiton, E., Barthomeuf, C., & Banaigs, B. (2007). Total structure and inhibition of tumor cell proliferation of laxaphycins. Journal of Medicinal Chemistry, 50(6), 1266–1279. https://doi.org/10.1021/jm061307x
  • Boufi, S., Haaj, S. B., Magnin, A., Pignon, F., Impéror-Clerc, M., & Mortha, G. (2018). Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry, 41, 327–336. https://doi.org/10.1016/j.ultsonch.2017.09.033
  • Boyd, M. R., Gustafson, K. R., McMahon, J. B., Shoemaker, R. H., O’Keefe, B. R., Mori, T., Gulakowski, R. J., Wu, L., Rivera, M. I., Laurencot, C. M., Currens, M. J., Cardellina, J. H., Buckheit, R. W., Nara, P. L., Pannell, L. K., Sowder, R. C., & Henderson, L. E. (1997). Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrobial Agents and Chemotherapy, 41(7), 1521–1530. https://doi.org/10.1128/AAC.41.7.1521
  • Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yéprémian, C., Coradin, T., Livage, J., Fiévet, F., & Couté, A. (2007). Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. Journal of Nanoscience and Nanotechnology, 7(8), 2696–2708. https://doi.org/10.1166/jnn.2007.600
  • Bui, H. T., Jansen, R., Pham, H. T., & Mundt, S. (2007). Carbamidocyclophanes A-E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. Journal of Natural Products, 70(4), 499–503. https://doi.org/10.1021/np060324m
  • Bui, T.-H., Wray, V., Nimtz, M., Fossen, T., Preisitsch, M., Schröder, G., Wende, K., Heiden, S. E., & Mundt, S. (2014). Balticidins A-D, antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33. Journal of Natural Products, 77(6), 1287–1296. https://doi.org/10.1021/np401020a
  • Bunaciu, A. A., UdriŞTioiu, E. G., & Aboul-Enein, H. Y. (2015). X-ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry, 45(4), 289–299. https://doi.org/10.1080/10408347.2014.949616
  • Burchardt, A. D., Carvalho, R. N., Valente, A., Nativo, P., Gilliland, D., Garcìa, C. P., Passarella, R., Pedroni, V., Rossi, F., & Lettieri, T. (2012). Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp. Environmental Science & Technology, 46(20), 11336–11344. https://doi.org/10.1021/es300989e
  • Burja, A. M., Banaigs, B., Abou-Mansour, E., Grant Burgess, J., & Wright, P. C. (2001). Marine cyanobacteria—A prolific source of natural products. Tetrahedron, 57(46), 9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0
  • Cao, Z., Gerwick, W. H., & Murray, T. F. (2010). Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 alpha subunits. BMC Neuroscience, 11(1), 154. https://doi.org/10.1186/1471-2202-11-154
  • Carda, M., Castillo, E., Rodrı́guez, S., & Marco, J. A. (2000). A stereoselective synthesis of (+)-malyngolide via a ring-closing olefin metathesis. Tetrahedron Letters, 41(29), 5511–5513. https://doi.org/10.1016/S0040-4039(00)00884-4
  • Cardellina, J. H., Marner, F. J., & Moore, R. E. (1979). Seaweed dermatitis: Structure of lyngbyatoxin A. Science (New York, N.Y.), 204(4389), 193–195. https://doi.org/10.1126/science.107586
  • Cepoi, L., Rudi, L., Chiriac, T., Valuta, A., Zinicovscaia, I., Duca, G., Kirkesali, E., Frontasyeva, M., Culicov, O., Pavlov, S., & Bobrikov, I. (2015). Biochemical changes in cyanobacteria during the synthesis of silver nanoparticles. Canadian Journal of Microbiology, 61(1), 13–21. https://doi.org/10.1139/cjm-2014-0450
  • Cepoi, L., Rudi, L., Miscu, V., Cojocari, A., Chiriac, T., & Sadovnic, D. (2009). Antioxidative activity of ethanol extracts from Spirulina platensis and Nostoc linckia by various methods. Analele Universitatii din Oradea, Fascicula Biologie, 16(2), 43–48.
  • Chakraborty, K., Shivakumar, A., & Ramachandran, S. (2016). Nano-technology in herbal medicines: a review. International Journal of Herbal Medicine, 4(3), 21–27. https://doi.org/10.22271/flora.2016.v4.i3.05
  • Chan, M. Y., Dowling, Q. M., Sivananthan, S. J., & Kramer, R. M. (2017). Particle sizing of nanoparticle adjuvant formulations by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA. ). In Vaccine Adjuvants (pp. 239–252). Humana Press. https://doi.org/10.1007/978-1-4939-6445-1_17
  • Charnock, J. S. (1999). The role of omega-3 polyunsaturated fatty acid-enriched diets in the prevention of ventricular fibrillation. Asia Pacific Journal of Clinical Nutrition, 8(3), 226–230. https://doi.org/10.1046/j.1440-6047.1999.00115.x
  • Chauhan, R., Kumar, A., & Abraham, J. (2013). A biological approach to the synthesis of silver nanoparticles with Streptomyces sp. JAR1 and its antimicrobial activity. Scientia Pharmaceutica, 81(2), 607–624. https://doi.org/10.3797/scipharm.1302-02
  • Chen, L., Li, J., Chen, Z., Gu, Z., Yan, L., Zhao, F., & Zhang, A. (2020). Toxicological evaluation of graphene-family nanomaterials. Journal of Nanoscience and Nanotechnology, 20(4), 1993–2006. https://doi.org/10.1166/jnn.2020.17364
  • Chirayil, C. J., Abraham, J., Mishra, R. K., George, S. C., & Thomas, S. (2017). Instrumental techniques for the characterization of nanoparticles. In Thermal and Rheological Measurement Techniques for Nanomaterials Characterization (pp. 1–36). Elsevier. https://doi.org/10.1016/B978-0-323-46139-9.00001-3
  • Choi, H., Pereira, A. R., Cao, Z., Shuman, C. F., Engene, N., Byrum, T., Matainaho, T., Murray, T. F., Mangoni, A., & Gerwick, W. H. (2010). The hoiamides, structurally intriguing neurotoxic lipopeptides from Papua New Guinea marine cyanobacteria. Journal of Natural Products, 73(8), 1411–1421. https://doi.org/10.1021/np100468n
  • Chowdhury, A. H., Debnath, R., Islam, S. M., & Saha, T. (2019). Impact of Nanoparticle Shape, Size, and Properties of Silver Nanocomposites and Their Applications. In Sustainable Polymer Composites and Nanocomposites., 1067–1091. Springer. https://doi.org/10.1007/978-3-030-05399-4_37
  • Christopher, P., Ingram, D. B., & Linic, S. (2010). Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. The Journal of Physical Chemistry C, 114(19), 9173–9177. https://doi.org/10.1021/jp101633u
  • Chu, W. L., & Phang, S. M. (2019). Bioactive compounds from microalgae and their potential applications as pharmaceuticals and nutraceuticals. In Grand challenges in algae biotechnology (pp. 429–469). Springer. https://doi.org/10.1007/978-3-030-25233-5_12
  • Chung, S., Jeong, J. Y., Choi, D. E., Na, K. R., Lee, K. W., & Shin, Y. T. (2010). C-phycocyanin attenuates renal inflammation and fibrosis in UUO Mice. Korean Journal of Nephrology, 29(6), 687–694.
