486
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, antimicrobial properties and in silico studies of aryloxyacetic acid derivatives with hydrazone or thiazolidine-4-one scaffold

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 7421-7432 | Received 27 May 2022, Accepted 31 Aug 2022, Published online: 14 Sep 2022

References

  • Amin, M., Yasmin, F., Dey, S., Dey, S., Mahmud, S., Saleh, M. A., Emran, T. B., Hasan, I., Rajia, S., Ogawa, Y., Fujii, Y., Yamada, M., Ozeki, Y., & Kawsar, S. M. A. (2022). Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: Synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations. Glycoconjugate Journal, 39(2), 261–290. https://doi.org/10.1007/s10719-021-10039-3
  • Arjunan, P., Nemeria, N., Brunskill, A., Chandrasekhar, K., Sax, M., Yan, Y., Jordan, F., Guest, J. R., & Furey, W. (2002). Structure of the pyruvate dehydrogenase multienzyme complex E1 component from Escherichia coli at 1.85 Å resolution. Biochemistry, 41(16), 5213–5221. https://doi.org/10.1021/BI0118557
  • Arjunan, P., Sax, M., Brunskill, A., Chandrasekhar, K., Nemeria, N., Zhang, S., Jordan, F., & Furey, W. (2006). A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct. The Journal of Biological Chemistry, 281(22), 15296–15303. https://doi.org/10.1074/JBC.M600656200
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Chander, S., Tang, C. R., Al-Maqtari, H. M., Jamalis, J., Penta, A., Hadda, T. B., Sirat, H. M., Zheng, Y. T., & Sankaranarayanan, M. (2017). Synthesis and study of anti-HIV-1 RT activity of 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one derivatives. Bioorganic Chemistry, 72, 74–79. https://doi.org/10.1016/j.bioorg.2017.03.013
  • Cikla, P., Tatar, E., Küçükgüzel, I., Şahin, F., Yurdakul, D., Basu, A., Krishnan, R., Nichols, D. B., Kaushik-Basu, N., & Küçükgüzel, Ş. G. (2013). Synthesis and characterization of flurbiprofen hydrazide derivatives as potential anti-HCV, anticancer and antimicrobial agents. Medicinal Chemistry Research, 22(12), 5685–5699. https://doi.org/10.1007/s00044-013-0550-3
  • Clinical and Laboratory Standards Institute (CLSI). (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. In: M27-A3 (3rd ed., Replaces M27-A2). Clinical and Laboratory Standards Institute.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42717–42713. https://doi.org/10.1038/srep42717
  • Datar, P. A., & Aher, S. B. (2016). Design and synthesis of novel thiazolidine-2,4-diones as hypoglycemic agents. Journal of Saudi Chemical Society, 20, S196–S201. https://doi.org/10.1016/j.jscs.2012.10.010
  • de la Fuente-Nunez, C., Torres, M. D., Mojica, F. J., & Lu, T. K. (2017). Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Current Opinion in Microbiology, 37, 95–102. https://doi.org/10.1016/j.mib.2017.05.014
  • Del Carmen Cruz, M., Salazar, M., Garciafigueroa, Y., Hernández, D., Díaz, F., Chamorro, G., & Tamariz, J. (2003). Hypolipidemic activity of new phenoxyacetic derivatives related to α-asarone with minimal pharmacophore features. Drug Development Research, 60(3), 186–195. https://doi.org/10.1002/ddr.10281
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Gajdács, M., & Albericio, F. (2019). Antibiotic resistance: from the bench to patients. Antibiotics, 8(3), 129–111. https://doi.org/10.3390/antibiotics8030129
