411
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

DNA protection, molecular docking, antioxidant, antibacterial, enzyme inhibition, and enzyme kinetic studies for parietin, isolated from Xanthoria parietina (L.) Th. Fr.

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 848-862 | Received 19 Dec 2022, Accepted 22 Mar 2023, Published online: 06 Apr 2023

References

  • Addar, L., Bensouici, C., Zennia, S. S. A., Haroun, S. B., & Mati, A. (2019). Antioxidant, tyrosinase and urease inhibitory activities of camel αS-casein and its hydrolysate fractions. Small Ruminant Research, 173, 30–35. https://doi.org/10.1016/j.smallrumres.2019.01.015
  • Aktepe, N., Keskin, C., Baran, A., Atalar, M. N., & Baran, M. F. (2022). The protective effects of different parts of hypericum perforatum extracts on human mononuclear leukocytes in hydrogen peroxide-induced DNA damage and their phenolic contents. Medicine, 11(2), 784–788. https://doi.org/10.5455/medscience.2022.02.039
  • Ali, S., & Hameed, H. (2019). Antibacterial and antioxidant activity of a chemically induced mutant of Xanthoriaparietina. JAPS: Journal of Animal & Plant Sciences, 29(3), 881-888. https://doi.org/10.36899/japs.2019.6
  • Almaz, Z., Oztekin, A., Tan, A., & Ozdemir, H. (2021). Biological evaluation and molecular docking studies of 4-aminobenzohydrazide derivatives as cholinesterase inhibitors. Journal of Molecular Structure, 1244, 130918. https://doi.org/10.1016/j.molstruc.2021.130918
  • Al-Rooqi, M. M., Mughal, E. U., Raja, Q. A., Obaid, R. J., Sadiq, A., Naeem, N., Qurban, J., Asghar, B. H., Moussa, Z., & Ahmed, S. A. (2022). Recent advancements on the synthesis and biological significance of pipecolic acid and its derivatives. Journal of Molecular Structure, 1286, 133719. https://doi.org/10.1016/j.molstruc.2022.133719
  • Alshaye, N. A., Mughal, E. U., Elkaeed, E. B., Ashraf, Z., Kehili, S., Nazir, Y., Naeem, N., Abdul Majeed, N., & Sadiq, A. (2022). Synthesis and biological evaluation of substituted aurone derivatives as potential tyrosinase inhibitors: In vitro, kinetic, QSAR, docking and drug-likeness studies. Journal of Biomolecular Structure and Dynamics, 40, 1–16. https://doi.org/10.1080/07391102.2022.2132296
  • Alyar, S., Özmen, Ü. Ö., Adem, Ş., Alyar, H., Bilen, E., & Kaya, K. (2021). Synthesis, spectroscopic characterizations, carbonic anhydrase II inhibitory activity, anticancer activity and docking studies of new Schiff bases of sulfa drugs. Journal of Molecular Structure, 1223(1), 128911. https://doi.org/10.1016/j.molstruc.2020.128911
  • Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(suppl_1), 5–16. https://doi.org/10.1093/jac/dkf083
  • Ashraf, J., Mughal, E. U., Alsantali, R. I., Obaid, R. J., Sadiq, A., Naeem, N., Ali, A., Massadaq, A., Javed, Q., & Javid, A. (2021). Structure-based designing and synthesis of 2-phenylchromone derivatives as potent tyrosinase inhibitors: In vitro and in silico studies. Bioorganic & Medicinal Chemistry, 35(1), 116057. https://doi.org/10.1016/j.bmc.2021.116057
  • Ashraf, J., Mughal, E. U., Alsantali, R. I., Sadiq, A., Jassas, R. S., Naeem, N., Ashraf, Z., Nazir, Y., Zafar, M. N., & Mumtaz, A. (2021). 2-Benzylidenebenzofuran-3 (2 H)-ones as a new class of alkaline phosphatase inhibitors: Synthesis, SAR analysis, enzyme inhibitory kinetics and computational studies. RSC Advances, 11(56), 35077–35092. https://doi.org/10.1039/d1ra07379f
  • Ashraf, J., Mughal, E. U., Sadiq, A., Naeem, N., Muhammad, S. A., Qousain, T., Zafar, M. N., Khan, B. A., & Anees, M. (2020). Design and synthesis of new flavonols as dual ɑ-amylase and ɑ-glucosidase inhibitors: Structure-activity relationship, drug-likeness, in vitro and in silico studies. Journal of Molecular Structure, 1218(1), 128458. https://doi.org/10.1016/j.molstruc.2020.128458