  • Cicci, A., Sed, G., Tirillò, J., Stoller, M., & Bravi, M. (2017). Production and characterization of silver nanoparticles in cultures of the cyanobacterium A. platensis (Spirulina). Chemical Engineering Transactions, 57, 1405–1410. https://doi.org/10.3303/CET1757235
  • Cohen, Z. (2002). Chemicals from microalgae. CRC Press. https://doi.org/10.1201/9781482295306
  • Dahms, H. U., Ying, X., & Pfeiffer, C. (2006). Antifouling potential of cyanobacteria: a mini-review. Biofouling, 22(5–6), 317–327. https://doi.org/10.1080/08927010600967261
  • Dai, X., Moffat, J. G., Wood, J., & Reading, M. (2012). Thermal scanning probe microscopy in the development of pharmaceuticals. Advanced Drug Delivery Reviews, 64(5), 449–460. https://doi.org/10.1016/j.addr.2011.07.008
  • Davies-Coleman, M. T., Dzeha, T. M., Gray, C. A., Hess, S., Pannell, L. K., Hendricks, D. T., & Arendse, C. E. (2003). Isolation of Homodolastatin 16, a New Cyclic Depsipeptide from a Kenyan Collection of Lyngbya majuscula. Journal of Natural Products, 66(5), 712–715. https://doi.org/10.1021/np030014t
  • de Aragão, A. P., de Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araújo, M. C., Santiago, J. d A. S., Cardoso, V. S., Quaresma, P., de Souza de Almeida Leite, J. R., & da Silva, D. A. (2019). Green synthesis of silver nanoparticles using the seaweed Gracilariabirdiae and their antibacterial activity. Arabian Journal of Chemistry, 12(8), 4182–4188. https://doi.org/10.1016/j.arabjc.2016.04.014
  • De Matteis, V., Cascione, M., Toma, C. C., & Leporatti, S. (2018). Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials, 8(5), 319. https://doi.org/10.3390/nano8050319
  • Demay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. Marine Drugs, 17(6), 320. https://doi.org/10.3390/md17060320
  • Devi, M., Devi, S., Sharma, V., Rana, N., Bhatia, R. K., & Bhatt, A. K. (2020). Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. Journal of Traditional and Complementary Medicine, 10(2), 158–165. https://doi.org/10.1016/j.jtcme.2019.04.007
  • Dey, B., Lerner, D. L., Lusso, P., Boyd, M. R., Elder, J. H., & Berger, E. A. (2000). Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. Journal of Virology, 74(10), 4562–4569. https://doi.org/10.1128/JVI.74.10.4562-4569.2000
  • Ding, R., Feng, J., Zhang, X.-L., Zhou, W., Fang, H.-H., Liu, Y.-F., Chen, Q.-D., Wang, H.-Y., & Sun, H.-B. (2014). Fabrication and characterization of organic single crystal‐based light‐emitting devices with improved contact between the metallic electrodes and crystal. Advanced Functional Materials, 24(45), 7066–7092. https://doi.org/10.1002/adfm.201400832
  • Dinparvar, S., Bagirova, M., Allahverdiyev, A. M., Abamor, E. S., Safarov, T., Aydogdu, M., & Aktas, D. (2020). A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. Journal of Photochemistry and Photobiology. B, Biology, 208, 111902. https://doi.org/10.1016/j.jphotobiol.2020.111902
  • Duong, T. T., Le, T. S., Tran, T. T. H., Nguyen, T. K., Ho, C. T., Dao, T. H., … Ha, P. T. (2016). Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(3), 035018. https://doi.org/10.1088/2043-6262/7/3/035018
  • Duran, N., Marcato, P. D., Ingle, A., Gade, A., & Rai, M. (2010). Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In Progress in Mycology (pp. 425–449). Springer. https://doi.org/10.1155/2015/185071
  • Elayaraja, S., Liu, G., Zagorsek, K., Mabrok, M., Ji, M., Ye, Z., Zhu, S., & Rodkhum, C. (2021). TEMPO-oxidized biodegradable bacterial cellulose (BBC) membrane coated with biologically-synthesized silver nanoparticles (AgNPs) as a potential antimicrobial agent in aquaculture (In vitro). Aquaculture, 530, 735746. https://doi.org/10.1016/j.aquaculture.2020.735746
  • El-Naggar, N. E. A., Hussein, M. H., & El-Sawah, A. A. (2017). Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivocytotxicity. Scientific Reports, 7(1), 1–20. https://doi.org/10.1038/s41598-017-11121-3
  • El-Naggar, N. E. A., Hussein, M. H., & El-Sawah, A. A. (2018). Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Scientific Reports, 8(1), 1–20. https://doi.org/10.1038/s41598-018-27276-6
  • El-Sheekh, M. M., & El-Kassas, H. Y. (2014). Application of biosynthesized silver nanoparticles against a cancer promoter cyanobacterium, Microcystis aeruginosa. Asian Pacific Journal of Cancer Prevention: APJCP, 15(16), 6773–6779. https://doi.org/10.7314/apjcp.2014.15.16.6773
  • Engene, N., Choi, H., Esquenazi, E., Byrum, T., Villa, F. A., Cao, Z. g. y., Murray, T. F., Dorrestein, P. C., Gerwick, L., & Gerwick, W. H. (2011). Phylogeny-guided isolation of ethyl tumonoate A from the marine cyanobacterium cf. Oscillatoria margaritifera. Journal of Natural Products, 74(8), 1737–1743. https://doi.org/10.1021/np200236c
  • Erdemoğlu, M., & Baláž, P. (2012). An overview of surface analysis techniques for characterization of mechanically activated minerals. Mineral Processing and Extractive Metallurgy Review, 33(1), 65–88. https://doi.org/10.1080/08827508.2010.542582
  • Falch, B. S., Koenig, G. M., Wright, A. D., Sticher, O., Ruegger, H., & Bernardinelli, G. (1993). Ambigol A and B: new biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischerella ambigua. The Journal of Organic Chemistry, 58(24), 6570–6575. https://doi.org/10.1021/jo00076a013
  • Faria, M., Björnmalm, M., Thurecht, K. J., Kent, S. J., Parton, R. G., Kavallaris, M., Johnston, A. P. R., Gooding, J. J., Corrie, S. R., Boyd, B. J., Thordarson, P., Whittaker, A. K., Stevens, M. M., Prestidge, C. A., Porter, C. J. H., Parak, W. J., Davis, T. P., Crampin, E. J., & Caruso, F. (2018). Minimum information reporting in bio-nano experimental literature. Nature Nanotechnology, 13(9), 777–785. https://doi.org/10.1038/s41565-018-0246-4
  • Fennell, B. J., Carolan, S., Pettit, G. R., & Bell, A. (2003). Effects of the antimitotic natural product dolastatin 10, and related peptides, on the human malarial parasite Plasmodium falciparum. The Journal of Antimicrobial Chemotherapy, 51(4), 833–841. https://doi.org/10.1093/jac/dkg151
  • Ferir, G., Huskens, D., Noppen, S., Koharudin, L. M. I., Gronenborn, A. M., & Schols, D. (2014). Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family. The Journal of Antimicrobial Chemotherapy, 69(10), 2746–2758. https://doi.org/10.1093/jac/dku220
  • Fernando, S. S., Gunasekara, T. D., & Holton, J. (2018). Antimicrobial Nanoparticles: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases, 8(1), 2–11. https://doi.org/10.4038/sljid.v8i1.8167
  • Flahive, E., & Srirangam, J. (2005). The dolastatins: Novel antitumor agents from Dolabella auricularia. In Anticancer Agents From Natural Products. Routledge.
  • Frankmolle, W. P., Knubel, G., Moore, R. E., & Patterson, G. M. (1992). Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa II. Structures of laxaphycins A, B, D and E. The Journal of Antibiotics, 45(9), 1458–1466. https://doi.org/10.7164/antibiotics.45.1458
  • Gadad, A. P., Kumar, S. V., Dandagi, P. M., Bolmol, U. B., & Pallavi, N. P. (2014). Nanoparticles and their therapeutic applications in pharmacy. International Journal of Pharmaceutical Sciences and Nanotechnology, 7(3), 2509–2019. https://doi.org/10.4103/jdmimsu.jdmimsu_51_20 https://doi.org/10.37285/ijpsn.2014.7.3.2
  • Gallón, S. M. N., Alpaslan, E., Wang, M., Larese-Casanova, P., Londoño, M. E., Atehortúa, L., Pavón, J. J., & Webster, T. J. (2019). Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Materials Science & Engineering. C, Materials for Biological Applications, 99, 685–695. https://doi.org/10.1016/j.msec.2019.01.134
  • Gekwick, W. H., Reyes, S., & Alvarado, B. (1987). Two malyngamides from the caribbean cyanobacterium Lyngbya majuscula. Phytochemistry, 26(6), 1701–1704. https://doi.org/10.1016/S0031-9422(00)82271-2
  • Gengan, R., Anand, K., Phulukdaree, A., & Chuturgoon, A. (2013). A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids and Surfaces. B, Biointerfaces, 105, 87–91. https://doi.org/10.1016/j.colsurfb.2012.12.044
  • Gesner-Apter, S., & Carmeli, S. (2008). Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. Tetrahedron, 64(28), 6628–6634. https://doi.org/10.1016/j.tet.2008.05.031
  • Ghasemi, Y., Yazdi, M. T., Shafiee, A., Amini, M., Shokravi, S., & Zarrini, G. (2004). Parsiguine, a novel antimicrobial substance from Fischerella ambigua. Pharmaceutical Biology, 42(4–5), 318–322. https://doi.org/10.1080/13880200490511918
  • Gherasim, O., Puiu, R. A., Bîrcă, A. C., Burdușel, A. C., & Grumezescu, A. M. (2020). An updated review on silver nanoparticles in biomedicine. Nanomaterials, 10(11), 2318. https://doi.org/10.3390/nano10112318
  • Gigova, L., Toshkova, R., Gardeva, E., Gacheva, G., Ivanova, N., Yossifova, L., & Petkov, G. D. (2011). Growth inhibitory activity of selected microalgae and cyanobacteria towards human cervical carcinoma cells (HeLa). Journal of Pharmacy Research, 4(12), 4702–4707.
