154
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The reconciliation between the experimental and calculated octanol-water partition coefficient of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine using atomistic molecular dynamics: an open question

, , , &
Pages 11510-11517 | Received 09 Nov 2022, Accepted 26 Dec 2022, Published online: 30 Jan 2023

References

  • Allouche, A. (2011). Software news and updates Gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Baer, B., Souza, L. M. P., Pimentel, A. S., & Veldhuizen, R. A. W. (2019). New insights into exogenous surfactant as a carrier of pulmonary therapeutics. Biochemical Pharmacology, 164(March), 64–73. https://doi.org/10.1016/j.bcp.2019.03.036
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Boyce, S. E., Mobley, D. L., Rocklin, G. J., Graves, A. P., Dill, K. A., & Shoichet, B. K. (2009). Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. Journal of Molecular Biology, 394(4), 747–763. https://doi.org/10.1016/j.jmb.2009.09.049
  • Brini, E., Fennell, C. J., Fernandez-Serra, M., Hribar-Lee, B., Lukšič, M., & Dill, K. A. (2017). How water’s properties are encoded in its molecular structure and energies. Chemical Reviews, 117(19), 12385–12414. https://doi.org/10.1021/acs.chemrev.7b00259
  • Brown, R. D., et al. (2001). Tools for designing diverse, drug-like, cost-effective combinatorial libraries. in Combinatorial library design and evaluation (p. 328). Marcel Dekker.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Catanoiu, G., Carey, E., Patil, S. R., Engelskirchen, S., & Stubenrauch, C. (2011). Partition coefficients of nonionic surfactants in water/n-alkane systems. Journal of Colloid and Interface Science, 355(1), 150–156. https://doi.org/10.1016/j.jcis.2010.12.002
  • Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., Li, Y., Wang, R., & Lai, L. (2007). Computation of octanol-water partition coefficients by guiding an additive model with knowledge. Journal of Chemical Information and Modeling, 47(6), 2140–2148. https://doi.org/10.1021/ci700257y
  • Cumming, H., & Rücker, C. (2017). Octanol-water partition coefficient measurement by a simple 1H NMR method. ACS Omega, 2(9), 6244–6249. https://doi.org/10.1021/acsomega.7b01102
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42717. https://doi.org/10.1038/srep42717
  • De Bruijn, J., Busser, F., Seinen, W., & Hermens, J. (1989). Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow‐stirring” method. Environmental Toxicology and Chemistry, 8(6), 499–512. https://doi.org/10.1002/etc.5620080607
  • Deng, Y., & Roux, B. (2004). Hydration of amino acid side chains: Nonpolar and electrostatic contributions calculated from staged molecular dynamics free energy simulations with explicit water molecules. The Journal of Physical Chemistry B, 108(42), 16567–16576. https://doi.org/10.1021/jp048502c
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • Edward, J. T., Chubb, F. L., & Sangster, J. (1997). Iron chelators of the pyridoxal isonicotinoyl hydrazone class. Relationship of the lipophilicity of the apochelator to its ability to mobilize iron from reticulocytes in vitro: Reappraisal of reported partition coefficients. Canadian Journal of Physiology and Pharmacology, 75(12), 1362–1368. https://doi.org/10.1139/y97-174
  • Estrada-López, E. D., Murce, E., Franca, M. P. P., & Pimentel, A. S. (2017). Prednisolone adsorption on lung surfactant models: Insights on the formation of nanoaggregates, monolayer collapse and prednisolone spreading. RSC Advances, 7(9), 5272–5281. https://doi.org/10.1039/C6RA28422A
