482
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Development of QSAR model using machine learning and molecular docking study of polyphenol derivatives against obesity as pancreatic lipase inhibitor

, , & ORCID Icon
Pages 6569-6580 | Received 09 Mar 2022, Accepted 30 Jul 2022, Published online: 10 Aug 2022

References

  • Adeniji, S. E., Uba, S., Uzairu, A., & Arthur, D. E. (2019). A derived QSAR model for predicting some compounds as potent antagonist against Mycobacterium tuberculosis: A theoretical approach. Advances in Preventive Medicine, 2019, 5173786. https://doi.org/10.1155/2019/5173786.
  • Akhtar MS, Swamy MK, Sinniah UR, editors. (2019). Natural bio-active compounds. Volume 1: Production and applications. Springer.
  • Arthur, D. E., Ejeh, S., & Uzairu, A. (2020). Quantitative structure-activity relationship (QSAR) and design of novel ligands that demonstrate high potency and target selectivity as protein tyrosine phosphatase 1B (PTP 1B) inhibitors as an effective strategy used to model anti-diabetic agents. Journal of Receptor and Signal Transduction Research, 40(6), 501–520. https://doi.org/10.1080/10799893.2020.1759092.
  • Bagheri, M., & Fatemi, M. H. (2018). Fluorescence spectroscopy, molecular docking and molecular dynamic simulation studies of HSA-Aflatoxin B1 and G1 interactions. Journal of Luminescence, 202, 345–353. https://doi.org/10.1016/j.jlumin.2018.05.066
  • Batubara, I., Kuspradini, H., Muddathir, A. M., & Mitsunaga, T. (2014). Intsia palembanica wood extracts and its isolated compounds as Propionibacterium acnes lipase inhibitor. Journal of Wood Science, 60(2), 169–174. https://doi.org/10.1007/s10086-013-1388-5
  • Bhagwat, S., Haytowitz, D. B., & Holden, J. M. (2016). USDA database for the flavonoid content of selected foods. Release 3.2 (November 2015). https://doi.org/10.15482/USDA.ADC/1324465
  • Bhatt, P., Joshi, T., Bhatt, K., Zhang, W., Huang, Y., & Chen, S. (2021). Binding interaction of glyphosate with glyphosate oxidoreductase and C–P lyase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials, 409, 124927. https://doi.org/10.1016/j.jhazmat.2020.124927.
  • Buchholz, T., & Melzig, M. (2015). Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Medica, 81(10), 771–783. https://doi.org/10.1055/s-0035-1546173.
  • Bustos, A.-S., Håkansson, A., Linares-Pastén, J. A., Peñarrieta, J. M., & Nilsson, L. (2020). Interaction of quercetin and epigallocatechin gallate (EGCG) aggregates with pancreatic lipase under simplified intestinal conditions. PLoS ONE, 15(4), e0224853. https://doi.org/10.1371/journal.pone.0224853.
  • Cha, K. H., Song, D.-G., Kim, S. M., & Pan, C.-H. (2012). Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea polyphenols during simulated digestion. Journal of Agricultural and Food Chemistry, 60(29), 7152–7157. https://doi.org/10.1021/jf301047f.
  • Chatzigeorgiou, A., Kandaraki, E., Papavassiliou, A. G., & Koutsilieris, M. (2014). Peripheral targets in obesity treatment: a comprehensive update: Peripheral targets of anti-obesity drugs. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 15(6), 487–503. https://doi.org/10.1111/obr.12163.
  • Chernick, M. R., & Friis, R. H. (2003). Introductory biostatistics for the health sciences: modern applications including bootstrap. Wiley-Interscience.
  • de la Garza, A., Milagro, F., Boque, N., Campión, J., & Martínez, J. (2011). Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Medica, 77(8), 773–785. https://doi.org/10.1055/s-0030-1270924.
  • Elsbaey, M., Amen, Y., Nakagawa, T., & Shimizu, K. (2019). White poplar: Targeted isolation of pancreatic lipase inhibitors. Industrial Crops and Products, 141, 111778. https://doi.org/10.1016/j.indcrop.2019.111778
  • Engels, M., Balaji, S., D, S., & G, G. (2017). Ligand based pharmacophore modeling, virtual screening and molecular docking studies to design novel pancreatic lipase inhibitors. International Journal of Pharmacy and Pharmaceutical Sciences, 9(4), 48. https://doi.org/10.22159/ijpps.2017v9i4.16392
  • Golbraikh, A., Wang, X. S., Zhu, H., & Tropsha, A. (2012). Predictive QSAR modeling: methods and applications in drug discovery and chemical risk assessment. In J. Leszczynski (Ed.), Handbook of computational chemistry (pp. 1309–1342.). Springer Netherlands. https://doi.org/10.1007/978-94-007-0711-5_37
  • Gonzales, G. B., Smagghe, G., Grootaert, C., Zotti, M., Raes, K., & Camp, J. V. (2015). Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews, 47(2), 175–190. https://doi.org/10.3109/03602532.2014.1003649.
  • Gupta, M., Saxena, S., & Goyal, D. (2015). Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(1), 15–21. https://doi.org/10.3109/14756366.2013.871007.
  • Hou, X.-D., Ge, G.-B., Weng, Z.-M., Dai, Z.-R., Leng, Y.-H., Ding, L.-L., Jin, L.-L., Yu, Y., Cao, Y.-F., & Hou, J. (2018). Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorganic Chemistry, 80, 577–584. https://doi.org/10.1016/j.bioorg.2018.07.011.
  • Kapoor, Y., & Kumar, K. (2019). Quantitative structure activity relationship in drug Design: An overview. SF Journal of Pharmaceutical and Analytical Chemistry, 2(2), 1017.
