511
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Function identification and characterization of Oryza sativa ZRT and IRT-like proteins computationally for nutrition and biofortification in rice

, , ORCID Icon, , &
Pages 7490-7510 | Received 09 May 2022, Accepted 19 Aug 2022, Published online: 16 Sep 2022

References

  • Ajeesh, K. T. P., Maharajan, T., Victor, R. G., Ignacimuthu, S., & Antony, C. S. (2020). Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Frontiers in Plant Science, 11, 662.
  • Alagarasan, G., Dubey, M., Aswathy, K. S., & Chandel, G. (2017). Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Frontiers in Plant Science, 8, 775. https://doi.org/10.3389/fpls.2017.00775.
  • Assunção, A. G. L., Herrero, E., Lin, Y.-F., Huettel, B., Talukdar, S., Smaczniak, C., Immink, R. G. H., van Eldik, M., Fiers, M., Schat, H., & Aarts, M. G. M. (2010). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10296–10301. https://doi.org/10.1073/pnas.1004788107.
  • Astudillo, C., Fernandez, A., Blair, M. W., & Cichy, K. A. (2013). The Phaseolus vulgaris ZIP gene family: Identification, characterization, mapping, and gene expression. Frontiers in Plant Science, 4, 286. https://doi.org/10.3389/fpls.2013.00286.
  • Astudillo-Reyes, C., Fernandez, A. C., & Cichy, K. A. (2015). Transcriptome characterization of developing bean (Phaseolus vulgaris L.) pods from two genotypes with contrasting seed zinc concentrations. PloS One, 10(9), e0137157. https://doi.org/10.1371/journal.pone.0137157.
  • Bashir, K., Ishimaru, Y., & Nishizawa, N. K. (2012). Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 361(1–2), 189–201. https://doi.org/10.1007/s11104-012-1240-5
  • Bennetzen, J. L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A. C., Estep, M., Feng, L., Vaughn, J. N., Grimwood, J., Jenkins, J., Barry, K., Lindquist, E., Hellsten, U., Deshpande, S., Wang, X., Wu, X., Mitros, T., Triplett, J., … Devos, K. M. (2012). Reference genome sequence of the model plant Setaria. Nature Biotechnology, 30(6), 555–561. https://doi.org/10.1038/nbt.2196.
  • Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H., & Mori, S. (2002). Cloning an iron regulated metal transporter from rice. Journal of Experimental Botany, 53(374), 1677–1682. https://doi.org/10.1093/jxb/erf004.
  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1–2), 1–17. https://doi.org/10.1007/s11104-007-9466-3
  • Capra, J. A., & Singh, M. (2007). Predicting functionally important residues from sequence conservation. Bioinformatics (Oxford, England), 23(15), 1875–1882. https://doi.org/10.1093/bioinformatics/btm270
  • Ceasar, S. A., Hodge, A., Baker, A., & Baldwin, S. A. (2014). Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One, 9(9), e108459. https://doi.org/10.1371/journal.pone.0108459.
  • Chen, W., Feng, Y., & Chao, Y. (2008). Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology, 55(3), 400–409. https://doi.org/10.1134/S1021443708030175
  • Colangelo, E. P., & Guerinot, M. L. (2006). Put the metal to the petal: Metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9(3), 322–330. https://doi.org/10.1016/j.pbi.2006.03.015
  • Deshpande, P., Dapkekar, A., Oak, M., Paknikar, K., & Rajwade, J. (2018). Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat. PloS One, 13(1), e0191035. https://doi.org/10.1371/journal.pone.01-91035.
  • Evens, N. P., Buchner, P., Williams, L. E., & Hawkesford, M. J. (2017). The role of ZIP transporters and group F bZIP transcription factors in the Zn deficiency response of wheat (Triticum aestivum). The Plant Journal : For Cell and Molecular Biology, 92(2), 291–304. https://doi.org/10.1111/tpj.13655.
  • Fei, X., Fu, X.-z., Wang, N.-q., Xi, J.-l., Huang, Y., Zhou, W., Ling, L.-l., & Peng, L.-z. (2016). Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). Journal of Integrative Agriculture, 15(4), 803–811. https://doi.org/10.1016/S2095-3119(15)61276-X
  • Fu, X.-Z., Zhou, X., Xing, F., Ling, L.-L., Chun, C.-P., Cao, L., Aarts, M. G. M., & Peng, L.-Z. (2017). Genome wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L.). Frontiers in Plant Science, 8, 588. https://doi.org/10.3389/fpls.2017.00588.
