236
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Investigations of p-tolyloxy-1,3,4-oxadiazole propionamides as soybean 15-lipoxygenase inhibitors in comforting with in vitro and in silico studies

, , ORCID Icon, , , , , , & show all
Pages 15549-15568 | Received 21 Jul 2022, Accepted 05 Mar 2023, Published online: 22 Mar 2023

References

  • Abedinifar, F., Mohammadi‐Khanaposhtani, M., Asemanipoor, N., Mojtabavi, S., Faramarzi, M. A., Mahdavi, M., Biglar, M., Larijani, B., Hamedifar, H., & Hajimiri, M. H. (2021). Synthesis and biological evaluation of a new series of benzofuran-1,3,4-oxadiazole containing 1,2,3-triazole-acetamides as potential α-glucosidase inhibitors. Journal of Biochemical and Molecular Toxicology, 35(4), 22688. https://doi.org/10.1002/jbt.22688
  • Alam, M. M., Almalki, A. S., Neamatallah, T., Ali, N. M., Malebari, A. M., & Nazreen, S. (2020). Synthesis of new 1,3,4-oxadiazole-incorporated 1,2,3-triazole moieties as potential anticancer agents targeting thymidylate synthase and their docking studies. Pharmaceuticals, 13(11), 390. https://doi.org/10.3390/ph13110390
  • Alomari, M., Taha, M., Rahim, F., Selvaraj, M., Iqbal, N., Chigurupati, S., Hussain, S., Uddin, N., Almandil, N. B., Nawaz, M., Khalid Farooq, R., & Khan, K. M. (2021). Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorganic Chemistry, 108, 104638. https://doi.org/10.1016/j.bioorg.2021.104638
  • Aparoy, P., Reddy, R. N., Guruprasad, L., Reddy, M. R., & Reddanna, P. (2008). Homology modeling of 5-lipoxygenase and hints for better inhibitor design. Journal of Computer-Aided Molecular Design, 22(9), 611–619. https://doi.org/10.1007/s10822-008-9180-0
  • Bashir, B., Riaz, N., Abida Ejaz, S., Saleem, M., Ashraf, M., Iqbal, A., Muzaffar, S., Ejaz, S., Mohammad Kashif Mahmood, H., Bhattarai., & K., Aziz-Ur-Rehman. (2022). Assessing p-tolyloxy-1,3,4-oxadiazole acetamides as lipoxygenase inhibitors assisted by in vitro and in silico studies. Bioorganic Chemistry, 129, 106144., https://doi.org/10.1016/j.bioorg.2022.106144
  • Bashir, B., Shahid, W., Ashraf, M., Saleem, M., Muzaffar, S., Imran, M., Amjad, H., Bhattarai, K., Riaz., & N., Aziz-Ur-Rehman. (2021). Identification of phenylcarbamoylazinane-1,3,4-oxadiazole amides as lipoxygenase inhibitors with expression analysis and in silico studies. Bioorganic Chemistry, 115, 105243., https://doi.org/10.1016/j.bioorg.2021.105243
  • Copeland, R. A., Harpel, M. R., & Tummino, P. J. (2007). Targeting enzyme inhibitors in drug discovery. Expert Opinion on Therapeutic Targets, 11(7), 967–978. https://doi.org/10.1517/14728222.11.7.967
  • Dennis, E. A., & Norris, P. C. (2015). Eicosanoid storm in infection and inflammation. Nature Reviews. Immunology, 15(8), 511–523. https://doi.org/10.1038/nri3859
  • Desai, N. C., Bhatt, N., Somani, H., & Trivedi, A. (2013). Synthesis, antimicrobial and cytotoxic activities of some novel thiazole clubbed 1,3,4-oxadiazoles. European Journal of Medicinal Chemistry, 67, 54–59. https://doi.org/10.1016/j.ejmech.2013.06.029
  • Dowarah, J., Marak, B. N., Lalhruaizela, B. S., Singh., & V. P., Sran. (2020). Design, synthesis, in silico analysis, and structural study of 4,6-dimethyl-2-(3-(p-tolyloxy)propoxy)nicotinonitrile fleximer. Crystal Research and Technology, 55, 2000100. https://doi.org/10.1002/crat.202000100
  • El Mansouri, A-E., Oubella, A., Mehdi, A., AitItto, M. Y., Zahouily, M., Morjani, H., & Lazrek, H. B. (2021). Design, synthesis, biological evaluation and molecular docking of new 1,3,4-oxadiazole homonucleosides and their double-headed analogs as antitumor agents. Bioorganic Chemistry, 108, 104558. https://doi.org/10.1016/j.bioorg.2020.104558
  • Garcia-Valverde, M., & Torroba, T. (2005). Sulfur-nitrogen heterocycles. Molecules, 10(2), 318–320. https://doi.org/10.3390/10020318
  • Ghanim, A. M., Rezq, S., Ibrahim, T. S., Romero, D. G., & Kothayer, H. (2021). Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. European Journal of Medicinal Chemistry, 219, 113457. https://doi.org/10.1016/j.ejmech.2021.113457