  • Han, M. İ., Atalay, P., Tunç, C. Ü., Ünal, G., Dayan, S., Aydın, Ö., & Küçükgüzel, ŞG. (2021). Design and synthesis of novel (S)-Naproxen hydrazide-hydrazones as potent VEGFR-2 inhibitors and their evaluation in vitro/in vivo breast cancer models. Bioorganic & Medicinal Chemistry, 37, 116097. https://doi.org/10.1016/j.bmc.2021.116097
  • He, H., Xia, H., Xia, Q., Ren, Y., & He, H. (2017). Design and optimization of N-acylhydrazone pyrimidine derivatives as E. coli PDHc E1 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study. Bioorganic & Medicinal Chemistry, 25(20), 5652–5661. https://doi.org/10.1016/J.BMC.2017.08.038
  • Jampilek, J. (2019). Heterocycles in medicinal chemistry. Molecules, 24(21), 3839–3813. https://doi.org/10.3390/molecules24213839
  • Kaushik-Basu, N., Bopda-Waffo, A., Talele, T. T., Basu, A., Chen, Y., & Kucukguzel, S. G. (2008). 4-Thiazolidinones: A novel class of hepatitis C virus NS5B polymerase inhibitors. Frontiers in Bioscience : A Journal and Virtual Library, 13, 3857–3868. https://doi.org/10.2741/2974
  • Koç, H. C., Atlihan, İ., Mega-Tiber, P., Orun, O., & Küçükgüzel, G. (2022). Synthesis of some novel hydrazide-hydrazones derived from etodolac as potential anti-prostate cancer agents. Journal of Research in Pharmacy, 26(1), 1018–1029. https://doi.org/10.29228/jrp.97
  • Küçükgüzel, G., Kocatepe, A., De Clercq, E., Sahin, F., & Güllüce, M. (2006). Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. European Journal of Medicinal Chemistry, 41(3), 353–359. https://doi.org/10.1016/j.ejmech.2005.11.005
  • Küçükgüzel, Ş. G., Mazi, A., Sahin, F., Öztürk, S., & Stables, J. (2003). Synthesis and biological activities of diflunisal hydrazide-hydrazones. European Journal of Medicinal Chemistry, 38(11–12), 1005–1013. https://doi.org/10.1016/j.ejmech.2003.08.004
  • Küçükgüzel, S. G., Oruç, E. E., Rollas, S., Sahin, F., & Ozbek, A. (2002). Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. European Journal of Medicinal Chemistry, 37(3), 197–206. https://doi.org/10.1016/S0223-5234(01)01326-5
  • Kulabaş, N., Tatar, E., Bingöl Özakpınar, Ö., Özsavcı, D., Pannecouque, C., De Clercq, E., & Küçükgüzel, İ. (2016). Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. European Journal of Medicinal Chemistry, 121, 58–70. https://doi.org/10.1016/j.ejmech.2016.05.017
  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., … Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet. Infectious Diseases, 13(12), 1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9
  • Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J. A., Klugman, K., & Davies, S. (2016). Access to effective antimicrobials: A worldwide challenge. The Lancet, 387(10014), 168–175. https://doi.org/10.1016/S0140-6736(15)00474-2
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Mansuri, A., Lokhande, K., Kore, S., Gaikwad, S., Nawani, N. K., Swamy, V., Junnarkar, M., & Pawar, S. (2022). Antioxidant, anti-quorum sensing, biofilm inhibitory activities and chemical composition of Patchouli essential oil: in vitro and in silico approach. Journal of Biomolecular Structure & Dynamics, 40(1), 154–165. https://doi.org/10.1080/07391102.2020.1810124
  • Clinical and Laboratory Standards Institute. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M07, 11th ed., Replaces M07-A10). Clinical and Laboratory Standards Institute.