  • Gepts, P., Aragão, F. J., De Barros, E., Blair, M. W., Brondani, R., & Broughton, W. (2008). Genomics of phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In Genomics of tropical crop plants (Vol. 1, pp. 113–143). New York, NY: Springer. https://doi.org/10.1007/978-0-387-71219-2_5
  • Gorodkin, J., Staerfeldt, H. H., Lund, O., & Brunak, S. (1999). MatrixPlot: Visualizing sequence constraints. Bioinformatics (Oxford, England), 15(9), 769–770. https://doi.org/10.1093/bioinformatics/15.9.769
  • Grotz, N., & Guerinot, M. L. (2006). Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica et Biophysica Acta, 1763(7), 595–608. https://doi.org/10.1016/j.bbamcr.2006.05.014
  • Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., & Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7220–7224. https://doi.org/10.1073/pnas.95.12.7220.
  • Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1465(1–2), 190–198. https://doi.org/10.1016/S0005-2736(00)00138-3
  • Hacisalihoglu, G., & Kochian, L. V. (2003). How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytologist, 159(2), 341–350. https://doi.org/10.1046/j.1469-8137.2003.00826.x
  • Hruz, T., Oliver, L., Gabor, S., Frans, W., Stefan, B., Lukas, O., Peter, W., Wilhelm, G., & Philip, Z. (2008). Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics, 2008, 420747. https://doi.org/10.1155/2008/420747
  • Huang, S., Sasaki, A., Yamaji, N., Okada, H., Mitani-Ueno, N., & Ma, J. F. (2020). The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiology, 183(3), 1224–1234. https://doi.org/10.1104/pp.20.00125
  • Horuz, A., Turan, M., Akinoglu, G., Ozcan, C., Gunes, A., Korkmaz, A., Kaya, Y., Kitir, N., Adiloglu, S., Tufenkci, S., & Adiloglu, A. (2019). Effects of phosphogypsum waste application on corn (Zea mays L.) yield and nutrient contents. Fresenius Environmental Bulletin, 28(11A), 8814–8822.
  • Inaba, S., Kurata, R., Kobayashi, M., Yamagishi, Y., Mori, I., Ogata, Y., & Fukao, Y. (2015). Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant Journal, 84(2), 323–334. https://doi.org/10.1111/tpj.12996.
  • Ishimaru, Y., Bashir, K., & Nishizawa, N. K. (2011). Zn uptake and translocation in rice plants. Rice, 4(1), 21–27. https://doi.org/10.1007/s12284-011-9061-3
  • Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2005). OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56(422), 3207–3214.
  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+ phytosiderophore and as Fe2C. Plant Journal, 45(3), 335–346. https://doi.org/10.1111/j.1365-313X.2005.02624.x.
  • Ishimaru, Y., Masuda, H., Suzuki, M., Bashir, K., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2007). Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Journal of Experimental Botany, 58(11), 2909–2915. https://doi.org/10.1093/jxb/erm147.
  • Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8(3), 275–282. https://doi.org/10.1093/bioinformatics/8.3.275
  • Kambe, T., Yamaguchi-Iwai, Y., Sasaki, R., & Nagao, M. (2004). Overview of mammalian zinc transporters. Cellular and Molecular Life Sciences, 61(1), 49–68. https://doi.org/10.1007/s00018-003-3148-y
  • Kelley, L. A., & Sternberg, M. J. E. (2009). Protein structure prediction on the web: A case study using the Phyre server. Nature Protocols, 4(3), 363–371.
  • Kobayashi, T., Nagasaka, S., Senoura, T., Itai, R. N., Nakanishi, H., & Nishizawa, N. K. (2013). Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature Communications, 4(2792). https://doi.org/10.1038/ncomms3792
  • Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., & Pakrasi, H. B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 40(1), 37–44.
  • Lata, C., Gupta, S., & Prasad, M. (2013). Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 33(3), 328–343. https://doi.org/10.3109/07388551.2012.716809.
  • Lee, S., & An, G. (2009). Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell & Environment, 32(4), 408–416. https://doi.org/10.1111/j.1365-3040.2009.01935.x.
  • Lee, S., Jeong, H. J., Kim, S. A., Lee, J., Guerinot, M. L., & An, G. (2010). OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology, 73(4-5), 507–517. https://doi.org/10.1007/s11103-010-9637-0.
  • Lee, S., Kim, S. A., Lee, J., Guerinot, M. L., & An, G. (2010). Zinc deficiency inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Molecules and Cells, 29(6), 551–558. https://doi.org/10.1007/s10059-010-0069-0.
  • Li, S., Liu, X., Zhou, X., Li, Y., Yang, W., Chen, R. (2019). Improving zinc and iron accumulation in maize grains using the zinc and iron transporter ZmZIP5. Plant & Cell Physiology, 60(9), 2077–2085. https://doi.org/10.1093/pcp/pcz104
  • Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., Guo, J., Chen, J., & Chen, R. (2013). Identification and characterization of the zinc-regulated transporters, iron regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 13, 114. https://doi.org/10.1186/1471-2229-13-114.
  • Lilay, G. H., Castro, P. H., Campilho, A., & Assunção, A. G. (2018). The Arabidopsis bZIP19 and bZIP23 activity requires zinc deficiency–insight on regulation from complementation lines. Frontiers in Plant Science, 9, 1955. https://doi.org/10.3389/fpls.2018.01955.
  • Liu, X. S., Feng, S. J., Zhang, B. Q., Wang, M. Q., Cao, H. W., Rono, J. K., Chen, X., & Yang, Z. M. (2019). OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biology, 19(1), 283. https://doi.org/10.1186/s12870-019-1899-3
  • Marschner, P. (2012). Rhizosphere biology, Marschner’s mineral nutrition of higher plants (3rd ed.). Elsevier.
  • Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., Talke, I. N., Amtmann, A., Maathuis, F. J., Sanders, D., Harper, J. F., Tchieu, J., Gribskov, M., Persans, M. W., Salt, D. E., Kim, S. A., & Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646–1667. https://doi.org/10.1104/pp.126.4.1646.
  • Meng, L., Sun, L., & Tan, L. (2018). Progress in ZIP transporter gene family in rice. Yi Chuan = Hereditas, 40(1), 33–43. https://doi.org/10.16288/j.yczz.17-238.
  • Milner, M. J., Seamon, J., Craft, E., & Kochian, L. V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64(1), 369–381. https://doi.org/10.1093/jxb/ers315
  • Mihara, M., Itoh, T., & Izawa, T. (2010). SALAD database: a motif-based database of protein annotations for plant comparative genomics. Nucleic Acids Research, 38(1), D835–D842. https://doi.org/10.1093/nar/gkp831
  • Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T., Katou, K., Kodama, I., Sakurai, K., Takahashi, H., Satoh-Nagasawa, N., Watanabe, A., Fujimura, T. and Akagi, H. (2011. OsHMA3, a P1B-type of AT Pase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 189, 190–199. https://doi.org/10.1111/j.1469-8137.2010.03459.x.
  • Mondal, T. K., Ganie, S. A., Rana, M. K., & Sharma, T. R. (2014). Genome-wide analysis of zinc transporter genes of maize (Zea mays). Plant Molecular Biology Reporter, 32(2), 605–616. https://doi.org/10.1007/s11105-013-0664-2
  • Muthayya, S., Rah, J. H., Sugimoto, J. D., Roos, F., Kraemer, F. K., & Black, R. E. (2013). The global hidden hunger indices and maps: An advocacy tool for action. PloS One, 8(6), e67860. https://doi.org/10.1371/journal.pone.0067860
  • Nakanishi, H., Ogawa, I., Ishimaru, Y., Mori, S., & Nishizawa, N. K. (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 52(4), 464–469. https://doi.org/10.1111/j.1747-0765.2006.00055.x
  • Nies, D. H. (2007). How cells control zinc homeostasis. Science, 317(5845), 1695–1696. https://doi.org/10.1126/science.1149048
  • Omasits, U., Ahrens, C. H., Müller, S., & Wollscheid, B. (2014). Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics (Oxford, England), 30(6), 884–886. https://doi.org/10.1093/bioinformatics/btt607.