  • Aslan, A. (2000). Lichens from the regions of Artvin, Erzurum, and Kars (Turkey). Israel Journal of Plant Sciences, 48(2), 143–155. https://doi.org/10.1560/KC54-1W57-F07A-09JL
  • Augustin, N., Nuthakki, V. K., Abdullaha, M., Hassan, Q. P., Gandhi, S. G., & Bharate, S. B. (2020). Discovery of helminthosporin, an anthraquinone isolated from Rumex abyssinicus Jacq as a dual cholinesterase inhibitor. ACS Omega, 5(3), 1616–1624. https://doi.org/10.1021/acsomega.9b03693
  • Aydin, S., & Kinalioğlu, K. (2016). Comparison of Antioxidant Activity of Roccella phycopsis Ach.(Roccellaceae) and Flavoparmelia caperata L. Hale (Parmeliaceae) Lichens by Various Methods. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(3), 1–6.
  • Aydin, T., Senturk, M., Kazaz, C., & Cakir, A. (2019). Inhibitory effects and kinetic-docking studies of xanthohumol from Humulus lupulus cones against carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase. Natural Products Communications, 14(10), 1934578X19881503. https://doi.org/10.1177/1934578X19881503
  • Azqueta, A., & Collins, A. (2016). Polyphenols and DNA damage: A mixed blessing. Nutrients, 8(12), 785. https://doi.org/10.3390/nu8120785
  • Başaran, E., Çakmak, R., Şentürk, M., & Taskin‐Tok, T. (2022). Biological activity and molecular docking studies of some N‐phenylsulfonamides against cholinesterases and carbonic anhydrase isoenzymes. Journal of Molecular Recognition, 35(10), e2982. https://doi.org/10.1002/jmr.2982
  • Basile, A., Rigano, D., Loppi, S., Di Santi, A., Nebbioso, A., Sorbo, S., Conte, B., Paoli, L., De Ruberto, F., Molinari, A. M., Altucci, L., & Bontempo, P. (2015). Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. International Journal of Molecular Sciences, 16(4), 7861–7875. https://doi.org/10.3390/ijms16047861
  • Behera, B., Verma, N., Sonone, A., & Makhija, U. (2005). Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnology Letters, 27(14), 991–995. https://doi.org/10.1007/s10529-005-7847-3
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • BIOVIA. (2019). BIOVIA discovery studio visualize 2019, version 2019. Dassault Systèmes BIOVIA. https://doi.org/10.1016/b978-0-12-816954-4.00003-6
  • Boustie, J., & Grube, M. (2005). Lichens—A promising source of bioactive secondary metabolites. Plant Genetic Resources, 3(2), 273–287. https://doi.org/10.1079/PGR200572
  • Campora, M., Francesconi, V., Schenone, S., Tasso, B., & Tonelli, M. (2021). Journey on naphthoquinone and anthraquinone derivatives: New insights in Alzheimer’s disease. Pharmaceuticals, 14(1), 33. https://doi.org/10.3390/ph14010033
  • Candan, M., Yılmaz, M., Tay, T., Erdem, M., & Türk, A. Ö. (2007). Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Zeitschrift Für Naturforschung C, 62(7–8), 619–621. https://doi.org/10.1515/znc-2007-7-827
  • Cho, Y. B., Kim, J. Y., Kwon, N. W., Hwang, B. Y., Kim, J. G., Woo, S. H., & Lee, M. S. (2019). Purification and identification of cytotoxic compounds from the root of Rumex crispus L. Korean Journal of Medicinal Crop Science, 27(3), 208–217. https://doi.org/10.7783/kjmcs.2019.27.3.208
  • Cushnie, T. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  • Dinis, T. C., Maderia, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. https://doi.org/10.1006/abbi.1994.1485
  • Dizdaroglu, M., & Jaruga, P. (2012). Mechanisms of free radical-induced damage to DNA. Free Radical Research, 46(4), 382–419. https://doi.org/10.3109/10715762.2011.653969
  • Dülger, B., Gücin, F., & Aslan, A. (1998). Cetraria islandica (L.) Ach. likeninin antimikrobiyal aktivitesi. Turkish Journal of Biology, 22(1), 111–118. https://doi.org/10.1007/springerreference_68269
  • Elix, J. A., Whitton, A., & Sargent, M. (1984). Recent progress in the chemistry of lichen substances. In W. