259
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Computational assessment of pigment epithelium-derived factor as an anti-cancer protein during its interaction with the receptors

, ORCID Icon, , & ORCID Icon
Pages 4575-4591 | Received 30 Nov 2021, Accepted 19 Apr 2022, Published online: 05 May 2022

References

  • Assareh, E., Mehrnejad, F., & Asghari, S. M. (2020). Structural studies on an anti-angiogenic peptide using molecular modeling. Iranian Journal of Biotechnology, 18(4), e2553.
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Assareh, E., Mehrnejad, F., Mansouri, K., Esmaeili Rastaghi, A. R., Naderi-Manesh, H., & Asghari, S. M. (2019). A cyclic peptide reproducing the α1 helix of VEGF-B binds to VEGFR-1 and VEGFR-2 and inhibits angiogenesis and tumor growth. The Biochemical Journal, 476(4), 645–663. https://doi.org/10.1042/BCJ20180823
  • Azim, S., & Ahmad, Z. (2018). Glu residues of βDELSEED-motif are essential for peptide binding in Escherichia coli ATP synthase. International Journal of Biological Macromolecules, 116, 977–982. https://doi.org/10.1016/j.ijbiomac.2018.05.118
  • Balsera, B., Bonache, M., Reille-Seroussi, M., Gagey-Eilstein, N., Vidal, M., González-Muñiz, R., & Pérez de Vega, M. (2017). Disrupting VEGF–VEGFR1 interaction: De novo designed linear helical peptides to mimic the VEGF13-25 fragment. Molecules, 22(11), 1846. https://doi.org/10.3390/molecules22111846
  • Becerra, S. P., & Notario, V. (2013). The effects of PEDF on cancer biology: Mechanisms of action and therapeutic potential. Nature Reviews. Cancer, 13(4), 258–271. https://doi.org/10.1038/nrc3484
  • Behelgardi, M. F., Zahri, S., Mashayekhi, F., Mansouri, K., & Asghari, S. M. (2018). A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-36394-0
  • Belinsky, G. S., Sreekumar, B., Andrejecsk, J. W., Saltzman, W. M., Gong, J., Herzog, R. I., Lin, S., Horsley, V., Carpenter, T. O., & Chung, C. (2016). Pigment epithelium-derived factor restoration increases bone mass and improves bone plasticity in a model of osteogenesis imperfecta type VI via Wnt3a blockade . FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 30(8), 2837–2848. https://doi.org/10.1096/fj.201500027R
  • Berjanskii, M., Liang, Y., Zhou, J., Tang, P., Stothard, P., Zhou, Y., Cruz, J., MacDonell, C., Lin, G., Lu, P., & Wishart, D. S. (2010). PROSESS: A protein structure evaluation suite and server. Nucleic Acids Research, 38(Web Server issue), W633–W640. https://doi.org/10.1093/nar/gkq375
  • Bernard, A., Gao-Li, J., Franco, C.-A., Bouceba, T., Huet, A., & Li, Z. (2009). Laminin Receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor. The Journal of Biological Chemistry, 284(16), 10480–10490. https://doi.org/10.1074/jbc.M809259200
  • Bhojwani, H. R., & Joshi, U. J. (2017). Pharmacophore and docking guided virtual screening study for discovery of type I inhibitors of VEGFR-2 kinase. Current Computer-Aided Drug Design, 13(3), 186–207. https://doi.org/10.2174/1386207319666161214112536
