254
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Design, dynamic docking, synthesis, and in vitro validation of a novel DNA gyrase B inhibitor

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6345-6358 | Received 11 Oct 2021, Accepted 23 Jul 2022, Published online: 04 Aug 2022

References

  • AbdelKhalek, A., Ashby, C. R., Patel, B. A., Talele, T. T., & Seleem, M. N. (2016). In vitro antibacterial activity of rhodanine derivatives against pathogenic clinical isolates. Plos One, 11(10), e0164227–17. https://doi.org/10.1371/journal.pone.0164227
  • Basarab, G. S., Brassil, P., Doig, P., Galullo, V., Haimes, H. B., Kern, G., Kutschke, A., McNulty, J., Schuck, V. J., Stone, G., & Gowravaram, M. (2014). Novel DNA gyrase inhibiting spiropyrimidinetriones with a benzisoxazole scaffold: SAR and in vivo characterization. Journal of Medicinal Chemistry, 57(21), 9078–9095.
  • Bax, B. D., Murshudov, G., Maxwell, A., & Germe, T. (2019). DNA topoisomerase inhibitors: Trapping a DNA-cleaving machine in motion. Journal of Molecular Biology, 431(18), 3427–3449.
  • Bisacchi, G. S., & Manchester, J. I. (2015). A new-class antibacterial-almost. Lessons in drug discovery and development: A critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infectious Diseases, 1(1), 4–41. https://doi.org/10.1021/id500013t
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 43.
  • Bozdogan, B., Esel, D., Whitener, C., Browne, F. A., & Appelbaum, P. C. (2003). Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. Journal of Antimicrobial Chemotherapy, 52(5), 864–868. https://doi.org/10.1093/jac/dkg457
  • Brvar, M., Perdih, A., Renko, M., Anderluh, G., Turk, D., & Solmajer, T. (2012). Structure-Based discovery of substituted 4,5′-bithiazoles as novel DNA gyrase inhibitors. Journal of Medicinal Chemistry, 55(14), 6413–6426.
  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976.
  • Chan, P. F., Germe, T., Bax, B. D., Huang, J., Thalji, R. K., Bacqué, E., Checchia, A., Chen, D., Cui, H., Ding, X., Ingraham, K., McCloskey, L., Raha, K., Srikannathasan, V., Maxwell, A., & Stavenger, R. A. (2017). Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase. Proceedings of the National Academy of Sciences of the United States of America, 114(22), E4492–E4500. https://doi.org/10.1073/pnas.1700721114
  • Chopra, S., Matsuyama, K., Tran, T., Malerich, J. P., Wan, B., Franzblau, S. G., Lun, S., Guo, H., Maiga, M. C., Bishai, W. R., & Madrid, P. B. (2012). Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. The Journal of Antimicrobial Chemotherapy, 67(2), 415–421. https://doi.org/10.1093/jac/dkr449
  • Collin, F., Karkare, S., & Maxwell, A. (2011). Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Applied Microbiology and Biotechnology, 92(3), 479–497.
  • Durcik, M., Lovison, D., Skok, Ž., Durante, C., & Tammela, P. (2018). Europe PMC funders group new N -phenylpyrrolamide DNA gyrase B inhibitors: Optimization of efficacy and antibacterial activity. European journal of medicinal chemistry, 154, 117–132. https://doi.org/10.1016/j.ejmech.2018.05.011
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide. Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Hardej, D., Ashby, Jr, C. R., Khadtare, N. S., Kulkarni, S. S., Singh, S., Talele, T. T. (2010). The synthesis of phenylalanine-derived C5-substituted rhodanines and their activity against selected methicillinresistant Staphylococcus aureus (MRSA) strains. European journal of medicinal chemistry, 45(12), 5827–5832. https://doi.org/10.1016/j.ejmech.2010.09.045
  • Huband, M. D., Cohen, M. A., Zurack, M., Hanna, D. L., Skerlos, L. A., Sulavik, M. C., Gibson, G. W., Gage, J. W., Ellsworth, E., Stier, M. A., & Gracheck, S. J. (2007). In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant gram-positive and fastidious organism groups. Antimicrobial Agents and Chemotherapy, 51(4), 1191–1201. https://doi.org/10.1128/AAC.01321-06
  • Hurley, K. A., Santos, T. M. A., Fensterwald, M. R., Rajendran, M., Moore, J. T., Balmond, E. I., Blahnik, B. J., Faulkner, K. C., Foss, M. H., Heinrich, V. A., Lammers, M. G., Moore, L. C., Reynolds, G. D., Shearn-Nance, G. P., Stearns, B. A., Yao, Z. W., Shaw, J. T., & Weibel, D. B. (2017). Targeting quinolone- and aminocoumarin-resistant bacteria with new gyramide analogs that inhibit DNA gyrase. MedChemComm, 8(5), 942–951. https://doi.org/10.1039/C7MD00012J
  • Johnston, A., & Holt, D. W. (2014). Substandard drugs: a potential crisis for public health. British Journal of Clinical Pharmacology, 78(2), 218–243.