  • Fainerman, V., Sharipova, A., Aidarova, S., Kovalchuk, V., Aksenenko, E., Makievski, A., & Miller, R. (2018). Direct determination of the distribution coefficient of tridecyl dimethyl phosphine oxide between water and hexane. Colloids and Interfaces, 2(3), 28. https://doi.org/10.3390/colloids2030028
  • Fan, S., Iorga, B. I., & Beckstein, O. (2020). Prediction of octanol-water partition coefficients for the SAMPL6- log P molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields. Journal of Computer-Aided Molecular Design, 34(5), 543–560. https://doi.org/10.1007/s10822-019-00267-z
  • Fornasier, F., Souza, L. M. P., Souza, F. R., Reynaud, F., & Pimentel, A. S. (2020). Lipophilicity of coarse-grained cholesterol models. Journal of Chemical Information and Modeling, 60(2), 569–577. https://doi.org/10.1021/acs.jcim.9b00830
  • Garrido, N. M., Queimada, A. J., Jorge, M., Macedo, E. A., & Economou, I. G. (2009). 1-Octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies. Journal of Chemical Theory and Computation, 5(9), 2436–2446. https://doi.org/10.1021/ct900214y
  • Ghoulam, M. B., Moatadid, N., Graciaa, A., & Lachaise, J. (2002). Effects of oxyethylene chain length and temperature on partitioning of homogeneous polyoxyethylene nonionic surfactants between water and isooctane. Langmuir, 18(11), 4367–4371. https://doi.org/10.1021/la0117707
  • Hodges, G., Eadsforth, C., Bossuyt, B., Bouvy, A., Enrici, M. H., Geurts, M., Kotthoff, M., Michie, E., Miller, D., Müller, J., Oetter, G., Roberts, J., Schowanek, D., Sun, P., & Venzmer, J. (2019). A comparison of log K ow (n-octanol–water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods. Environmental Sciences Europe, 31(1), 1–18. https://doi.org/10.1186/s12302-018-0176-7
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Işık, M., Bergazin, T. D., Fox, T., Rizzi, A., Chodera, J. D., & Mobley, D. L. (2020a). Assessing the accuracy of octanol–water partition coefficient predictions in the SAMPL6 Part II log P Challenge. Journal of Computer-Aided Molecular Design, 34(4), 335–370. https://doi.org/10.1007/s10822-020-00295-0
  • Işık, M., Levorse, D., Mobley, D. L., Rhodes, T., & Chodera, J. D. (2020b). Octanol–water partition coefficient measurements for the SAMPL6 blind prediction challenge. Journal of Computer-Aided Molecular Design, 34(4), 405–420. https://doi.org/10.1007/s10822-019-00271-3
  • Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. The Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/jz501780a
  • Javanainen, M., Lamberg, A., Cwiklik, L., Vattulainen, I., & Ollila, O. H. S. (2018). Atomistic model for nearly quantitative simulations of Langmuir monolayers. Langmuir: The ACS Journal of Surfaces and Colloids, 34(7), 2565–2572. https://doi.org/10.1021/acs.langmuir.7b02855
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Khalak, Y., Baumeier, B., & Karttunen, M. (2018). Improved general-purpose five-point model for water: TIP5P/2018. The Journal of Chemical Physics, 149(22), 224507. https://doi.org/10.1063/1.5070137
  • Klauda, J. B., Venable, R. M., Freites, J. A., O'Connor, J. W., Tobias, D. J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell, A. D., & Pastor, R. W. (2010). Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. The Journal of Physical Chemistry. B, 114(23), 7830–7843. https://doi.org/10.1021/jp101759q
  • Klimovich, P. V., Shirts, M. R., & Mobley, D. L. (2015). Guidelines for the analysis of free energy calculations. Journal of Computer-Aided Molecular Design, 29(5), 397–411. https://doi.org/10.1007/s10822-015-9840-9
  • Kumar, M. M., Swathi, B. R., Gorityala, S., & Sree, G. P. (2018). ADMET predictors are the tools for the enhancement of drug design and development: A systematic review. International Journal of Advances in Pharmacy and Biotechnology, 4(4), 6–13.