  • Bhutto, I. A., McLeod, D. S., Hasegawa, T., Kim, S. Y., Merges, C., Tong, P., & Lutty, G. A. (2006). Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Experimental Eye Research, 82(1), 99–110. https://doi.org/10.1016/j.exer.2005.05.007
  • Bourhis, E., Wang, W., Tam, C., Hwang, J., Zhang, Y., Spittler, D., Huang, O. W., Gong, Y., Estevez, A., Zilberleyb, I., Rouge, L., Chiu, C., Wu, Y., Costa, M., Hannoush, R. N., Franke, Y., & Cochran, A. G. (2011). Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure (London, England: 1993), 19(10), 1433–1442. https://doi.org/10.1016/j.str.2011.07.005
  • Broadhead, M. L., Dass, C. R., & Choong, P. F. (2009). In vitro and in vivo biological activity of PEDF against a range of tumors. Expert Opinion on Therapeutic Targets, 13(12), 1429–1438. https://doi.org/10.1517/14728220903307475
  • Brozzo, M. S., Bjelić, S., Kisko, K., Schleier, T., Leppänen, V.-M., Alitalo, K., Winkler, F. K., & Ballmer-Hofer, K. (2012). Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood, 119(7), 1781–1788. https://doi.org/10.1182/blood-2011-11-390922
  • Champagne, E., Martinez, L. O., Collet, X., & Barbaras, R. (2006). Ecto-F1Fo ATP synthase/F1 ATPase: Metabolic and immunological functions. Current Opinion in Lipidology, 17(3), 279–284. https://doi.org/10.1097/01.mol.0000226120.27931.76
  • Chatterjee, S., & Bhattacharjee, B. (2012). Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor. Bioinformation, 8(25), 1249–1254. https://doi.org/10.6026/97320630081249
  • Chelliah, S., Mock, C. D., Mathew, O. P., & Ranganna, K. (2018). Discovery of vascular endothelial growth factor receptor‐2 (VEGFR‐2) inhibitors by ligand‐based virtual high throughput screening. The FASEB Journal, 32(S1), 530.18–.18. https://doi.org/10.1096/fasebj.2018.32.1_supplement.530.18
  • Chi, S. L., Wahl, M. L., Mowery, Y. M., Shan, S., Mukhopadhyay, S., Hilderbrand, S. C., Kenan, D. J., Lipes, B. D., Johnson, C. E., Marusich, M. F., Capaldi, R. A., Dewhirst, M. W., & Pizzo, S. V. (2007). Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Research, 67(10), 4716–4724. https://doi.org/10.1158/0008-5472.CAN-06-1094
  • Cioce, V., Castronovo, V., Shmookler, B. M., Garbisa, S., Grigioni, W. F., Liotta, L. A., & Sobel, M. E. (1991). Increased expression of the laminin receptor in human colon cancer. Journal of the National Cancer Institute, 83(1), 29–36. https://doi.org/10.1093/jnci/83.1.29
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004). ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics (Oxford, England), 20(1), 45–50. https://doi.org/10.1093/bioinformatics/btg371
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Deshpande, M., Notari, L., Subramanian, P., Notario, V., & Becerra, S. P. (2012). Inhibition of tumor cell surface ATP synthesis by pigment epithelium-derived factor: implications for antitumor activity. International Journal of Oncology, 41(1), 219–227.
  • Eisenberg, D., Lüthy, R., & Bowie, J. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. In Methods in enzymology (Vol. 277, pp. 396–404). Academic Press. DOI.10:s0076–6879.