  • Gnanakani, P. E., Santhanam, P., Premkumar, K., Kumar, K. E., & Dhanaraju, M. D. (2019). Nannochloropsis extract-mediated synthesis of biogenic silver nanoparticles, characterization and in vitro assessment of antimicrobial, antioxidant and cytotoxic activities. Asian Pacific Journal of Cancer Prevention: APJCP, 20(8), 2353–2364. https://doi.org/10.31557/APJCP.2019.20.8.2353
  • Golakoti, T., Yoshida, W. Y., Chaganty, S., & Moore, R. E. (2001). Isolation and structure determination of nostocyclopeptides A1 and A2 from the terrestrial cyanobacterium Nostoc sp. ATCC53789. Journal of Natural Products, 64(1), 54–59. https://doi.org/10.1021/np000316
  • Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S., & Salavati-Niasari, M. (2016). Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Scientific Reports, 6(1), 32539–32513. https://doi.org/10.1038/srep32539
  • Govindaraju, K., Basha, S. K., Kumar, V. G., & Singaravelu, G. (2008). Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 43(15), 5115–5122. https://doi.org/10.1007/s10853-008-2745-4
  • Gromov, B. V., Vepritskiy, A. A., Titova, N. N., Mamkayeva, K. A., & Alexandrova, O. V. (1991). Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium). Journal of Applied Phycology, 3(1), 55–59. https://doi.org/10.1007/BF00003919
  • Gudikandula, K., Vadapally, P., & Charya, M. S. (2017). Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano, 2, 64–78. https://doi.org/10.1016/j.onano.2017.07.002
  • Güler, G., Vorob’ev, M. M., Vogel, V., & Mäntele, W. (2016). Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 161, 8–18. https://doi.org/10.1016/j.saa.2016.02.013
  • Hafez, E. E., & Kabeil, S. S. (2013). Antimicrobial activity of nano-silver particles produced by micro algae. Journal of Pure and Applied Microbiology, 7, 35–42. https://doi.org/10.5101/nbe.v4i1.p12-16
  • Halkai, K. R., Mudda, J. A., Shivanna, V., Rathod, V., & Halkai, R. S. (2017). Biosynthesis, characterization and antibacterial efficacy of silver nanoparticles derived from endophytic fungi against P. gingivalis. Journal of Clinical and Diagnostic Research: JCDR, 11(9), ZC92–ZC96. https://doi.org/10.7860/JCDR/2017/29434.10681
  • Hamed, S. M., Abdel-Alim, M. M., Abdel-Raouf, N., & Ibraheem, I. B. (2017). Biosynthesis of silver chloride nanoparticles using the cyanobacterium Anabaena variabilis. Life Sciences-Journals, 14(6), 25–30. https://doi.org/10.7537/marslsj140617.04
  • Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). Synthesis of silver nanoparticles using a novel cyanobacteria Desertifilum sp. extract: their antibacterial and cytotoxicity effects. International Journal of Nanomedicine, 15, 49–63. https://doi.org/10.2147/IJN.S238575
  • Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-49444-y
  • Han, B., Goeger, D., Maier, C. S., & Gerwick, W. H. (2005). The Wewakpeptins, Cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. The Journal of Organic Chemistry, 70(8), 3133–3139. https://doi.org/10.1021/jo0478858
  • Han, B., Gross, H., Goeger, D. E., Mooberry, S. L., & Gerwick, W. H. (2006). Aurilides B and C, Cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 69(4), 572–575. https://doi.org/10.1021/np0503911
  • Hasan, M., Ullah, I., Zulfiqar, H., Naeem, K., Iqbal, A., Gul, H., Ashfaq, M. u. hammad., & Mahmood, N. (2018). Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective. Materials Today Chemistry, 8, 13–28. https://doi.org/10.1016/j.mtchem.2018.02.003
  • Hayashi, K., Hayashi, T., & Kojima, I. (1996). A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12(15), 1463–1471. https://doi.org/10.1089/aid.1996.12.1463
  • Hayashi, K., Kanekiyo, K., Ohta, Y., Lee, J. B., Takenaka, H., & Hayashi, T. (2008). Anti-influenza a virus activity of an acidic polysaccharide from a blue-green alga Nostoc flagelliforme. Planta Medica, 74(9), PA34. https://doi.org/10.1055/s-0028-1084032
  • Heikal, Y. M., & Abdel-Aziz, H. M. (2020). Biogenic nanomaterials and their applications in agriculture. In Biogenic Nano-Particles and their Use in Agro-ecosystems (pp. 489–414). Springer. https://doi.org/10.1007/978-981-15-2985-6_25
  • Hemscheidt, T., Puglisi, M. P., Larsen, L. K., Patterson, G. M., Moore, R. E., Rios, J. L., & Clardy, J. (1994). Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. The Journal of Organic Chemistry, 59(12), 3467–3471. https://doi.org/10.1021/jo00091a042
  • Hirata, K., Nakagami, H., Takashina, J., Mahmud, T., Kobayashi, M., In, Y., … Miyamoto, K. (1996). Novel violet pigment, nostocine A, an extracellular metabolite from cyanobacterium Nostoc spongiaeforme. Heterocycles, 7(43), 1513–1519.
  • Hodoroaba, V. D., Rades, S., Salge, T., Mielke, J., Ortel, E., & Schmidt, R. (2016). Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode [Paper presentation]. In IOP Conference Series: Materials Science and Engineering, 109(1), 012006. IOP Publishing. https://doi.org/10.1088/1757-899X/109/1/012006
  • Hong, J., & Luesch, H. (2012). Largazole: From discovery to broad-spectrum therapy. Natural Product Reports, 29(4), 449–456. https://doi.org/10.1039/c2np00066k
  • Horgen, F. D., Kazmierski, E. B., Westenburg, H. E., Yoshida, W. Y., & Scheuer, P. J. (2002). Malevamide D: isolation and structure determination of an isodolastatin H Analogue from the Marine Cyanobacterium Symploca hydnoides. Journal of Natural Products, 65(4), 487–491. https://doi.org/10.1021/np010560r
  • Husain, S., Afreen, S., Yasin, D., Afzal, B., & Fatma, T. (2019). Cyanobacteria as a bioreactor for synthesis of silver nanoparticles-an effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. Journal of Microbiological Methods, 162, 77–82. https://doi.org/10.1016/j.mimet.2019.05.011
  • Husain, S., Sardar, M., & Fatma, T. (2015). Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World Journal of Microbiology & Biotechnology, 31(8), 1279–1283. https://doi.org/10.1007/s11274-015-1869-3
  • Ingle, A. P., Biswas, A., Vanlalveni, C., Lalfakzuala, R., Gupta, I., Ingle, P., … Rai, M. (2020). Biogenic synthesis of nanoparticles and their role in the management of plant pathogenic fungi. In Microbial Nanotechnology (pp. 135–161). Springer. https://doi.org/10.4324/9780429276330-8
  • Ismail, R. A., Sulaiman, G. M., Mohsin, M. H., & Saadoon, A. H. (2018). Preparation of silver iodide nanoparticles using laser ablation in liquid for antibacterial applications. IET Nanobiotechnology, 12(6), 781–786. https://doi.org/10.1049/iet-nbt.2017.0231
  • Jabir, M. S., Hussien, A. A., Sulaiman, G. M., Yaseen, N. Y., Dewir, Y. H., Alwahibi, M. S., Soliman, D. A., & Rizwana, H. (2021a). Green synthesis of silver nanoparticles from Eriobotrya japonica extract: a promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 48–60. https://doi.org/10.1080/21691401.2020.1867152
  • Jabir, M. S., Saleh, Y. M., Sulaiman, G. M., Yaseen, N. Y., Sahib, U. I., Dewir, Y. H., Alwahibi, M. S., & Soliman, D. A. (2021b). Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials, 11(2), 384. https://doi.org/10.3390/nano11020384
  • Jacobs, T. D., Junge, T., & Pastewka, L. (2017). Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrology and Properties, 5(1), 013001. https://doi.org/10.1137/1.9781611970999
  • Jaki, B., Orjala, J., & Sticher, O. (1999). A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. Journal of Natural Products, 62(3), 502–503. https://doi.org/10.1021/np980444x
  • Jaki, B., Orjala, J., Heilmann, J., Linden, A., Vogler, B., & Sticher, O. (2000). Novel Extracellular Diterpenoids with Biological Activity from the Cyanobacterium Nostoc commune. Journal of Natural Products, 63(3), 339–343. https://doi.org/10.1021/np9903090
  • Jaki, B., Zerbe, O., Heilmann, J., & Sticher, O. (2001). Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrixbyssoidea (EAWAG 195). Journal of Natural Products, 64(2), 154–158. https://doi.org/10.1021/np000297e
  • Jha, R. K., & Zi-Rong, X. (2004). Biomedical compounds from marine organisms. Marine Drugs, 2(3), 123–146. https://doi.org/10.3390/md203123
  • Jimenez, J. I., & Scheuer, P. J. (2001). New lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. Journal of Natural Products, 64(2), 200–203. https://doi.org/10.1021/np000462q
  • Kaasalainen, M., Aseyev, V., von Haartman, E., Karaman, D. Ş., Mäkilä, E., Tenhu, H., Rosenholm, J., & Salonen, J. (2017). Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Research Letters, 12(1), 1–10. https://doi.org/10.1186/s11671-017-1853-y
  • Kachko, A., Loesgen, S., Shahzad-Ul-Hussan, S., Tan, W., Zubkova, I., Takeda, K., Wells, F., Rubin, S., Bewley, C. A., & Major, M. E. (2013). Inhibition of hepatitis C virus by the cyanobacterial protein Microcystis viridis lectin: Mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Molecular Pharmaceutics, 10(12), 4590–4602. https://doi.org/10.1021/mp400399b
  • Kajiyama, S. I., Kanzaki, H., Kawazu, K., & Kobayashi, A. (1998). Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron Letters, 39(22), 3737–3740. https://doi.org/10.1016/S0040-4039(98)00573-5
  • Kaliamurthi, S., Selvaraj, G., Çakmak, Z. E., & Çakmak, T. (2016). Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). Phycologia, 55(5), 568–576. https://doi.org/10.2216/15-98.1
  • Kanekiyo, K., Hayashi, K., Takenaka, H., Lee, J. B., & Hayashi, T. (2007). Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biological & Pharmaceutical Bulletin, 30(8), 1573–1575. https://doi.org/10.1248/bpb.30.1573
  • Kanekiyo, K., Lee, J. B., Hayashi, K., Takenaka, H., Hayakawa, Y., Endo, S., & Hayashi, T. (2005). Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. Journal of Natural Products, 68(7), 1037–1041. https://doi.org/10.1021/np050056c
  • Keskin, S., Oya, N., KoçberberKılıç, N., Dönmez, G., & Tekinay, T. (2016). Green synthesis of silver nanoparticles using cyanobacteria and evaluation of their photocatalytic and antimicrobial activity. Journal of Nano Research, 40, 120–127. https://doi.org/10.4028/www.scientific.net/JNanoR.40.120
  • Khalifa, K. S., Hamouda, R. A., & Hamza, H. A. (2016). Antitumor activity of silver nanoparticles biosynthesized by micro algae. Journal of Chemical and Pharmaceutical Research, 8(3), 1–6.