  • Kohno, S., Yamaguchi, K., Aikawa, N., Sumiyama, Y., Odagiri, S., Aoki, N., Niki, Y., Watanabe, S., Furue, M., Ito, T., Croos-Dabrera, R., & Tack, K. J. (2007). Linezolid versus vancomycin for the treatment of infections caused by methicillin-resistant Staphylococcus aureus in Japan. Journal of Antimicrobial Chemotherapy, 60(6), 1361–1369. https://doi.org/10.1093/jac/dkm369
  • Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization. Evolution, and Epidemiology, 31(4), 1–103.
  • Lahiri, S. D., Kutschke, A., McCormack, K., & Alm, R. A. (2015). Insights into the mechanism of inhibition of novel bacteria topoisomerase inhibitors from characterization of resistant mutants of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 59(9), 5278–5287. https://doi.org/10.1128/AAC.00571-15
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Livermore, D. M. (2000). Antibiotic resistance in staphylococci. International Journal of Antimicrobial Agents, 16(Suppl 1), S3–S10.
  • Maddila, S., Gorle, S., & Jonnalagadda, S. B. (2020). Drug screening of rhodanine derivatives for antibacterial activity. Expert Opinion on Drug Discovery, 15(2), 203–229.
  • Mani, N., Gross, C. H., Parsons, J. D., Hanzelka, B., Müh, U., Mullin, S., Liao, Y., Grillot, A.-L., Stamos, D., Charifson, P. S., & Grossman, T. H. (2006). In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class. Antimicrobial Agents and Chemotherapy, 50(4), 1228–1237. https://doi.org/10.1128/AAC.50.4.1228-1237.2006
  • Mattingly, A. E., Cox, K., Smith, R., Melander, R. J., Ernst, R. K., & Melander, C. (2020). Screening an established natural product library identifies secondary metabolites that potentiate conventional antibiotics. ACS Infectious Diseases, 6(10), 2629–2640. https://doi.org/10.1021/acsinfecdis.0c00259
  • Mendgen, T., Steuer, C., Klein, C. D. (2012). Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. Journal of medicinal chemistry, 55(2), 743–753. https://doi.org/10.1021/jm201243p.
  • Mesleh, M. F., Cross, J. B., Zhang, J., Kahmann, J., Andersen, O. A., Barker, J., Cheng, R. K., Felicetti, B., Wood, M., Hadfield, A. T., Scheich, C., Moy, T. I., Yang, Q., Shotwell, J., Nguyen, K., Lippa, B., Dolle, R., & Ryan, M. D. (2016). Fragment-based discovery of DNA gyrase inhibitors targeting the ATPase subunit of GyrB. Bioorganic & Medicinal Chemistry Letters, 26(4), 1314–1318. https://doi.org/10.1016/j.bmcl.2016.01.009
  • Pankey, G. A., & Sabath, L. D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 38(6), 864–870.
  • Patel, B. A., Ashby, Jr, C. R., Hardej, D., Talele, T. T. (2013). The synthesis and SAR study of phenylalanine-derived (Z)-5-arylmethylidene rhodanines as anti-methicillin-resistant Staphylococcus aureus (MRSA) compounds. Bioorganic & medicinal chemistry letters, 23(20), 5523–5527. https://doi.org/10.1016/j.bmcl.2013.08.059
  • Purnapatre, K. P., Rao, M., Pandya, M., Khanna, A., Chaira, T., Bambal, R., Upadhyay, D. J., & Masuda, N. (2018). In vitro and in vivo activities of DS86760016, a novel leucyl-tRNA synthetase inhibitor for Gram-negative pathogens. Antimicrobial Agents and Chemotherapy, 62(4), e01987-17. https://doi.org/10.1128/AAC.01987-17
  • Ray, P., Gautam, V., Singh, R. (2011). Methicillin-resistant Staphylococcus aureus (MRSA) in developing and developed countries: implications and solutions. InRegional Health Forum 15(1), 74–82.
  • Rice, L. B. (2006). Antimicrobial resistance in gram-positive bacteria. American Journal of Infection Control, 34(5 Suppl 1), S11–S73. https://doi.org/10.1016/j.ajic.2006.05.220
  • Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452
  • Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754–793. https://doi.org/10.1039/c0gc00401d
  • Sareena, C., & Vasu, S. T. (2020). Identification of 4-diphenylamino 3-iodo coumarin as a potent inhibitor of DNA gyrase B of S. aureus. Microbial Pathogenesis, 147(July), 104387.
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation. Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Savage, V. J., Charrier, C., Salisbury, A. M., Moyo, E., Forward, H., Chaffer-Malam, N., Metzger, R., Huxley, A., Kirk, R., Uosis-Martin, M., Noonan, G., Mohmed, S., Best, S. A., Ratcliffe, A. J., & Stokes, N. R. (2016). Biological profiling of novel tricyclic inhibitors of bacterial DNA gyrase and topoisomerase IV. The Journal of Antimicrobial Chemotherapy, 71(7), 1905–1913. https://doi.org/10.1093/jac/dkw061
  • Selzer, P., Roth, H.-J., Ertl, P., & Schuffenhauer, A. (2005). Complex molecules: do they add value? Current Opinion in Chemical Biology, 9(3), 310–316.