  • McCarthy, S. D., Horgan, E., Ali, A., Masterson, C., Laffey, J. G., MacLoughlin, R., & O'Toole, D. (2020). Nebulized mesenchymal stem cell derived conditioned medium retains antibacterial properties against clinical pathogen isolates. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 33(3), 140–152. https://doi.org/10.1089/jamp.2019.1542
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Nemeria, N., Yan, Y., Zhang, Z., Brown, A. M., Arjunan, P., Furey, W., Guest, J. R., & Jordan, F. (2001). Inhibition of the Escherichia coli pyruvate dehydrogenase complex E1 subunit and its tyrosine 177 variants by thiamin 2-thiazolone and thiamin 2-thiothiazolone diphosphates: evidence for reversible tight-bindıng inhibition. The Journal of Biological Chemistry, 276(49), 45969–45978. https://doi.org/10.1074/JBC.M104116200
  • Palla, G., Predieri, G., Domiano, P., Vignali, C., & Turner, W. V. (1986). Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron, 42(13), 3649–3654. https://doi.org/10.1016/S0040-4020(01)87332-4
  • Patel, M. S., & Korotchkina, L. G. (2003). The biochemistry of the pyruvate dehydrogenase complex. Biochemistry and Molecular Biology Education, 31(1), 5–15. https://doi.org/10.1002/bmb.2003.494031010156
  • Patel, M. S., Nemeria, N. S., Furey, W., & Jordan, F. (2014). The pyruvate dehydrogenase complexes: Structure-based function and regulation. The Journal of Biological Chemistry, 289(24), 16615–16623. https://doi.org/10.1074/jbc.R114.563148
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small molecule pharmacokinetic and toxicity properties using graphbased signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rollas, S., & Küçükgüzel, Ş. G. (2007). Biological activities of hydrazone derivatives. Molecules (Basel, Switzerland), 12(8), 1910–1939. https://doi.org/10.3390/12081910
  • Sathisha, K. R., Khanum, S. A., Chandra, J. N. N. S., Ayisha, F., Balaji, S., Marathe, G. K., Gopal, S., & Rangappa, K. S. (2011). Synthesis and xanthine oxidase inhibitory activity of 7-methyl-2- (phenoxymethyl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one derivatives. Bioorganic & Medicinal Chemistry, 19(1), 211–220. https://doi.org/10.1016/j.bmc.2010.11.034
  • Schrödinger, LLC. (2019). Schrödinger release 2019-1: Maestro. Schrödinger, LLC.
  • Sharma, S., Tyagi, T., Srivastava, M., Rani, K., Kumar, D., Asthana, S., & Raj, V. S. (2022). Identification and validation of potent inhibitor of Escherichia coli DHFR from MMV pathogen box. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2080113
  • Şahin, A. F., Küçükgüzel, ŞG., & Akdemir, A. (2021). Molecular modelling studies to suggest novel scaffolds against SARS-CoV-2 target enzymes. Journal of Research in Pharmacy, 25(6)(25(6), 1110–1117. http://dx.doi.org/10.29228/jrp.96
  • Şenkardeş, S., Erdoğan, Ö., Çevik, Ö., & Küçükgüzel, Ş. G. (2021). Synthesis and biological evaluation of novel aryloxyacetic acid hydrazide derivatives as anticancer agents. Synthetic Communications, 51(17), 2634–2643. https://doi.org/10.1080/00397911.2021.1945105
  • Senkardes, S., & Kucukguzel, S. G. (2016). Recent progress on synthesis and anticancer activity of 4-thiazolidinone. Mini-Reviews in Organic Chemistry, 13(5), 377–388. https://doi.org/10.2174/1570193X13666160826154159
  • Shawky, A. M., Abourehab, M. A. S., Abdalla, A. N., & Gouda, A. M. (2020). Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. European Journal of Medicinal Chemistry, 185, 111780. https://doi.org/10.1016/j.ejmech.2019.111780
  • Testa, B., Crivori, P., Reist, M., & Carrupt, P. A. (2000). The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspectives in Drug Discovery and Design, 19(1), 179–211. https://doi.org/10.1023/A:1008741731244
  • Ullah, A., Iftikhar, F., Arfan, M., Batool Kazmi, S. T., Anjum, M. N., Haq, I. u., Ayaz, M., Farooq, S., & Rashid, U. (2018). Amino acid conjugated antimicrobial drugs: Synthesis, lipophilicity- activity relationship, antibacterial and urease inhibition activity. European Journal of Medicinal Chemistry, 145, 140–153. https://doi.org/10.1016/j.ejmech.2017.12.089
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Verma, A., & Saraf, S. K. (2008). 4-Thiazolidinone - A biologically active scaffold. European Journal of Medicinal Chemistry, 43(5), 897–905. https://doi.org/10.1016/j.ejmech.2007.07.017
  • Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169. https://doi.org/10.1021/ci049885e
  • Zhou, Y., Zhang, S., Cai, M., Wang, K., Feng, J., Xie, D., Feng, L., Peng, H., & He, H. (2021). Design, synthesis, and antifungal activity of 2,6-dimethyl-4-aminopyrimidine hydrazones as PDHc-E1 inhibitors with a novel binding mode. Journal of Agricultural and Food Chemistry, 69(21), 5804–5817. https://doi.org/10.1021/acs.jafc.0c07701

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.