  • Ek, E. T., Dass, C. R., & Choong, P. F. (2006). PEDF: A potential molecular therapeutic target with multiple anti-cancer activities. Trends in Molecular Medicine, 12(10), 497–502. https://doi.org/10.1016/j.molmed.2006.08.009
  • Enayatkhani, M., Salimi, M., Azadmanesh, K., & Teimoori-Toolabi, L. (2020). In-silico identification of new inhibitors for low-density lipoprotein receptor-related protein6 (LRP6). Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1857843
  • Falk, T., Gonzalez, R. T., & Sherman, S. J. (2010). The Yin and Yang of VEGF and PEDF: multifaceted neurotrophic factors and their potential in the treatment of Parkinson's Disease. International Journal of Molecular Sciences, 11(8), 2875–2900. https://doi.org/10.3390/ijms11082875
  • Fan, W., Crawford, R., & Xiao, Y. (2011). The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization. Differentiation; Research in Biological Diversity, 81(3), 181–191. https://doi.org/10.1016/j.diff.2010.12.003
  • Feng, S., Zou, L., Ni, Q., Zhang, X., Li, Q., Zheng, L., Xie, L., Li, H., & Huang, D. (2014). Modulation, bioinformatic screening, and assessment of small molecular peptides targeting the vascular endothelial growth factor receptor. Cell Biochemistry and Biophysics, 70(3), 1913–1921. https://doi.org/10.1007/s12013-014-0151-x
  • Fujimura, Y., Sumida, M., Sugihara, K., Tsukamoto, S., Yamada, K., & Tachibana, H. (2012). Green tea polyphenol EGCG sensing motif on the 67-kDa laminin receptor. PloS One, 7(5), e37942. https://doi.org/10.1371/journal.pone.0037942
  • Gao, L., Chen, B., Li, J., Yang, F., Cen, X., Liao, Z., & Long, X. (2017). Wnt/β-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PloS One, 12(8), e0181346. https://doi.org/10.1371/journal.pone.0181346
  • García-Aranda, M. I., González-López, S., Santiveri, C. M., Gagey-Eilstein, N., Reille-Seroussi, M., Martín-Martínez, M., Inguimbert, N., Vidal, M., García-López, M. T., Jiménez, M. A., González-Muñiz, R., & Pérez de Vega, M. J. (2013). Helical peptides from VEGF and Vammin hotspots for modulating the VEGF-VEGFR interaction. Organic & Biomolecular Chemistry, 11(11), 1896–1905. https://doi.org/10.1039/c3ob27312a
  • Guan, M., Yam, H., Su, B., Chan, K., Pang, C., & Liu, W. (2003). Loss of pigment epithelium derived factor expression in glioma progression. Journal of Clinical Pathology, 56(4), 277–282. https://doi.org/10.1136/jcp.56.4.277
  • Harries, R. L., Owen, S., Ruge, F., Morgan, M., Li, J., Zhang, Z., Harding, K. G., Torkington, J., Jiang, W. G., & Cai, J. (2018). Impact of pigment epithelium-derived factor on colorectal cancer in vitro and in vivo. Oncotarget, 9(27), 19192–19202. https://doi.org/10.18632/oncotarget.24953
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  • Huang, T.-C., Chang, H.-Y., Hsu, C.-H., Kuo, W.-H., Chang, K.-J., & Juan, H.-F. (2008). Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. Journal of Proteome Research, 7(4), 1433–1444. https://doi.org/10.1021/pr700742h
  • Huang, W.-T., Chong, I.-W., Chen, H.-L., Li, C.-Y., Hsieh, C.-C., Kuo, H.-F., Chang, C.-Y., Chen, Y.-H., Liu, Y.-P., Lu, C.-Y., Liu, Y.-R., & Liu, P.-L. (2019). Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Letters, 442, 287–298. https://doi.org/10.1016/j.canlet.2018.10.031
  • Johnston, E. K., Francis, M. K., & Knepper, J. E. (2015). Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2. In Vitro Cellular & Developmental Biology. Animal, 51(7), 730–738. https://doi.org/10.1007/s11626-015-9884-0
  • Kawaguchi, T., Yamagishi, S.-I., & Sata, M. (2010). Structure-function relationships of PEDF. Current Molecular Medicine, 10(3), 302–311. https://doi.org/10.2174/156652410791065255