  • Sheridan, R. P., Zorn, N., Sherer, E. C., Campeau, L.-C., Chang, C., Cumming, J., Maddess, L. M., Nantermet, P. G., Sinz, C. J., & O'Shea, P. D. (2014). Modeling a crowdsourced definition of molecular complexity. Journal of Chemical Information and Modeling, 54(6), 1604–1616. https://doi.org/10.1021/ci5001778
  • Solapure, S. P. S. H., Mukherjee, K., Nandi, V., Waterson, D., Shandil, R., Balganesh, M., Sambandamurthy, V. K., Raichurkar, A. K., Deshpande, A., Ghosh, A., Awasthy, D., Shanbhag, G., Sheikh, G., McMiken, H., Puttur, J., Reddy, J., Werngren, J., Read, J., … Panduga, V. (2014). Optimization of pyrrolamides as mycobacterial gyrb ATPase inhibitors: Structure-activity relationship and in vivo efficacy in a mouse model of tuberculosis. Antimicrobial Agents and Chemotherapy, 58(1), 61–70. https://doi.org/10.1128/AAC.01751-13
  • Tiz, D. B., Skok, Ž., Durcik, M., Tomašič, T., Mašič, L. P., Ilaš, J., Zega, A., Draskovits, G., Révész, T., Nyerges, Á., Pál, C., Cruz, C. D., Tammela, P., Žigon, D., Kikelj, D., & Zidar, N. (2019). An optimized series of substituted N-phenylpyrrolamides as DNA gyrase B inhibitors. European Journal of Medicinal Chemistry, 167, 269–290. https://doi.org/10.1016/j.ejmech.2019.02.004
  • Tomai, T., & Mai, L. P. (2009). Rhodanine as a privileged scaffold in drug discovery. Current Medicinal Chemistry, 16, 1596–1629.
  • Tomašić, T., & Mašič, L. (2012). Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opinion on Drug Discovery, 7(7), 549–560.
  • Tomašić, T., & Mašič, L. (2014). Prospects for developing new antibacterials targeting bacterial type IIA topoisomerases. Current Topics in Medicinal Chemistry, 14(1), 130–151.
  • Tomasić, T., Zidar, N., Kovac, A., Turk, S., Simcic, M., Blanot, D., Müller-Premru, M., Filipic, M., Grdadolnik, S. G., Zega, A., Anderluh, M., Gobec, S., Kikelj, D., & Peterlin Masic, L. (2010). 5-benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial mur ligases. ChemMedChem. 5(2), 286–295. https://doi.org/10.1002/cmdc.200900449
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Ventola, C. L. (2015). The antibiotic resistance crisis: causes and threats. P & T: A Peer-Reviewed Journal for Formulary Management, 40(4), 277–283.
  • Voršilák, M., Kolář, M., Čmelo, I., & Svozil, D. (2020). SYBA: Bayesian estimation of synthetic accessibility of organic compounds. Journal of Cheminformatics, 12(1), 1–13. https://doi.org/10.1186/s13321-020-00439-2
  • Wang, R., Gao, Y., & Lai, L. (2000). LigBuilder: A multi-purpose program for structure-based drug design. Journal of Molecular Modeling, 6(7–8), 498–516. https://doi.org/10.1007/s0089400060498
  • Wayne, P. A. (2012). CLSI Methods for antimicrobial susceptibility testing of anaerobic bacteria: approved standard-CLSI document M11-A8. Clinical and Laboratory Standards Institute.
  • Werner, M. M., Li, Z., & Zauhar, R. J. (2014). Computer-aided identification of novel 3,5-substituted rhodanine derivatives with activity against Staphylococcus aureus DNA gyrase. Bioorganic & Medicinal Chemistry, 22(7), 2176–2187.
  • Werner, M. M., Patel, B. A., Talele, T. T., Ashby, C. R., Li, Z., & Zauhar, R. J. (2015). Dual inhibition of Staphylococcus aureus DNA gyrase and topoisomerase IV activity by phenylalanine-derived (Z)-5-arylmethylidene rhodanines. Bioorganic & Medicinal Chemistry, 23(18), 6125–6137.
  • Wikler, M. A. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS), 26, M7–A7.
  • Wong, E., & Rab, S. (2014). Tedizolid phosphate (Sivextro): A second-generation oxazolidinone to treat acute bacterial skin and skin structure infections. P & T: A Peer-Reviewed Journal for Formulary Management, 39(8), 555–559.
  • Zadrazilova, I., Pospisilova, S., Masarikova, M., Imramovsky, A., Ferriz, J. M., Vinsova, J., Cizek, A., & Jampilek, J. (2015). Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA). European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 77(June), 197–207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.