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. R. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 13, 8013–8024. https://doi.org/10.2147/IJN.S189295
  • Kratošová, G., Dědková, K., Vávra, I., & Čiampor, F. (2014). Investigation of nanoparticles in biological objects by electron microscopy techniques. In Intracellular Delivery II (pp. 165–187). Springer. https://doi.org/10.1007/978-94-017-8896-0_8
  • Kumar, B., Cumbal, L., & Debut, A. (2016, June). Phycosynthesis of silver nanoparticles using Calothrix algae through ultrasonic method. Proceedings of the XI Congreso de Ciencia Y Tecnologia ESPE, Sangolqui, Ecuador, 213–216. https://doi.org/10.13140/RG.2.1.3364.5042
  • Kumar, S. S. D., Houreld, N. N., Kroukamp, E. M., & Abrahamse, H. (2018). Cellular imaging and bactericidal mechanism of green-synthesized silver nanoparticles against human pathogenic bacteria. Journal of Photochemistry and Photobiology. B, Biology, 178, 259–269. https://doi.org/10.1016/j.jphotobiol.2017.11.001
  • Kwan, J. C., Rocca, J. R., Abboud, K. A., Paul, V. J., & Luesch, H. (2008). Total structure determination of grassypeptolide, a new marine cyanobacterial cytotoxin. Organic Letters, 10(5), 789–792. https://doi.org/10.1021/ol702946d
  • Larsen, L. K., Moore, R. E., & Patterson, G. M. (1994). β-Carbolines from the blue-green alga Dichothrix baueriana. Journal of Natural Products, 57(3), 419–421. https://doi.org/10.1021/np50105a018
  • Leao, P. N., Ramos, V., Goncalves, P. B., Viana, F., Lage, O. M., Gerwick, W. H., & Vasconcelos, V. M. (2013). Chemoecological screening reveals high bioactivity in diverse culturable portuguese marine cyanobacteria. Marine Drugs, 11(4), 1316–1335. https://doi.org/10.3390/md11041316
  • Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir, 23(5), 2694–2699. https://doi.org/10.1021/la0613124
  • Li, W. I., Berman, F. W., Okino, T., Yokokawa, F., Shioiri, T., Gerwick, W. H., & Murray, T. F. (2001). Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proceedings of the National Academy of Sciences of the United States of America, 98(13), 7599–7604. https://doi.org/10.1073/pnas.121085898
  • Li, W., Kuai, L., Qin, Q., & Geng, B. (2013). Ag–Au bimetallic nanostructures: co-reduction synthesis and their component-dependent performance for enzyme-free H 2 O 2 sensing. Journal of Materials Chemistry A, 1(24), 7111–7117. https://doi.org/10.1039/c3ta00106g
  • Lim, J., Yeap, S. P., Che, H. X., & Low, S. C. (2013). Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, 8(1), 381–314. https://doi.org/10.1186/1556-276X-8-381
  • Linington, R. G., Edwards, D. J., Shuman, C. F., McPhail, K. L., Matainaho, T., & Gerwick, W. H. (2008). Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. Journal of Natural Products, 71(1), 22–27. https://doi.org/10.1021/np070280x
  • Linington, R. G., González, J., Ureña, L. D., Romero, L. I., Ortega-Barría, E., & Gerwick, W. H. (2007). Venturamides A and B: antimalarial constituents of the panamanian marine cyanobacterium Oscillatoria sp. Journal of Natural Products, 70(3), 397–401. https://doi.org/10.1021/np0605790
  • Luesch, H., Yoshida, W. Y., Harrigan, G. G., Doom, J. P., Moore, R. E., & Paul, V. J. (2002). Lyngbyaloside B, a new glycoside macrolide from a Palauan marine cyanobacterium, Lyngbya sp. Journal of Natural Products, 65(12), 1945–1948. https://doi.org/10.1021/np0202879
  • Luesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J., Mooberry, S. L., & Corbett, T. H. (2002). Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. Journal of Natural Products, 65(1), 16–20. https://doi.org/10.1021/np010317s
  • Luukkainen, R., Sivonen, K., Namikoshi, M., Färdig, M., Rinehart, K. L., & Niemelä, S. I. (1993). Isolation and identification of eight microcystins from thirteen Oscillatoria agardhii strains and structure of a new microcystin. Applied and Environmental Microbiology, 59(7), 2204–2209. https://doi.org/10.1128/aem.59.7.2204-2209.1993
  • MacMillan, J. B., & Molinski, T. F. (2002). Caylobolide A, a Unique 36-Membered Macrolactone from a Bahamian Lyngbya majuscula. Organic Letters, 4(9), 1535–1538. https://doi.org/10.1021/ol025759p
  • MacMillan, J. B., Ernst-Russell, M. A., De Ropp, J. S., & Molinski, T. F. (2002). Lobocyclamides A-C, Lipopeptides from a cryptic cyanobacterial mat containing Lyngbya confervoides. The Journal of Organic Chemistry, 67(23), 8210–8215. https://doi.org/10.1021/jo0261909
  • Mahdieh, M., Zolanvari, A., Azimee, A. S., & Mahdieh, M. (2012). Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica, 19(3), 926–929. https://doi.org/10.1016/j.scient.2012.01.010
  • Mahmood, M. A., Baruah, S., & Dutta, J. (2011). Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Materials Chemistry and Physics, 130(1–2), 531–535. https://doi.org/10.1016/j.matchemphys.2011.07.01848 https://doi.org/10.1016/j.matchemphys.2011.07.018
  • Makvandi, P., Wang, C. Y., Zare, E. N., Borzacchiello, A., Niu, L. N., & Tay, F. R. (2020). Metal‐based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Advanced Functional Materials, 30(22), 1910021. https://doi.org/10.1002/adfm.201910021
  • Malloy, K. L., Villa, F. A., Engene, N., Matainaho, T., Gerwick, L., & Gerwick, W. H. (2011). Malyngamide 2, an oxidized lipopeptide with nitric oxide inhibiting activity from a Papua New Guinea marine cyanobacterium. Journal of Natural Products, 74(1), 95–98. https://doi.org/10.1021/np1005407
  • Mandhata, C. P., Sahoo, C. R., Mahanta, C. S., & Padhy, R. N. (2021). Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Bioprocess and Biosystems Engineering, 44(8), 1617–1610. https://doi.org/10.1007/s00449-021-02544-4
  • Mar, A. A., Kyaw, M. T., Oo, W. L., & Thaw, M. M. (2018). Applications of silver nanoparticles and zinc oxide nanoparticles from Spirulina platensis. JARC-YU, 7, 179–193.