  • Hofny, H. A., Mohamed, M. F., Gomaa, H. A., Aziz, S. A., Youssif, B. G., Koussi, N. A., & Aboraia, A. S. (2021). Design, synthesis and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Bioorganic Chemistry, 112, 104920. https://doi.org/10.1016/j.bioorg.2021.104920
  • Javid, N., Munir, R., Chaudhry, F., Imran, A., Zaib, S., Muzaffar, A., & Iqbal, J. (2020). Exploiting oxadiazole-sulfonamide hybrids as new structural leads to combat diabetic complications via aldose reductase inhibition. Bioorganic Chemistry, 99, 103852. https://doi.org/10.1016/j.bioorg.2020.103852
  • Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. (2020). A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 25(8), 1909. https://doi.org/10.3390/molecules25081909
  • Kuhn, H., & Chan, L. (1997). The role of 15-lipoxygenase in atherogenesis: Pro- and antiatherogenic actions. Current Opinion in Lipidology, 8(2), 111–117. https://doi.org/10.1097/00041433-199704000-00009
  • Li, Y., Zhang, Y., Wu, X., Gao, Y., Guo, J., Tian, Y., Lin, Z., & Wang, X. (2021). Discovery of natural 15-LOX small molecule inhibitors from Chinese herbal medicine using virtual Screening, biological evaluation and molecular dynamics studies. Bioorganic Chemistry, 115, 105197. https://doi.org/10.1016/j.bioorg.2021.105197
  • Li, Z., Zhan, P., & Liu, X. (2011). 1,3,4-Oxadiazole: A privileged structure in antiviral agents. Mini-Reviews in Medicinal Chemistry, 11(13), 1130–1142. https://doi.org/10.2174/138955711797655407
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wave function analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Mirzazadeh, R., Asgari, M. S., Barzegari, E., Pedrood, K., Khanaposhtani, M., Sherafati, M., & Gulçin, I. (2021). New quinoxalin-1,3,4-oxadiazole derivatives: Synthesis, characterization, in vitro biological evaluations, and molecular modeling studies. Archiv der Pharmazie, 2, 000471.
  • MOE (Molecular Operating Environment). (2014). Version 2014.09. Montreal, QC, Canada: Chemical Computing Group Inc.
  • Muzaffar, S., Shahid, W., Riaz, N., Saleem, M., Ashraf, M., Bashir, B., Kaleem, A., Al-Rashida, M., Baral, B., Bhattarai, K., Gross., & H., Aziz-Ur-Rehman. (2021). Probing phenylcarbamoylazinane-1,2,4-triazole amides derivatives as lipoxygenase inhibitors along with cytotoxic, ADME and molecular docking studies. Bioorganic Chemistry, 107, 104525., https://doi.org/10.1016/j.bioorg.2020.104525
  • Nazar, S., Siddiqui, N., & Alam, O. (2020). Recent progress of 1,3,4‐oxadiazoles as anticonvulsants: Future horizons. Archiv der Pharmazie, 353(7), e1900342. https://doi.org/10.1002/ardp.201900342
  • Omar, Y. M., Abdel-Moty, S. G., & Abdu-Allah, H. H. M. (2020). Further insight into the dual COX-2 and 15-LOX anti-inflammatory activity of 1,3,4-thiadiazole-thiazolidinone hybrids: The contribution of the substituents at 5th positions is size dependent. Bioorganic Chemistry, 97, 103657. https://doi.org/10.1016/j.bioorg.2020.103657
  • Serhan, C. N. (2007). Resolution phase of inflammation: Novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways. Annual Review of Immunology, 25(1), 101–137. https://doi.org/10.1146/annurev.immunol.25.022106.141647
  • Shahab, S., Sheikhi, M., Filippovich, L., Anatol’evich, D. E., & Yahyaei, H. (2017). Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations. Journal of Molecular Structure, 1137, 335–348. https://doi.org/10.1016/j.molstruc.2017.02.056
  • Shahid, W., Ashraf, M., Saleem, M., Bashir, B., Muzaffar, S., Ali, M., Kaleem, A., Amjad, H., Bhattarai, K., Riaz., & N., Aziz-Ur-Rehman. (2021). Exploring phenylcarbamoylazinane-1,2,4-triazole thioethers as lipoxygenase inhibitors supported with in vitro, in silico and cytotoxic studies. Bioorganic Chemistry, 115, 105261., https://doi.org/10.1016/j.bioorg.2021.105261
  • Sharma, V., & Kumar, V. (2015). Pharmacophore mapping studies on indolizine derivatives as 15-LOX inhibitors. Bulletin of Faculty of Pharmacy, Cairo University, 53(1), 63–68. https://doi.org/10.1016/j.bfopcu.2015.03.001