  • Lagorce, D., Sperandio, O., Galons, H., Miteva, M. A., & Villoutreix, B. O. (2008). FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, 9(1), 1–9. https://doi.org/10.1186/1471-2105-9-396
  • Landrum, G., et al. (2022). rdkit/rdkit: 2022_03_5 (Q1 2022) Release. https://doi.org/10.5281/ZENODO.6961488
  • Lang, B. E. (2012). Solubility of water in octan-1-ol from (275 to 369) K. Journal of Chemical & Engineering Data, 57(8), 2221–2226. https://doi.org/10.1021/je3001427
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Leekumjorn, S., & Sum, A. K. (2006). Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophysical Journal, 90(11), 3951–3965. https://doi.org/10.1529/biophysj.105.076596
  • Lieber, C. S., Robins, S. J., Li, J., DeCarli, L. M., Mak, K. M., Fasulo, J. M., & Leo, M. A. (1994). Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon. Gastroenterology, 106(1), 152–159. https://doi.org/10.1016/S0016-5085(94)95023-7
  • Liggieri, L., Ravera, F., & Ferrari, M. (2000). Adsorption and partitioning of surfactants in liquid-liquid systems. Advances in Colloid and Interface Science, 88(1-2), 129–177.
  • Liu, X., Xue, Y., Liu, C., Lou, Q., Wang, J., Yanagita, T., Xue, C., & Wang, Y. (2013). Eicosapentaenoic acid-enriched phospholipid ameliorates insulin resistance and lipid metabolism in diet-induced-obese mice. Lipids in Health and Disease, 12(1), 109–110. https://doi.org/10.1186/1476-511X-12-109
  • Lundborg, M., & Lindahl, E. (2015). Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations. The Journal of Physical Chemistry. B, 119(3), 810–823. https://doi.org/10.1021/jp505332p
  • Machatha, S. G., & Yalkowsky, S. H. (2005). Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. International Journal of Pharmaceutics, 294(1-2), 185–192. https://doi.org/10.1016/j.ijpharm.2005.01.023
  • Miller, D. J., & McWilliams, P. (2010). Octanol-water partition coefficients of surfactants: Slow stirring/surface tension method. Tenside Surfactants Detergents, 47(1), 28–33. https://doi.org/10.3139/113.110050
  • Mobley, D. L., Dumont, É., Chodera, J. D., & Dill, K. A. (2007). Comparison of charge models for fixed-charge force fields: Small-molecule hydration free energies in explicit solvent. The Journal of Physical Chemistry. B, 111(9), 2242–2254. https://doi.org/10.1021/jp0667442
  • Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I., & Matsushita, Y. (1992). Simple method of calculating octanol/water partition coefficient. Chemical and Pharmaceutical Bulletin, 40(1), 127–130. https://doi.org/10.1248/cpb.40.127
  • Moriguchi, I., Hirono, S., Nakagome, I., & Hirano, H. (1994). Comparison of reliability of log P values for drugs calculated by several methods. Chemical and Pharmaceutical Bulletin, 42(4), 976–978. https://doi.org/10.1248/cpb.42.976
  • Paranahewage, S. S., Gierhart, C. S., & Fennell, C. J. (2016). Predicting water-to-cyclohexane partitioning of the SAMPL5 molecules using dielectric balancing of force fields. Journal of Computer-Aided Molecular Design, 30(11), 1059–1065. https://doi.org/10.1007/s10822-016-9950-z
  • Price, D. J., & Brooks, C. L. (2004). A modified TIP3P water potential for simulation with Ewald summation. The Journal of Chemical Physics, 121(20), 10096–10103. https://doi.org/10.1063/1.1808117
  • Ravera, F., Ferrari, M., Liggieri, L., Miller, R., & Passerone, A. (1997). Measurement of the partition coefficient of surfactants in water/oil systems. Langmuir, 13(18), 4817–4820. https://doi.org/10.1021/la962096+
  • Rudolphi-Skórska, E., Filek, M., & Zembala, M. (2017). The effects of the structure and composition of the hydrophobic parts of phosphatidylcholine-containing systems on phosphatidylcholine oxidation by ozone. The Journal of Membrane Biology, 250(5), 493–505. https://doi.org/10.1007/s00232-017-9976-8