  • Marquez, B. L., Watts, K. S., Yokochi, A., Roberts, M. A., Verdier-Pinard, P., Jimenez, J. I., Hamel, E., Scheuer, P. J., & Gerwick, W. H. (2002). Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. Journal of Natural Products, 65(6), 866–871. https://doi.org/10.1021/np0106283
  • Matthew, S., Ross, C., Rocca, J. R., Paul, V. J., & Luesch, H. (2007). Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymo-trypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. Journal of Natural Products, 70(1), 124–127. https://doi.org/10.1021/np060471k
  • Matthew, S., Schupp, P. J., & Luesch, H. (2008). Apratoxin E, a cytotoxic peptolide from a Guamanian collection of the marine cyanobacterium Lyngbya bouillonii. Journal of Natural Products, 71(6), 1113–1116. https://doi.org/10.1021/np700717s
  • Mazur-Marzec, H., Błaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Toruńska-Sitarz, A., Devi, P., Montalvão, S., D’souza, L., Tammela, P., Mikosik, A., Bloch, S., Nejman-Faleńczyk, B., & Węgrzyn, G. (2015). Baltic cyanobacteria–a source of biologically active compounds. European Journal of Phycology, 50(3), 343–360. https://doi.org/10.1080/09670262.2015.1062563
  • McPhail, K. L., Correa, J., Linington, R. G., González, J., Ortega-Barría, E., Capson, T. L., & Gerwick, W. H. (2007). Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 70(6), 984–988. https://doi.org/10.1021/np0700772
  • Medina, R. A., Goeger, D. E., Hills, P., Mooberry, S. L., Huang, N., Romero, L. I., Ortega-Barría, E., Gerwick, W. H., & McPhail, K. L. (2008). Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. Journal of the American Chemical Society, 130(20), 6324–6325. https://doi.org/10.1021/ja801383f
  • Mevers, E., Liu, W.-T., Engene, N., Mohimani, H., Byrum, T., Pevzner, P. A., Dorrestein, P. C., Spadafora, C., & Gerwick, W. H. (2011). Cytotoxic veraguamides, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria margaritifera. Journal of Natural Products, 74(5), 928–936. https://doi.org/10.1021/np200077f
  • Milligan, K. E., Marquez, B. L., Williamson, R. T., & Gerwick, W. H. (2000). Lyngbyabellin B, a toxic and antifungal secondary metabolite from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 63(10), 1440–1443. https://doi.org/10.1021/np000133y
  • Mishra, M. P., & Padhy, R. N. (2018). Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. Journal of Applied Biomedicine, 16(2), 120–125. https://doi.org/10.1016/j.jab.2017.11.003
  • Mishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005
  • Mo, S., Krunic, A., Pegan, S. D., Franzblau, S. G., & Orjala, J. (2009). An antimicrobial guanidine-bearing sesterterpene from the cultured cyanobacterium Scytonema sp. Journal of Natural Products, 72(11), 2043–2045. https://doi.org/10.1021/np900288x
  • Mo, S., Krunic, A., Santarsiero, B. D., Franzblau, S. G., & Orjala, J. (2010). Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambigua. Phytochemistry, 71(17–18), 2116–2123. https://doi.org/10.1016/j.phytochem.2010.09.004
  • Montaser, R., Abboud, K. A., Paul, V. J., & Luesch, H. (2011b). Pitiprolamide, a proline-rich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscula from Guam. Journal of Natural Products, 74(1), 109–112. https://doi.org/10.1021/np1006839
  • Montaser, R., Paul, V. J., & Luesch, H. (2011a). Pitipeptolides C-F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula from Guam. Phytochemistry, 72(16), 2068–2074. https://doi.org/10.1016/j.phytochem.2011.07.014
  • Mooberry, S. L., Stratman, K., & Moore, R. E. (1995). Tubercidin stabilizes microtubules against vinblastine-induced depolymerization, a taxol-like effect. Cancer Letters, 96(2), 261–266. https://doi.org/10.1016/0304-3835(95)03940-X
  • Moon, S. S., Chen, J. L., Moore, R. E., & Patterson, G. M. (1992). Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. The Journal of Organic Chemistry, 57(4), 1097–1103. https://doi.org/10.1021/jo00030a013
  • Moore, R. E., Corbett, T. H., Patterson, G. M., & Valeriote, F. A. (1996). The search for new antitumor drugs from blue-green algae. Current Pharmaceutical Design, 2(3), 317–330.
  • Moore, R. E., Patterson, G. M., & Carmichael, W. W. (1988). New pharmaceuticals from cultured blue-green algae. Biomedical Importance of Marine Organisms, 13(1988), 143–150.
  • Moore, R. E., Yang, X. Q. G., & Patterson, G. M. (1987). Fontonamide and anhydrohapaloxindole A, two new alkaloids from the blue-green alga Hapalosiphon fontinalis. The Journal of Organic Chemistry, 52(17), 3773–3777. https://doi.org/10.1021/jo00226a009
  • Morsy, F. M., Nafady, N. A., Abd-Alla, M. H., & Elhady, D. A. (2014). Green synthesis of silver nanoparticles by water soluble fraction of the extracellular polysaccharides/matrix of the cyanobacterium Nostoc commune and its application as a potent fungal surface sterilizing agent of seed crops. Universal Journal of Microbiology Research, 2(2), 36–43. https://doi.org/10.13189/ujmr.2014.020303
  • Mundt, S., Kreitlow, S., & Jansen, R. (2003). Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. Journal of Applied Phycology, 15(2/3), 263–267. https://doi.org/10.1023/A:1023889813697
  • Murakami, N., Morimoto, T., Imamura, H., Ueda, T., Nagai, S. I., Sakakibara, J., & Yamada, N. (1991). Studies on glycolipids. III. Glyceroglycolipids from an axenically cultured cyanobacterium, Phormidium tenue. Chemical & Pharmaceutical Bulletin, 39(9), 2277–2281. https://doi.org/10.1248/cpb.39.2277
  • Murugan, T. (2011). Screening for antifungal and antiviral activity of C-phycocyanin from Spirulina platensis. Bylye Gody, 4(11), 4161–4163.
  • Murugesan, K., Koroth, J., Srinivasan, P. P., Singh, A., Mukundan, S. A. N., Karki, S. S., Choudhary, B., & Gupta, C. M. (2019). Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. International Journal of Nanomedicine, 14, 5257–5270. https://doi.org/10.2147/IJN.S202404
  • Mustafa, F., & Andreescu, S. (2020). Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances, 10(33), 19309–19336. https://doi.org/10.1039/D0RA01084G
  • Mynderse, J. S., Moore, R. E., Kashiwagi, M., & Norton, T. R. (1977). Antileukemia activity in the Osillatoriaceae: isolation of Debromoaplysiatoxin from Lyngbya. Science (New York, N.Y.), 196(4289), 538–540. https://doi.org/10.1126/science.403608
  • Nagatsu, A., Kajitani, H., & Sakakibara, J. (1995). Muscoride A: A new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum. Tetrahedron Letters, 36(23), 4097–4100. https://doi.org/10.1016/0040-4039(95)00724-Q
  • Nagle, D. G., & Gerwick, W. H. (1995). Nakienones AC and nakitriol, new cytotoxic cyclic C11 metabolites from an Okinawan cyanobacterial (Synechocystis sp.) overgrowth of coral. Tetrahedron Letters, 36(6), 849–852. https://doi.org/10.1016/0040-4039(94)02397-T
  • Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavský, J., Tsvetkova, I. V., Ninova, M. S., & Kussovski, V. K. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science & Technology, 48(7), 1533–1540. https://doi.org/10.1111/ijfs.12122
  • Namasivayam, S. K. R., Jayakumar, D., Kumar, R., & Bharani, R. S. A. (2015). Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis. Journal of Coastal Life Medicine, 3(4), 265–272. https://doi.org/10.12980/JCLM.3.201514B324
  • Niedermeyer, T. H. J., Daily, A., Swiatecka-Hagenbruch, M., & Moscow, J. A. (2014). Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells. PLoS One, 9(3), e91476. https://doi.org/10.1371/journal.pone.0091476
  • Niu, K. Y., Liu, M., Persson, K. A., Han, Y., & Zheng, H. (2016). Strain-mediated interfacial dynamics during Au-PbS Core-Shell Nanostructure Formation. ACS Nano, 10(6), 6235–6240. https://doi.org/10.1021/acsnano.6b02331
  • Nunnery, J. K., Mevers, E., & Gerwick, W. H. (2010). Biologically active secondary metabolites from marine cyanobacteria. Current Opinion in Biotechnology, 21(6), 787–793. https://doi.org/10.1016/j.copbio.2010.09.019
  • Ogawa, H., Iwasaki, A., Sumimoto, S., Iwatsuki, M., Ishiyama, A., Hokari, R., Otoguro, K., O Mura, S., & Suenaga, K. (2017). Isolation and total synthesis of hoshinolactam, an antitrypanosomal lactam from a marine cyanobacterium. Organic Letters, 19(4), 890–893. https://doi.org/10.1021/acs.orglett.7b00047
  • Ohto, C., Ishida, C., Nakane, H., Muramatsu, M., Nishino, T., & Obata, S. (1999). A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes. Plant Molecular Biology, 40(2), 307–321. https://doi.org/10.1023/A:1006295705142
  • Ou, Y., Lin, L., Yang, X., Pan, Q., & Cheng, X. (2013). Antidiabetic potential of phycocyanin: Effects on KKAy mice. Pharmaceutical Biology, 51(5), 539–544. https://doi.org/10.3109/13880209.2012.747545
  • Pal, S. L., Jana, U., Manna, P. K., Mohanta, G. P., & Manavalan, R. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 1(6), 228–234.