  • Kim, J., Han, W., Park, T., Kim, E. J., Bang, I., Lee, H. S., Jeong, Y., Roh, K., Kim, J., Kim, J.-S., Kang, C., Seok, C., Han, J.-K., & Choi, H.-J. (2020). Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-19155-4
  • Konidala, K. K., Bommu, U. D., & Pabbaraju, N. (2018). In silico insights into the identification of potential novel angiogenic inhibitors against human vegfr-2: A new sar-based hierarchical clustering approach. Journal of Receptor and Signal Transduction Research, 38(4), 372–383. https://doi.org/10.1080/10799893.2018.1531891
  • Kortemme, T., Kim, D. E., & Baker, D. (2004). Computational alanine scanning of protein-protein interfaces. Science's STKE: Signal Transduction Knowledge Environment, 2004(219), pl2. https://doi.org/10.1126/stke.2192004pl2
  • Kumari, R., Kumar, R., & Lynn, A, Consortium OSDD (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England), 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. ACS Publications.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Latham, A. M., Kankanala, J., Fearnley, G. W., Gage, M. C., Kearney, M. T., Homer-Vanniasinkam, S., Wheatcroft, S. B., Fishwick, C. W. G., & Ponnambalam, S. (2014). In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis. PloS One, 9(11), e110997. https://doi.org/10.1371/journal.pone.0110997
  • Lee, A. C.-L., Harris, J. L., Khanna, K. K., & Hong, J.-H. (2019). A comprehensive review on current advances in peptide drug development and design. International Journal of Molecular Sciences, 20(10), 2383. https://doi.org/10.3390/ijms20102383
  • Lu, C.-L., Xu, J., Yao, H.-J., Luo, K.-L., Li, J.-M., Wu, T., & Wu, G.-Z. (2016). Inhibition of human 67-kDa laminin receptor sensitizes multidrug resistance colon cancer cell line SW480 for apoptosis induction. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(1), 1319–1325. https://doi.org/10.1007/s13277-015-3873-5
  • Mafakher, L., Rismani, E., Rahimi, H., Enayatkhani, M., Azadmanesh, K., & Teimoori-Toolabi, L. (2022). Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway. Journal of Biomolecular Structure and Dynamics, 40(5), 2169–2120. https://doi.org/10.1080/07391102.2020.1835718
  • Mäkitie, R., Niinimäki, R., Kakko, S., Honkanen, T., Kovanen, P., & Mäkitie, O. (2018). Defective WNT signaling associates with bone marrow fibrosis-a cross-sectional cohort study in a family with WNT1 osteoporosis . Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 29(2), 479–487. https://doi.org/10.1007/s00198-017-4309-4
  • Markovic-Mueller, S., Stuttfeld, E., Asthana, M., Weinert, T., Bliven, S., Goldie, K. N., Kisko, K., Capitani, G., & Ballmer-Hofer, K. (2017). Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A. Structure (London, England: 1993), 25(2), 341–352. https://doi.org/10.1016/j.str.2016.12.012
  • Mirochnik, Y., Aurora, A., Schulze-Hoepfner, F. T., Deabes, A., Shifrin, V., Beckmann, R., Polsky, C., & Volpert, O. V. (2009). Short pigment epithelial-derived factor-derived peptide inhibits angiogenesis and tumor growth. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(5), 1655–1663. https://doi.org/10.1158/1078-0432.CCR-08-2113
  • Niu, G., & Chen, X. (2010). Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Current Drug Targets, 11(8), 1000–1017. https://doi.org/10.2174/138945010791591395
  • Notari, L., Arakaki, N., Mueller, D., Meier, S., Amaral, J., & Becerra, S. P. (2010). Pigment epithelium-derived factor binds to cell-surface F(1)-ATP synthase . The FEBS Journal, 277(9), 2192–2205. https://doi.org/10.1111/j.1742-4658.2010.07641.x