  • Palmgren, M. G., Clemens, S., Williams, L. E., Krämer, U., Borg, S., Schjørring, J. K., & Sanders, D. (2008). Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science, 13(9), 464–473. https://doi.org/10.1016/j.tplants.2008.06.005
  • Pan, Z., Choi, S., Ouadid-Ahidouch, H., Yang, J. M., Beattie, J. H., & Korichneva, I. (2017). Zinc transporters and dysregulated channels in cancers. Frontiers in Bioscience (Landmark Edition), 22(4), 623–643. https://doi.org/10.2741/4507
  • Pedas, P., & Husted, S. (2009). Zinc transport mediated by barley ZIP proteins are induced by low pH. Plant Signaling & Behavior, 4(9), 842–845. https://doi.org/10.4161/psb.4.9.9375.
  • Pedas, P., Schjoerring, J. K., & Husted, S. (2009). Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry, 47(5), 377–383. https://doi.org/10.1016/j.plaphy.2009.01.006
  • Prasad, R. (2012). Micro mineral nutrient deficiencies in humans, animals and plants and their amelioration. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82(2), 225–233. https://doi.org/10.1007/s40011-012-0029-x
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. PMID 13990617. https://doi.org/10.1016/S0022-2836(63)80023-6
  • Ramesh, S. A., Shin, R., Eide, D. J., & Schachtman, D. P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133(1), 126–134. https://doi.org/10.1104/pp.103.026815.
  • Ray, A., Lindahl, E., & Wallner, B. (2012). Improved model quality assessment using ProQ2. BMC Bioinformatics, 13, 224. ISSN: 1471–2105
  • Qin, H., Wang, F., & Guo, J. (2003). Structure and functions of ZRT and IRT-like protein. Wei Sheng Yan Jiu = Journal of Hygiene Research, 32(3), 261–264. Chinese. PMID: 12914293.
  • Sasaki, A., Yamaji, N., Mitani-Ueno, N., Kashino, M., & Ma, J. F. (2015). A node localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant Journal: For Cell and Molecular Biology, 84(2), 374–384. https://doi.org/10.1111/tpj.13005.
  • Sato, Y., Antonio, B., Namiki, N., Takehisa, H., Minami, H., Kamatsuki, K., Sugimoto, K., Shimizu, Y., Hirochika, H., & Nagamura, Y. (2011). RiceXPro: A platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Research, 39(Database issue), D1141–1148. https://doi.org/10.1093/nar/gkq1085
  • Sato, Y., Takehisa, H., Kamatsuki, K., Minami, H., Namiki, N., Ikawa, H., Ohyanagi, H., Sugimoto, K., Antonio, B., & Nagamura, Y. (2013). RiceXPro Version 3.0: Expanding the informatics resource for rice transcriptome. Nucleic Acids Research, 41(Database issue), D1206–D1213. https://doi.org/10.1093/nar/gks1125
  • Shennan, L., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991.
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(539), 539.
  • Sonnhammer, E. L., Eddy, S. R., & Durbin, R. (1997). Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins: Structure, Function, and Genetics, 28(3), 405–420. https://doi.org/10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L
  • Tamura, K., Glen, S., & Sudhir, K. (2021). MEGA11: Molecular evolutionary genetics analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • Tan, L., Qu, M., Zhu, Y., Peng, C., Wang, J., Gao, D., & Chen, C. (2020). Zinc transporter 5 and zinc transporter9 function synergistically in zinc/cadmium uptake. Plant Physiology, 183(3), 1235–1249. https://doi.org/10.1104/pp.19.01569
  • Tan, L., Zhu, Y., Fan, T., Peng, C., Wang, J., Sun, L., & Chen, C. (2019). OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochemical and Biophysical Research Communications, 512(1), 112–118. https://doi.org/10.1016/j.bbrc.2019.03.024
  • Taylor, K. M., Morgan, H. E., Johnson, A., & Nicholson, R. I. (2004). Nicholson RI: Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochemical Journal, 377(Pt 1), 131–139.
  • Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., Gíslason, M.H., Pihl, S.I., Tsirigos, K.D., Winther, O., Brunak, S., von Heijne, G. & Nielsen, H. (2022). SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology. 40(7), 1023-1025. https://doi.org/10.1038/s41587-021-01156-3
  • Timothy, L., Bailey, J. J., Charles, E. G., & William, S. N. (2015). The MEME suite. Nucleic Acids Research, 43(W1), W39–W49.
  • Tiong, J., McDonald, G. K., Genc, Y., Pedas, P., Hayes, J. E., Toubia, J., Langridge, P., & Huang, C. Y. (2014). HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytologist, 201(1), 131–143. https://doi.org/10.1111/nph.12468.
  • Tiong, J., McDonald, G., Genc, Y., Shirley, N., Langridge, P., & Huang, C. Y. (2015). Increased expression of six ZIP family genes by zinc (Zn) deficiencies associated with enhanced uptake and root to shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist, 207(4), 1097–1109. https://doi.org/10.1111/nph.13413.
  • Uraguchi, S., Kamiya, T., Sakamoto, T., Kasai, K., Sato, Y., Nagamura, Y., Yoshida, A., Kyozuka, J., Ishikawa, S., & Fujiwara, T. (2011). Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences, 108(52), 20959–20964. https://doi.org/10.1073/pnas.1116531109
  • Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677–2688. https://doi.org/10.1093/jxb/erp119
  • Wass, M. N., Kelley, L. A., & Sternberg, M. J. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research, 38(suppl_2), W469–W473. https://doi.org/10.1093/nar/gkq406
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2 – A multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England), 25(9), 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Waters, B. M., & Sankaran, R. P. (2011). Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Science, 180(4), 562–574. https://doi.org/10.1016/j.plantsci.2010.12.003
  • Watts-Williams, S. J., & Cavagnaro, T. R. (2018). Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Science, 274, 163–170. https://doi.org/10.1016/j.plantsci.2018.05.015.
  • Welch, R. M., Graham, R. D., & Cakmak, I. (2013, November 13–15). Linking agricultural production practices to improving human nutrition and health, expert paper written for ICN2 [Paper presentation].Second International Conference on Nutrition Preparatory Technical Meeting, Rome.
  • Wiederstein, M. and Sippl,M. J. (2007, ProSA-web: interactive web service for the recognition of errors in threedimensional structures of proteins. Nucleic Acids Research, 35, W407–W410, https://doi.org/10.1093/nar/gkm290
  • Yang, M., Li, Y., Liu, Z., Tian, J., Liang, L., Qiu, Y., Wang, G., Du, Q., Cheng, D., Cai, H., Shi, L., Xu, F., & Lian, X. (2020). A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. Plant Journal, 103(5), 1695–1709. https://doi.org/10.1111/tpj.14855
  • Yang, X., Huang, J., Jiang, Y., & Zhang, H. S. (2009). Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Molecular Biology Reports, 36(2), 281–287. https://doi.org/10.1007/s11033-007-9177-0.
  • Yu, C. S., Lin, C. J., & Hwang, J. K. (2004). Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Science : a Publication of the Protein Society, 13(5), 1402–1406. https://doi.org/10.1110/ps.03479604
  • Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 64(3), 643–651. https://doi.org/10.1002/prot.21018
  • Zhang, F., Shen, J., Zhang, J., Zuo, Y., Li, L., & Chen, X. (2010). Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: Implications for China. Advn. Agron, 107, 1–32. https://doi.org/10.1016/S0065-2113(10)07001-X
  • Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Zeng, P., Yue, Z., Wang, W., Tao, Y., Bian, C., Han, C., Xia, Q., Peng, X., Cao, R., Yang, X., Zhan, D., Hu, J., … Wang, J. (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 30(6), 549–54554. https://doi.org/10.1038/nbt.2195.
  • Zulfiqar, U., Hussain, S., Ishfaq, M., Matloob, A., Ali, N., Ahmad, M., Alyemeni, M. N., & Ahmad, P. (2020). Zinc-induced effects on productivity, zinc use efficiency, and grain biofortification of bread wheat under different tillage permutations. Agronomy, 10(10), 1566. https://doi.org/10.3390/agronomy10101566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.