  • Pancrace, C., Jokela, J., Sassoon, N., Ganneau, C., Desnos-Ollivier, M., Wahlsten, M., Humisto, A., Calteau, A., Bay, S., Fewer, D. P., Sivonen, K., & Gugger, M. (2017). Rearranged biosynthetic gene cluster and synthesis of Hassallidin E in Planktothrix serta PCC 8927. ACS Chemical Biology, 12(7), 1796–1804. https://doi.org/10.1021/acschembio.7b00093
  • Pantidos, N., & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology, 05(05), 1. https://doi.org/10.4172/2157-7439.1000233
  • Park, A., Moore, R. E., & Patterson, G. M. (1992). Fischerindole L, a new isonitrile from the terrestrial blue-green alga Fischerella muscicola. Tetrahedron Letters, 33(23), 3257–3260. https://doi.org/10.1016/S0040-4039(00)92061-6
  • Park, D. H., Yang, J. H., Vinu, A., Elzatahry, A., & Choy, J. H. (2016). X-ray diffraction and X-ray absorption spectroscopic analyses for intercalative nanohybrids with low crystallinity. Arabian Journal of Chemistry, 9(2), 190–205. https://doi.org/10.1016/j.arabjc.2015.07.007
  • Park, M. H., Kim, K. H., Lee, H. H., Kim, J. S., & Hwang, S. J. (2010). Selective inhibitory potential of silver nanoparticles on the harmful cyanobacterium Microcystis aeruginosa. Biotechnology Letters, 32(3), 423–428. https://doi.org/10.1007/s10529-009-0161-8
  • Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports (Amsterdam, Netherlands), 5, 112–119. https://doi.org/10.1016/j.btre.2014.12.001
  • Pathak, J., Sonker, A. S., Singh, R. V., Kumar, D., & Sinha, R. P. (2019). Synthesis of silver nanoparticles from extracts of Scytonemageitleri HKAR-12 and their in vitro antibacterial and antitumor potentials. Letters in Applied NanoBioScience, 8(3), 576–585. https://doi.org/10.33263/LIANBS83.576585
  • Patil, M. P., & Kim, G. D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied Microbiology and Biotechnology, 101(1), 79–92. https://doi.org/10.1007/s00253-016-8012-8
  • Patterson, G. M., & Bolis, C. M. (1997). Fungal cellwall polysaccharides elicit an antifungal secondary metabolite (phytoalexin) in the cyanobacterium Scytonema ocelutum2. Journal of Phycology, 33(1), 54–60. https://doi.org/10.1111/j.0022-3646.1997.00054.x
  • Patterson, G. M., & Carmeli, S. (1992). Biological effects of tolytoxin (6-hydroxy-7-O-methyl-scytophycin b), a potent bioactive metabolite from cyanobacteria. Archives of Microbiology, 157(5), 406–410. https://doi.org/10.1007/BF00249096
  • Pergament, I., & Carmeli, S. (1994). Schizotrin A; a novel antimicrobial cyclic peptide from a cyanobacterium. Tetrahedron Letters, 35(45), 8473–8476. https://doi.org/10.1016/S0040-4039(00)74436-4
  • Pettit, G. R., Hogan, F., Xu, J.-P., Tan, R., Nogawa, T., Cichacz, Z., Pettit, R. K., Du, J., Ye, Q.-H., Cragg, G. M., Herald, C. L., Hoard, M. S., Goswami, A., Searcy, J., Tackett, L., Doubek, D. L., Williams, L., Hooper, J. N. A., Schmidt, J. M., … Craciunescu, F. (2008). Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms. Journal of Natural Products, 71(3), 438–444. https://doi.org/10.1021/np700738k
  • Piechula, S., Waleron, K., Swiatek, W., Biedrzycka, I., & Podhajska, A. J. (2001). Mesophilic cyanobacteria producing thermophilic restriction endonucleases. FEMS Microbiology Letters, 198(2), 135–140. https://doi.org/10.1111/j.1574-6968.2001.tb10632.x
  • Pindelska, E., Sokal, A., & Kolodziejski, W. (2017). Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques. Advanced Drug Delivery Reviews, 117, 111–146. https://doi.org/10.1016/j.addr.2017.09.014
  • Plavšić, M., Terzic, S., Ahel, M., & Van Den Berg, C. M. G. (2002). Folic acid in coastal waters of the Adriatic Sea. Marine and Freshwater Research, 53(8), 1245–1252. https://doi.org/10.1071/MF02044
  • Plaza, M., Santoyo, S., Jaime, L., Reina, G. G. B., Herrero, M., Señoráns, F. J., & Ibáñez, E. (2010). Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 450–455. https://doi.org/10.1016/j.jpba.2009.03.016
  • Ploutno, A., & Carmeli, S. (2000). Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. Journal of Natural Products, 63(11), 1524–1526. https://doi.org/10.1021/np0002334
  • Prakash, J. W., Johnson, M., & Jeeva, S. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine, 1(2), S170–S173. https://doi.org/10.1016/S2221-1691(11)60149-4
  • Prinsep, M. R., Moore, R. E., Levine, I. A., & Patterson, G. M. (1992). Westiellamide, a bistratamide-related cyclic peptide from the blue-green alga Westiellopsis prolifica. Journal of Natural Products, 55(1), 140–142. https://doi.org/10.1021/np50079a022
  • Qian, H., Zhu, K., Lu, H., Lavoie, M., Chen, S., Zhou, Z., Deng, Z., Chen, J., & Fu, Z. (2016). Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses. The Science of the Total Environment, 572, 1213–1221. https://doi.org/10.1016/j.scitotenv.2016.08.039
  • Radhakrishnan, A., Kuppusamy, G., Venkatachalam, S., Vijayakumar, R., & Shanmukhan, N. K. (2019). Personalized Nano Delivery Strategy in Treating Uveitis. Research Journal of Pharmacy and Technology, 12(4), 1997–2008. https://doi.org/10.5958/0974-360X.2019.00334.2
  • Rajeshkumar, S., & Bharath, L. V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles—A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, 273, 219–227. https://doi.org/10.1016/j.cbi.2017.06.019
  • Rashad, S., A El-Chaghaby, G., & A Elchaghaby, M. (2019). Antibacterial activity of silver nanoparticles biosynthesized using Spirulina platensis microalgae extract against oral pathogens. Egyptian Journal of Aquatic Biology and Fisheries, 23(5 Special Issue), 261–266. https://doi.org/10.21608/ejabf.2019.65907
  • Ratan, Z. A., Haidere, M. F., Nurunnabi, M., Shahriar, S. M., Ahammad, A. S., Shim, Y. Y., Reaney, M. J., & Cho, J. Y. (2020). Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers, 12(4), 855. https://doi.org/10.3390/cancers12040855
  • Raveh, A., & Carmeli, S. (2007). Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. Journal of Natural Products, 70(2), 196–201. https://doi.org/10.1021/np060495r
  • Reshef, V., Mizrachi, E., Maretzki, T., Silberstein, C., Loya, S., Hizi, A., & Carmeli, S. (1997). New acylated sulfoglycolipids and digalactolipids and related known glycolipids from cyanobacteria with a potential to inhibit the reverse transcriptase of HIV-1. Journal of Natural Products, 60(12), 1251–1260. https://doi.org/10.1021/np970327m
  • Rizzello, L., & Pompa, P. P. (2014). Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews, 43(5), 1501–1518. https://doi.org/10.1039/c3cs60218d
  • Roy, K. R., Arunasree, K. M., Reddy, N. P., Dheeraj, B., Reddy, G. V., & Reddanna, P. (2007). Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicinresistant human hepatocellular-carcinoma cell line HepG2. Biotechnology and Applied Biochemistry, 47(Pt 3), 159–167. https://doi.org/10.1042/BA20060206
  • Roychoudhury, P., Gopal, P. K., Paul, S., & Pal, R. (2016). Cyanobacteria assisted biosynthesis of silver nanoparticles—A potential antileukemic agent. Journal of Applied Phycology, 28(6), 3387–3394. https://doi.org/10.1007/s10811-016-0852-1
  • Rudramurthy, G. R., & Swamy, M. K. (2018). Potential applications of engineered nanoparticles in medicine and biology: An update. Journal of Biological Inorganic Chemistry: JBIC, 23(8), 1185–1204. https://doi.org/10.1007/s00775-018-1600-6
  • Saad, M. H., El-Fakharany, E. M., Salem, M. S., & Sidkey, N. M. (2020). The use of cyanobacterial metabolites as natural medical and biotechnological tools. Journal of Biomolecular Structure and Dynamics, 2020, 1–23. https://doi.org/10.1080/07391102.2020.1838948
  • Sahoo, C. R., Maharana, S., Mandhata, C. P., Bishoyi, A. K., Paidesetty, S. K., & Padhy, R. N. (2020). Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi Journal of Biological Sciences, 27(6), 1580–1586. https://doi.org/10.1016/j.sjbs.2020.03.020
  • Salame, P. H., Pawade, V. B., & Bhanvase, B. A. (2018). Characterization tools and techniques for nanomaterials. In Nanomaterials for Green Energy (pp. 83–111). Elsevier. https://doi.org/10.1016/B978-0-12-813731-4.00003-5
  • Salvador, L. A., Paul, V. J., & Luesch, H. (2010). Caylobolide B, a macrolactone from symplostatin 1-producing marine cyanobacteria Phormidium spp. from Florida. Journal of Natural Products, 73(9), 1606–1609. https://doi.org/10.1021/np100467d
  • Santhoshkumar, J., Rajeshkumar, S., & Kumar, S. V. (2017). Phyto-assisted synthesis, characterization and applications of gold nanoparticles—A review. Biochemistry and Biophysics Reports, 11, 46–57. https://doi.org/10.1016/j.bbrep.2017.06.004
  • Santoyo, S., Rodríguez-Meizoso, I., Cifuentes, A., Jaime, L., Reina, G. G. B., Señorans, F. J., & Ibáñez, E. (2009). Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT - Food Science and Technology, 42(7), 1213–1218. https://doi.org/10.1016/j.lwt.2009.01.012
  • Sarada, D. V., Kumar, C. S., & Rengasamy, R. (2011). Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria. World Journal of Microbiology and Biotechnology, 27(4), 779–783. https://doi.org/10.1007/s11274-010-0516-2
  • Satapathy, S., & Shukla, S. P. (2017). Application of a marine cyanobacterium Phormidium fragile for green synthesis of silver nanoparticles. https://nopr.niscair.res.in/handle/123456789/42296
  • Sathishkumar, R. S., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23(8), 1180–1191. https://doi.org/10.1016/j.jscs.2019.07.008
  • Sato, M., Masuda, Y., Kirimura, K., & Kino, K. (2007). Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis. Journal of Bioscience and Bioengineering, 103(2), 179–184. https://doi.org/10.1263/jbb.103.179
  • Sato, Y., Okuyama, S., & Hori, K. (2007). Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii. The Journal of Biological Chemistry, 282(15), 11021–11029. https://doi.org/10.1074/jbc.M701252200
  • Shah, M., Nawaz, S., Jan, H., Uddin, N., Ali, A., Anjum, S., Giglioli-Guivarc’h, N., Hano, C., & Abbasi, B. H. (2020). Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Materials Science & Engineering. C, Materials for Biological Applications, 112, 110889. https://doi.org/10.1016/j.msec.2020.110889
  • Shahbazi, M.-A., Faghfouri, L., Ferreira, M. P. A., Figueiredo, P., Maleki, H., Sefat, F., Hirvonen, J., & Santos, H. A. (2020). The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 49(4), 1253–1321. https://doi.org/10.1039/c9cs00283a
  • Shaheen, S., Iqbal, M. A., Kanwal, S., Batool, H. Z., Ashraf, S., & Furqan, M. (2019). Synthesis of Silver Nanoparticles, Multifunctional Properties and Applications. In Biomedicine and Environment. Pakistan Journal of Science, 71(2), 105.