  • Orgaz, J. L., Ladhani, O., Hoek, K. S., Fernández-Barral, A., Mihic, D., Aguilera, O., Seftor, E. A., Bernad, A., Rodríguez-Peralto, J. L., Hendrix, M. J. C., Volpert, O. V., & Jiménez, B. (2009). Loss of pigment epithelium-derived factor enables migration, invasion and metastatic spread of human melanoma. Oncogene, 28(47), 4147–4161. https://doi.org/10.1038/onc.2009.284
  • Pan, J., Sun, L.-C., Tao, Y.-F., Zhou, Z., Du, X.-L., Peng, L., Feng, X., Wang, J., Li, Y.-P., Liu, L., Wu, S.-Y., Zhang, Y.-L., Hu, S.-Y., Zhao, W.-L., Zhu, X.-M., Lou, G.-L., & Ni, J. (2011). ATP synthase ecto-α-subunit: A novel therapeutic target for breast cancer. Journal of Translational Medicine, 9(1), 1–15. https://doi.org/10.1186/1479-5876-9-211
  • Park, K., Lee, K., Zhang, B., Zhou, T., He, X., Gao, G., Murray, A. R., & Ma, J.-X. (2011). Identification of a novel inhibitor of the canonical Wnt pathway. Molecular and Cellular Biology, 31(14), 3038–3051. https://doi.org/10.1128/MCB.01211-10
  • Pesapane, A., Di Giovanni, C., Rossi, F. W., Alfano, D., Formisano, L., Ragno, P., Selleri, C., Montuori, N., & Lavecchia, A. (2015). Discovery of new small molecules inhibiting 67 kDa laminin receptor interaction with laminin and cancer cell invasion. Oncotarget, 6(20), 18116–18133. https://doi.org/10.18632/oncotarget.4016
  • Poorebrahim, M., Sadeghi, S., Rahimi, H., Karimipoor, M., Azadmanesh, K., Mazlomi, M. A., & Teimoori-Toolabi, L. (2017). Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency. PloS One, 12(2), e0172217. https://doi.org/10.1371/journal.pone.0172217
  • Protiva, P., Gong, J., Sreekumar, B., Torres, R., Zhang, X., Belinsky, G. S., Cornwell, M., Crawford, S. E., Iwakiri, Y., & Chung, C. (2015). Pigment epithelium-derived factor (PEDF) inhibits Wnt/β-catenin signaling in the liver. Cellular and Molecular Gastroenterology and Hepatology, 1(5), 535–549. e14. https://doi.org/10.1016/j.jcmgh.2015.06.006
  • Qingyi, Z., Lin, Y., Junhong, W., Jian, S., Weizhou, H., Long, M., Zeyu, S., & Xiaojian, G. (2009). Unfavorable prognostic value of human PEDF decreased in high-grade prostatic intraepithelial neoplasia: A differential proteomics approach. Cancer Investigation, 27(7), 794–801. https://doi.org/10.1080/07357900802175617
  • Rismani, E., Rahimi, H., Arab, S. S., Azadmanesh, K., Karimipoor, M., & Teimoori-Toolabi, L. (2018). Computationally design of inhibitory peptides against Wnt signaling pathway: In silico insight on complex of DKK1 and LRP6. International Journal of Peptide Research and Therapeutics, 24(1), 49–60. https://doi.org/10.1007/s10989-017-9589-1
  • Sadremomtaz, A., Ali, A. M., Jouyandeh, F., Balalaie, S., Navari, R., Broussy, S., Mansouri, K., Groves, M. R., & Asghari, S. M. (2020). Molecular docking, synthesis and biological evaluation of vascular endothelial growth factor (VEGF) B based peptide as antiangiogenic agent targeting the second domain of the vascular endothelial growth factor receptor 1 (VEGFR1D2) for anticancer application. Signal Transduction and Targeted Therapy, 5(1), 1–4. https://doi.org/10.1038/s41392-020-0177-z
  • Sarnataro, D., Pepe, A., Altamura, G., De Simone, I., Pesapane, A., Nitsch, L., Montuori, N., Lavecchia, A., & Zurzolo, C. (2016). The 37/67kDa laminin receptor (LR) inhibitor, NSC47924, affects 37/67kDa LR cell surface localization and interaction with the cellular prion protein. Scientific Reports, 6(1), 1–13. https://doi.org/10.1038/srep24457
  • Scheiman, J., Tseng, J.-C., Zheng, Y., & Meruelo, D. (2010). Multiple functions of the 37/67-kd laminin receptor make it a suitable target for novel cancer gene therapy. Molecular Therapy : The Journal of the American Society of Gene Therapy, 18(1), 63–74. https://doi.org/10.1038/mt.2009.199