  • Khan, A. U. (2016). Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discovery Today, 21(8), 1291–1302. https://doi.org/10.1016/j.drudis.2016.06.013.
  • Kinlen, D., Cody, D., & O'Shea, D. (2018). Complications of obesity. QJM: Monthly Journal of the Association of Physicians, 111(7), 437–443. https://doi.org/10.1093/qjmed/hcx152.
  • Kiralj, R., & Ferreira, M. M. C. (2009). Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. Journal of the Brazilian Chemical Society, 20(4), 770–787. https://doi.org/10.1590/S0103-50532009000400021
  • Lee, Y. M., Kim, Y. S., Lee, Y., Kim, J., Sun, H., Kim, J. H., & Kim, J. S. (2012). Inhibitory activities of pancreatic lipase and phosphodiesterase from Korean medicinal plant extracts: Inhibitory activities of anti-lipase and - PDE from medicinal plants. Phytotherapy Research: PTR, 26(5), 778–782. https://doi.org/10.1002/ptr.3644.
  • Lee, E. M., Lee, S. S., Chung, B. Y., Cho, J.-Y., Lee, I. C., Ahn, S. R., Jang, S. J., & Kim, T. H. (2010). Pancreatic Lipase Inhibition by C-Glycosidic Flavones Isolated from Eremochloa ophiuroides. Molecules (Basel, Switzerland), 15(11), 8251–8259. https://doi.org/10.3390/molecules15118251.
  • Lunagariya, N. A., Patel, N. K., Jagtap, S. C., & Bhutani, K. K. (2014). Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI Journal, 13, 897–921.
  • Maronna, R. A., & Yohai, V. J. (1993). Bias-robust estimates of regression based on projections. Annals of Statistics, 21, 965-990. https://doi.org/10.1214/aos/1176349160
  • Modanwal, S., & Mishra, N. (2021). Identification of common genes in obesity and cancer through network interaction and targeting those genes by virtual screening approach. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2021.2020169
  • Mulpuru, V., & Mishra, N. (2021). Computational Identification of SARS-CoV-2 Inhibitor in Tinospora cordifolia, Cinnamomum zeylanicum and Myristica fragrans. VirusDis, 32(3), 511–517. https://doi.org/10.1007/s13337-021-00721-3.
  • Nakai, M., Fukui, Y., Asami, S., Toyoda-Ono, Y., Iwashita, T., Shibata, H., Mitsunaga, T., Hashimoto, F., & Kiso, Y. (2005). Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. Journal of Agricultural and Food Chemistry, 53(11), 4593–4598. https://doi.org/10.1021/jf047814+.[PMC][15913331
  • O, G. (2017). Anti-oxidative, acetylcholinesterase and pancreatic lipase inhibitory activities of compounds from Dasiphora fruticosa, Myricaria alopecuroides and Sedum hybridum. Mongolian Journal of Chemistry, 17(43), 42–49. https://doi.org/10.5564/mjc.v17i43.746
  • Qi, X. (2018). Review of the clinical effect of orlistat. IOP Conference Series: Materials Science and Engineering, 301, 012063. https://doi.org/10.1088/1757-899X/301/1/012063
  • Rahim, A. T. M. A., Takahashi, Y., & Yamaki, K. (2015). Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Research International (Ottawa, ON), 75, 289–294. https://doi.org/10.1016/j.foodres.2015.05.017.
  • Raj, S., Sasidharan, S., Dubey, V. K., & Saudagar, P. (2019). Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation. PLoS ONE, 14(8), e0221331. https://doi.org/10.1371/journal.pone.0221331.
  • Rajan, L., Palaniswamy, D., & Mohankumar, S. K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155, 104681. https://doi.org/10.1016/j.phrs.2020.104681.
  • Sergent, T., Vanderstraeten, J., Winand, J., Beguin, P., & Schneider, Y.-J. (2012). Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chemistry, 135(1), 68–73. https://doi.org/10.1016/j.foodchem.2012.04.074
  • Shimura, S., Itoh, Y., Yamashita, A., Kitano, A., Hatano, T., Yoshida, T., & Okuda, T. (1994). Inhibitory Effects of flavonoids on lipase. Nippon Shokuhin Kogyo Gakkaishi, 41(11), 847–850. https://doi.org/10.3136/nskkk1962.41.847
  • Spencer, J. P. E. (2008). Flavonoids: modulators of brain function? British Journal of Nutrition, 99(E-S1), ES60–77. https://doi.org/10.1017/S0007114508965776
  • Sukhdev, S., & Singh, K. S. (2013). Therapeutic role of phytomedicines on obesity: importance of herbal pancreatic lipase inhibitors. International Research Journal of Medical Sciences, 1(9), 15–26.
  • Sun, N.-N., Wu, T.-Y., & Chau, C.-F. (2016). Natural dietary and herbal products in anti-obesity treatment. Molecules, 21(10), 1351. https://doi.org/10.3390/molecules21101351
  • Tropsha, A., Gramatica, P., & Gombar, V. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22(1), 69–77. https://doi.org/10.1002/qsar.200390007
  • Utami, P. W., & Brotosudarmo, T. H. (2019). The activity of flavonoid isolates from Papaya (Carica papaya L.) seed as pancreatic lipase inhibitor. IOP Conference Series: Materials Science and Engineering, 546(6), 062031. https://doi.org/10.1088/1757-899X/546/6/062031
  • Van Belle G, Fisher L, editors. (2004). Biostatistics: a methodology for the health sciences (2nd ed.). John Wiley & Sons.
  • Obesity and overweight. (n.d.). https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed May 9, 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.