  • Sharma, G., Jasuja, N. D., Kumar, M., & Ali, M. I. (2015). Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis. Journal of Nanotechnology, 2015, 1–6. https://doi.org/10.1155/2015/132675
  • Shimizu, Y. (2003). Microalgal metabolites. Current Opinion in Microbiology, 6(3), 236–243. https://doi.org/10.1016/S1369-5274(03)00064-X
  • Shin, H. J., Matsuda, H., Murakami, M., & Yamaguchi, K. (1997). Aeruginosins 205A and-B, serine protease inhibitory glycopeptides from the cyanobacterium Oscillatoria agardhii (NIES-205). The Journal of Organic Chemistry, 62(6), 1810–1813. https://doi.org/10.1021/jo961902e
  • Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., & Alkelany, S. Z. (2019). Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and Bionanotechnology (pp. 527–612). Elsevier. https://doi.org/10.1016/B978-0-12-814427-5.00015-9
  • Siddiqi, K. S., Rashid, M., Rahman, A., Husen, A., & Rehman, S. (2018). Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomaterials Research, 22(1), 1–9. https://doi.org/10.1186/s40824-018-0135-9
  • Silva-Stenico, M. E., Silva, C. S. P., Lorenzi, A. S., Shishido, T. K., Etchegaray, A., Lira, S. P., Moraes, L. A. B., & Fiore, M. F. (2011). Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Microbiological Research, 166(3), 161–175. https://doi.org/10.1016/j.micres.2010.04.002
  • Simmons, T. L., McPhail, K. L., Ortega-Barría, E., Mooberry, S. L., & Gerwick, W. H. (2006). Belamide A, a new antimitotic tetrapeptide from a Panamanian marine cyanobacterium. Tetrahedron Letters, 47(20), 3387–3390. https://doi.org/10.1016/j.tetlet.2006.03.082
  • Simmons, T. L., Nogle, L. M., Media, J., Valeriote, F. A., Mooberry, S. L., & Gerwick, W. H. (2009). Desmethoxymajusculamide C, a cyanobacterial depsipeptide with potent cytotoxicity in both cyclic and ring-opened forms. Journal of Natural Products, 72(6), 1011–1016. https://doi.org/10.1021/np9001674
  • Singh, G., Babele, P. K., Shahi, S. K., Sinha, R. P., Tyagi, M. B., & Kumar, A. (2014). Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. Journal of Microbiology and Biotechnology, 24(10), 1354–1367. https://doi.org/10.4014/jmb.1405.05003
  • Singh, I. P., Milligan, K. E., & Gerwick, W. H. (1999). Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 62(9), 1333–1335. https://doi.org/10.1021/np990162c
  • Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99(11), 4579–4593. https://doi.org/10.1007/s00253-015-6622-1
  • Singh, R., Wagh, P., Wadhwani, S., Gaidhani, S., Kumbhar, A., Bellare, J., & Chopade, B. A. (2013). Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8, 4277–4290. https://doi.org/10.2147/IJN.S48913
  • Smith, V. J., Desbois, A. P., & Dyrynda, E. A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs, 8(4), 1213–1262. https://doi.org/10.3390/md8041213
  • Soares, A. R., Engene, N., Gunasekera, S. P., Sneed, J. M., & Paul, V. J. (2015). Carriebowlinol, an antimicrobial tetrahydroquinolinol from an assemblage of marine cyanobacteria containing a novel taxon. Journal of Natural Products, 78(3), 534–538. https://doi.org/10.1021/np500598x
  • Some, S., Kumar Sen, I., Mandal, A., Aslan, T., Ustun, Y., Yilmaz, Ebru Şe. b. nem., Katı, A., Demirbas, A., Mandal, A. K., & Ocsoy, I. (2018). Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Materials Research Express, 6(1), 012001. https://doi.org/10.1088/2053-1591/aae23e
  • Sonker, A. S., 0, R., Pathak, J., 0, R., Kannaujiya, V. K., & Sinha, R. P. (2017). Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Canadian Journal of Biotechnology, 1(1), 26–37. https://doi.org/10.24870/cjb.2017-000103
  • Soria-Mercado, I. E., Pereira, A., Cao, Z., Murray, T. F., & Gerwick, W. H. (2009). Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Organic Letters, 11(20), 4704–4707. https://doi.org/10.1021/ol901438b
  • Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, 8(4), 409–427. https://doi.org/10.1007/s12551-016-0218-6
  • Stewart, J. B., Bornemann, V., Chen, J. L., Moore, R. E., Caplan, F. R., Karuso, H., Larsen, L. K., & Patterson, G. M. (1988). Cytotoxic, fungicidal nucleosides from blue green algae belonging to the Scytonemataceae. The Journal of Antibiotics, 41(8), 1048–1056. https://doi.org/10.7164/antibiotics.41.1048
  • Sudbrack, C. K., Isheim, D., Noebe, R. D., Jacobson, N. S., & Seidman, D. N. (2004). The influence of tungsten on the chemical composition of a temporally evolving nanostructure of a model Ni-Al-Cr superalloy. Microscopy and Microanalysis, 10(3), 355–365. https://doi.org/10.1017/S1431927604040589
  • Sudha, S. S., Rajamanickam, K., & Rengaramanujam, J. (2013). Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian Journal of Experimental Biology, 51(5), 393–399. http://hdl.handle.net/123456789/17672
  • Sudhakar, M. P., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production, 228, 1320–1333. https://doi.org/10.1016/j.jclepro.2019.04.287
  • Sunil, P., Amarsinh, B., Parvin, M., Panchratna, P., & Swarali, S. (2017). Screening of silver nanoparticles producing cyanobacteria and its characterization. Journal of Science & Engineering, A1, 44–55. https://doi.org/10.15171/ijb.1259.26
  • Takebe, Y., Saucedo, C. J., Lund, G., Uenishi, R., Hase, S., Tsuchiura, T., Kneteman, N., Ramessar, K., Tyrrell, D. L. J., Shirakura, M., Wakita, T., McMahon, J. B., & O’Keefe, B. R. (2013). Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against Hepatitis C Virus. PLoS One, 8(5), e64449. https://doi.org/10.1371/jour-nal.pone.0064449
  • Tan, L. T. (2010). Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. Journal of Applied Phycology, 22(5), 659–676. https://doi.org/10.1007/s10811-010-9506-x
  • Tan, L. T., Goh, B. P. L., Tripathi, A., Lim, M. G., Dickinson, G. H., Lee, S. S. C., & Teo, S. L. M. (2010). Natural antifoulants from the marine cyanobacterium Lyngbya majuscula. Biofouling, 26(6), 685–695. https://doi.org/10.1080/08927014.2010.508343
  • Taniguchi, M., Nunnery, J. K., Engene, N., Esquenazi, E., Byrum, T., Dorrestein, P. C., & Gerwick, W. H. (2010). Palmyramide A, a cyclic depsipeptide from a Palmyra Atoll collection of the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 73(3), 393–398. https://doi.org/10.1021/np900428h
  • Taori, K., Paul, V. J., & Luesch, H. (2008a). Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. Journal of Natural Products, 71(9), 1625–1629. https://doi.org/10.1021/np8002172
  • Taylor, C., Matzke, M., Kroll, A., Read, D. S., Svendsen, C., & Crossley, A. (2016). Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environmental Science: Nano, 3(2), 396–408. https://doi.org/10.1039/C5EN00183H
  • Terra, A. L. M., Cruz, N. D., Henrard, A. S. A., Costa, J. A. V., & Morais, M. G. D. (2019). Simultaneous Biosynthesis of Silver Nanoparticles with Spirulina sp. LEB 18 Cultivation. Industrial Biotechnology, 15(4), 263–267. https://doi.org/10.1089/ind.2018.0022
  • Teruya, T., Sasaki, H., Fukazawa, H., & Suenaga, K. (2009). Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Organic Letters, 11(21), 5062–5065. https://doi.org/10.1021/ol9020546
  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(2), 257–262. https://doi.org/10.1016/j.nano.2009.07.002