  • Selvam, C., Mock, C. D., Mathew, O. P., Ranganna, K., & Thilagavathi, R. (2020). Discovery of vascular endothelial growth factor receptor‐2 (VEGFR‐2) inhibitors by ligand‐based virtual high throughput screening. Molecular Informatics, 39(7), 1900150. https://doi.org/10.1002/minf.201900150
  • Shahbaaz, M., Cloete, R., Grobbelaar, M., Sampson, S., & Christoffels, A. (2019). Structure based identification of novel inhibitors against ATP synthase of Mycobacterium tuberculosis: A combined in silico and in vitro study. International Journal of Biological Macromolecules, 135, 582–590. https://doi.org/10.1016/j.ijbiomac.2019.05.108
  • Shahik, S. M., Salauddin, A., Hossain, M. S., Noyon, S. H., Moin, A. T., Mizan, S., & Raza, M. T. (2021). Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach. Genomics & Informatics, 19(1), e6. https://doi.org/10.5808/gi.20068
  • Söding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research, 33(Web Server issue), W244–W248. https://doi.org/10.1093/nar/gki408
  • Solanki, S., Verma, D., Solanki, R., Pant, K., Pant, B., Tripathi, V., & Thapliyal, A. (2020). Computational screening of drug-like properties of tinospora cordifolia against tuberculosis. International Journal of Current Research and Review, 12(21), 38–42. https://doi.org/10.31782/IJCRR.2020.122131
  • Thysiadis, S., Mpousis, S., Avramidis, N., Katsamakas, S., Balomenos, A., Remelli, R., Efthimiopoulos, S., & Sarli, V. (2016). Discovery of novel phenoxazinone derivatives as DKK1/LRP6 interaction inhibitors: Synthesis, biological evaluation and structure-activity relationships. Bioorganic & Medicinal Chemistry, 24(5), 1014–1022. https://doi.org/10.1016/j.bmc.2016.01.025
  • Tina, K., Bhadra, R., & Srinivasan, N. (2007). PIC: protein interactions calculator. Nucleic Acids Research, 35(Web Server issue), W473–W476. https://doi.org/10.1093/nar/gkm423
  • Tsuchiya, T., Nakahama, K.-I., Asakawa, Y., Maemura, T., Tanaka, M., Takeda, S., Morita, M., & Morita, I. (2009). The reduction in pigment epithelium-derived factor is a sign of malignancy in ovarian cancer expressing low-level of vascular endothelial growth factor. Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology, 25(2), 104–109. https://doi.org/10.1080/09513590802549841
  • Uehara, H., Miyamoto, M., Kato, K., Ebihara, Y., Kaneko, H., Hashimoto, H., Murakami, Y., Hase, R., Takahashi, R., Mega, S., Shichinohe, T., Kawarada, Y., Itoh, T., Okushiba, S., Kondo, S., & Katoh, H. (2004). Expression of pigment epithelium-derived factor decreases liver metastasis and correlates with favorable prognosis for patients with ductal pancreatic adenocarcinoma. Cancer Research, 64(10), 3533–3537. https://doi.org/10.1158/0008-5472.CAN-03-3725
  • Umbaugh, C. S., Diaz-Quiñones, A., Neto, M. F., Shearer, J. J., & Figueiredo, M. L. (2018). A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model. Oncotarget, 9(5), 5958–5978. https://doi.org/10.18632/oncotarget.23236
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes . Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Vangone, A., & Bonvin, A. M. (2015). Contacts-based prediction of binding affinity in protein-protein complexes. eLife, 4, e07454. https://doi.org/10.7554/eLife.07454
  • Vásquez, A. F., Reyes Munoz, A., Duitama, J., & Gonzalez Barrios, A. (2021). Discovery of new potential CDK2/VEGFR2 type II inhibitors by fragmentation and virtual screening of natural products. Journal of Biomolecular Structure & Dynamics, 39(9), 3285–3299.