  • Sarkar, A., & Kellogg, G. (2010). Hydrophobicity – Shake flasks, protein folding and drug discovery. Current Topics in Medicinal Chemistry, 10(1), 67–83. https://doi.org/10.2174/156802610790232233
  • Shirts, M. R., & Chodera, J. D. (2008). Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics, 129(12), 124105. https://doi.org/10.1063/1.2978177
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367–368. https://doi.org/10.1186/1756-0500-5-367
  • Souza, F. R., Fornasier, F., Souza, L. M. P., Peñafiel, M. P., Nascimento, J. B., Malfatti-Gasperini, A. A., & Pimentel, A. S. (2020a). Interaction of naringin and naringenin with DPPC monolayer at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 584(August 2019), 124024. https://doi.org/10.1016/j.colsurfa.2019.124024
  • Souza, L. M. P., Souza, F. R., Reynaud, F., & Pimentel, A. S. (2020b). Tuning the hydrophobicity of a coarse grained model of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine using the experimental octanol-water partition coefficient. Journal of Molecular Liquids, 319, 114132. https://doi.org/10.1016/j.molliq.2020.114132
  • Swope, W. C., Horn, H. W., & Rice, J. E. (2010). Accounting for polarization cost when using fixed charge force fields. I. Method for computing energy. Journal of Physical Chemistry B, 114(26), 8621–8630. https://doi.org/10.1021/jp911699p
  • Tadmouri, R., Zedde, C., Routaboul, C., Micheau, J. C., & Pimienta, V. (2008). Partition and water/oil adsorption of some surfactants. The Journal of Physical Chemistry. B, 112(39), 12318–12325. https://doi.org/10.1021/jp804674y
  • Tempra, C., Ollila, O. H. S., & Javanainen, M. (2022). Accurate simulations of lipid monolayers require a water model with correct surface tension. Journal of Chemical Theory and Computation, 18(3), 1862–1869. https://doi.org/10.1021/acs.jctc.1c00951
  • Tetko, I. V., & Tanchuk, V. Y. (2002). Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. Journal of Chemical Information and Computer Sciences, 42(5), 1136–1145. https://doi.org/10.1021/ci025515j
  • Torrie, G. M., & Valleau, J. P. (1977). Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2), 187–199. https://doi.org/10.1016/0021-9991(77)90121-8
  • Valenzuela, M. Á., Gárate, M. P., & Olea, A. F. (2007). Surface activity of alcohols ethoxylates at the n-heptane/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307(1-3), 28–34. https://doi.org/10.1016/j.colsurfa.2007.04.059
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • van der Veen, J. N., Kennelly, J. P., Wan, S., Vance, J. E., Vance, D. E., & Jacobs, R. L. (2017). The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochimica et Biophysica Acta. Biomembranes, 1859(9 Pt B), 1558–1572. https://doi.org/10.1016/j.bbamem.2017.04.006
  • Wildman, S. A., & Crippen, G. M. (1999). Prediction of physicochemical parameters by atomic contributions. Journal of Chemical Information and Computer Sciences, 39(5), 868–873. https://doi.org/10.1021/ci990307l
  • Zhou, M. M., Xue, Y., Sun, S. H., Wen, M., Li, Z. J., Xu, J., Wang, J. F., Yanagita, T., Wang, Y. M., & Xue, C. H. (2016). Effects of different fatty acids composition of phosphatidylcholine on brain function of dementia mice induced by scopolamine. Lipids in Health and Disease, 15(1), 1–10. https://doi.org/10.1186/s12944-016-0305-5
  • Zhu, Y., & Free, M. L. (2015). Experimental investigation and modeling of the performance of pure and mixed surfactant inhibitors: Partitioning and distribution in water-oil environments. Journal of The Electrochemical Society, 162(14), C702–C717. https://doi.org/10.1149/2.0291514jes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.