  • Tomer, A. K., Rahi, T., Neelam, D. K., & Dadheech, P. K. (2019). Cyanobacterial extract-mediated synthesis of silver nanoparticles and their application in ammonia sensing. International Microbiology, 22(1), 49–58. https://doi.org/10.1007/s10123-018-0026-x
  • Tripathi, A., Puddick, J., Prinsep, M. R., Rottmann, M., Chan, K. P., Chen, D. Y. K., & Tan, L. T. (2011). Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry, 72(18), 2369–2375. https://doi.org/10.1016/j.phytochem.2011.08.019
  • Tsibakhashvili, N. Y., Kirkesali, E. I., Pataraya, D. T., Gurielidze, M. A., Kalabegishvili, T. L., Gvarjaladze, D. N., Tsertsvadze, G. I., Frontasyeva, M. V., Zinicovscaia, I. I., Wakstein, M. S., Khakhanov, S. N., Shvindina, N. V., & Shklover, V. Y. (2011). Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Advanced Science Letters, 4(11), 3408–3417. https://doi.org/10.1166/asl.2011.1915
  • Ulasevich, S. A., Koshel, E. I., Kassirov, I. S., Brezhneva, N., Shkodenko, L., & Skorb, E. V. (2020). Oscillating of physicochemical and biological properties of metal particles on their sonochemical treatment. Materials Science & Engineering. C, Materials for Biological Applications, 109, 110458. https://doi.org/10.1016/j.msec.2019.110458
  • Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11(5), 2804–2837. https://doi.org/10.1039/D0RA09941D
  • Vanlalveni, C., Rajkumari, K., Biswas, A., Adhikari, P. P., Lalfakzuala, R., & Rokhum, L. (2018). Green synthesis of silver nanoparticles using Nostoc linckia and its antimicrobial activity: a novel biological approach. BioNanoScience, 8(2), 624–631. https://doi.org/10.1007/s12668-018-0520-9
  • Vass, I. Z., K ∼ os, P. B., Sass, L., Nagy, C. I., & Vass, I. (2013). The ability of cyanobacterial cells to restore UV-B radiation induced damage to photosystem II is influenced by photolyase dependent DNA repair. Photochemistry and Photobiology, 89(2), 384–390. https://doi.org/10.1111/php.12012
  • Venugopal, K., Rather, H. A., Rajagopal, K., Shanthi, M. P., Sheriff, K., Illiyas, M., Rather, R. A., Manikandan, E., Uvarajan, S., Bhaskar, M., & Maaza, M. (2017). Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. Journal of Photochemistry and Photobiology B: Biology, 167, 282–289. https://doi.org/10.1016/j.jphotobiol.2016.12.013
  • Verma, P., & Maheshwari, S. K. (2018). Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. Journal of Microscopy and Ultrastructure, 6(4), 182–187. https://doi.org/10.4103/JMAU.JMAU_3_18
  • Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L., & Stout, D. A. (2017). Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine, 12, 3941–3965. https://doi.org/10.2147/IJN.S134526
  • Volk, R. B., & Furkert, F. H. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiological Research, 161(2), 180–186. https://doi.org/10.1016/j.micres.2005.08.005
  • Volk, R. B., Girreser, U., Al-Refai, M., & Laatsch, H. (2009). Bromoanaindolone, a novel antimicrobial exometabolite from the cyanobacterium Anabaena constricta. Natural Product Research, 23(7), 607–612. https://doi.org/10.1080/14786410802114068
  • Wang, Y., O’Connor, D., Shen, Z., Lo, I. M., Tsang, D. C., Pehkonen, S., Pu, S., & Hou, D. (2019). Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 226, 540–549. https://doi.org/10.1016/j.jclepro.2019.04.128
  • Wang, Y., Xie, Y., Li, J., Peng, Z.-H., Sheinin, Y., Zhou, J., & Oupický, D. a. vid. (2017). Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano, 11(2), 2227–2238. https://doi.org/10.1021/acsnano.6b08731
  • Wille, G., Hellal, J., Ollivier, P., Richard, A., Burel, A., Jolly, L., Crampon, M., & Michel, C. (2017). Cryo-scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM)-in-SEM for bio- and organo-mineral interface characterization in the environment. Microscopy and Microanalysis, 23(6), 1159–1172. https://doi.org/10.1017/S143192761701265X
  • Williams, P. G., Yoshida, W. Y., Moore, R. E., & Paul, V. J. (2002). Tasiamide, a cytotoxic peptide from the marine cyanobacterium Symploca sp. Journal of Natural Products, 65(9), 1336–1339. https://doi.org/10.1021/np020184q
  • Williams, P. G., Yoshida, W. Y., Moore, R. E., & Paul, V. J. (2003a). Tasipeptins A and B: New cytotoxic depsipeptides from the marine cyanobacterium Symploca sp. Journal of Natural Products, 66(5), 620–624. https://doi.org/10.1021/np020582t
  • Williams, P. G., Yoshida, W. Y., Quon, M. K., Moore, R. E., & Paul, V. J. (2003b). The structure of Palau’amide, a potent cytotoxin from a species of the marine cyanobacterium Lyngbya. Journal of Natural Products, 66(12), 1545–1549. https://doi.org/10.1021/np034001r
  • Williams, P. G., Yoshida, W. Y., Quon, M. K., Moore, R. E., & Paul, V. J. (2003c). Ulongapeptin, a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. Journal of Natural Products, 66(5), 651–654. https://doi.org/10.1021/np030050s
  • Wrasidlo, W., Mielgo, A., Torres, V. A., Barbero, S., Stoletov, K., Suyama, T. L., Klemke, R. L., Gerwick, W. H., Carson, D. A., & Stupack, D. G. (2008). The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2313–2318. https://doi.org/10.1073/pnas.0712198105
  • Yadav, M., Baboo, P., Gupta, N., & Arora, V. (2018). Composition and Characterisation of Argent Nanoparticles and Argent Bionanocomposities. Asian Journal of Research in Chemistry, 11(5), 811–814. https://doi.org/10.5958/0974-4150.2018.00143.8
  • Yan, W., Xiao, Y., Yan, W., Ding, R., Wang, S., & Zhao, F. (2019). The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review. Chemical Engineering Journal, 358, 1421–1437. https://doi.org/10.1016/j.cej.2018.10.128
  • Yang, E. J., Kim, S. H., Lee, K. Y., & Song, K. S. (2018). Neuroprotective and anti-neuroinflammatory activities of anthraquinones isolated from Photorhabdus temperata Culture Broth. Journal of Microbiology and Biotechnology, 28(1), 12–21. https://doi.org/10.4014/jmb.1708.08067
  • Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience, 10(5), 1369–1378. https://doi.org/10.1007/s13204-020-01318-w
  • Yen, G. C., Duh, P. D., & Chuang, D. Y. (2000). Antioxidant activity of anthraquinones and anthrone. Food Chemistry, 70(4), 437–441. https://doi.org/10.1016/S0308-8146(00)00108-4
  • Yuan, Y. G., Zhang, S., Hwang, J. Y., & Kong, I. K. (2018). Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxidative Medicine and Cellular Longevity, 2018, 6121328. https://doi.org/10.1155/2018/6121328
  • Zahin, N., Anwar, R., Tewari, D., Kabir, M. T., Sajid, A., Mathew, B., Uddin, M. S., Aleya, L., & Abdel-Daim, M. M. (2020). Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environmental Science and Pollution Research International, 27(16), 19151–19168. https://doi.org/10.1007/s11356-019-05211-0
  • Zainuddin, E. N., Mentel, R., Wray, V., Jansen, R., Nimtz, M., Lalk, M., & Mundt, S. (2007). Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe. Journal of Natural Products, 70(7), 1084–1088. https://doi.org/10.1021/np060303s
  • Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/10.3390/ijms17091534
  • Zou, B., Long, K., & Ma, D. (2005). Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palau’amide. Organic Letters, 7(19), 4237–4240. https://doi.org/10.1021/ol051685g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.