  • Wang, L., Bao, Q.-C., Xu, X.-L., Jiang, F., Gu, K., Jiang, Z.-Y., Zhang, X.-J., Guo, X.-K., You, Q.-D., & Sun, H.-P. (2015). Discovery and identification of Cdc37-derived peptides targeting the Hsp90–Cdc37 protein–protein interaction. RSC Advances, 5(116), 96138–96145. https://doi.org/10.1039/C5RA20408A
  • Wang, L., Coric, P., Broussy, S., Di Stasi, R., Zhou, L., D'Andrea, L. D., Ji, L., Vidal, M., Bouaziz, S., & Liu, W.-Q. (2019). Structural studies of the binding of an antagonistic cyclic peptide to the VEGFR1 domain 2. European Journal of Medicinal Chemistry, 169, 65–75. https://doi.org/10.1016/j.ejmech.2019.02.069
  • Wang, L., Zhou, L., Reille-Seroussi, M., Gagey-Eilstein, N., Broussy, S., Zhang, T., Ji, L., Vidal, M., & Liu, W.-Q. (2017). Identification of peptidic antagonists of vascular endothelial growth factor receptor 1 by scanning the binding epitopes of its ligands. Journal of Medicinal Chemistry, 60(15), 6598–6606. https://doi.org/10.1021/acs.jmedchem.7b00283
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation . Protein Science: A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Zanella, S., Bocchinfuso, G., De Zotti, M., Arosio, D., Marino, F., Raniolo, S., Pignataro, L., Sacco, G., Palleschi, A., Siano, A. S., Piarulli, U., Belvisi, L., Formaggio, F., Gennari, C., & Stella, L. (2019). Rational design of antiangiogenic helical oligopeptides targeting the vascular endothelial growth factor receptors. Frontiers in Chemistry, 7, 170. https://doi.org/10.3389/fchem.2019.00170
  • Zhang, L., Chen, J., Ke, Y., Mansel, R. E., & Jiang, W. G. (2006). Expression of pigment epithelial derived factor is reduced in non-small cell lung cancer and is linked to clinical outcome. International Journal of Molecular Medicine, 17(5), 937–944. https://doi.org/10.3892/ijmm.17.5.937
  • Zhang, S. X., Wang, J. J., Gao, G., Parke, K., & Ma, J-x. (2006). Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. Journal of Molecular Endocrinology, 37(1), 1–12. https://doi.org/10.1677/jme.1.02008
  • Zhang, X., Feng, S., Liu, J., Li, Q., Zheng, L., Xie, L., Li, H., & Huang, D. (2017). Novel small peptides derived from VEGF125-136: Potential drugs for radioactive diagnosis and therapy in A549 tumor-bearing nude mice. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-04513-y
  • Zhang, Y., Yang, S., Jiao, Y., Liu, H., Yuan, H., Lu, S., Ran, T., Yao, S., Ke, Z., Xu, J., Xiong, X., Chen, Y., & Lu, T. (2013). An integrated virtual screening approach for VEGFR-2 inhibitors. Journal of Chemical Information and Modeling, 53(12), 3163–3177. https://doi.org/10.1021/ci400429g
  • Zhou, D., Cheng, S.-Q., Ji, H.-F., Wang, J.-S., Xu, H.-T., Zhang, G.-Q., & Pang, D. (2010). Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer. Journal of Cancer Research and Clinical Oncology, 136(11), 1719–1727. https://doi.org/10.1007/s00432-010-0830-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.