  • Skrzypczak-Jankun, E., Borbulevych, O. Y., Zavodszky, M. I., Baranski, M. R., Padmanabhan, K., Petricek, V., & Jankun, J. (2006). Effect of crystal freezing and small-molecule binding on internal cavity size in a large protein: X-ray and docking studies of lipoxygenase at ambient and low temperature at 2.0 Å resolution. Acta Crystallographica Section D Biological Crystallography, 62(7), 766–775. https://doi.org/10.1107/S0907444906016982
  • Slavich, G. M. (2015). Understanding inflammation, its regulation, and relevance for health: A top scientific and public priority. Brai, Behavior and Immunity, 45, 13–14. https://doi.org/10.1016/j.bbi.2014.10.012
  • Solangi, M., Mohammed Khan, K., Saleem, F., Hameed, S., Iqbal, J., Shafique, Z., Qureshi, U., Ul-Haq, Z., Taha, M., Perveen., & S., Kanwal. (2020). Indole acrylonitriles as potential anti-hyperglycemic agents: Synthesis, α-glucosidase inhibitory activity and molecular docking studies. Bioorganic & Medicinal Chemistry, 28(21), 115605., https://doi.org/10.1016/j.bmc.2020.115605
  • Souza, W. A., Almeida, D., Pivatto, A. M., Almeida, M., Guedes, M. V., Resende, G. P., & Guerra, W. (2021). Crystal structure and spectroscopy properties of new Pt(II) complexes containing 5-alkyl-1,3,4-oxadiazol-2-thione derivatives. Journal of Molecular Structure, 1226, 129250. https://doi.org/10.1016/j.molstruc.2020.129250
  • Tantak, M. P., Malik, M., Klingler, L., Olson, Z., Kumar, A., Sadana, R., & Kumar, D. (2021). Indolyl-α-keto-1,3,4-oxadiazoles: Synthesis, anti-cell proliferation activity and inhibition of tubulin polymerization. Bioorganic & Medicinal Chemistry Letters, 37, 127842. https://doi.org/10.1016/j.bmcl.2021.127842
  • Vaidya, A., Pathak, D., & Shah, K. (2021). 1,3,4-Oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chemical Biology & Drug Design, 97(3), 572–591. https://doi.org/10.1111/cbdd.13795
  • Vane, J. R. (2014). Inhibition of prostaglandin biosynthesis as the mechanism of action of aspirin-like drugs. Advances in Bioscience, 9, 395–411.
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Verma, S. K., Verma, R., Kumar, K. S., Banjare, L., Shaik, A. B., Bhandare, R. R., Rakesh, K. P., & Rangappa, K. S. (2021). A key review on oxadiazole analogs as potential methicillin-resistant Staphylococcus aureus (MRSA) activity: Structure-activity relationship studies. European Journal of Medicinal Chemistry, 219, 113442. https://doi.org/10.1016/j.ejmech.2021.113442
  • Wang, J., Ansari, M. F., & Zhou, C. H. (2021). Unique para-aminobenzenesulfonyl oxadiazoles as novel structural potential membrane active antibacterial agents towards drug-resistant methicillin resistant Staphylococcus aureus. Bioorganic & Medicinal Chemistry Letters, 41, 127995. https://doi.org/10.1016/j.bmcl.2021.127995
  • Wang, T., Fu, X., Chen, Q., Patra, J. K., Wang, D., Wang, Z., & Gai, Z. (2019). Arachidonic acid metabolism and kidney inflammation. International Journal of Molecular Sciences, 20(15), 3683. https://doi.org/10.3390/ijms20153683
  • Waring, M. J. (2010). Lipophilicity in drug discovery. Expert Opinion on Drug Discovery, 5(3), 235–248. https://doi.org/10.1517/17460441003605098
  • Warner, D. R., Liu, H., Miller, M. E., Ramsden, C. E., Gao, B., Feldstein, A. E., Schuster, S., McClain, C. J., & Kirpich, I. A. (2017). Dietary linoleic acid and its oxidized metabolites exacerbate liver injury caused by ethanol via induction of hepatic proinflammatory response in mice. American Journal of Pathology, 187(10), 2232–2245. https://doi.org/10.1016/j.ajpath.2017.06.008
  • Zoumpoulakis, P., Camoutsis, C., Pairas, G., Soković, M., Glamočlija, J., Potamitis, C., & Pitsas, A. (2012). Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological Evaluation and Conformational Analysis Studies. Bioorganic & Medicinal Chemistry, 20, 1569–1583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.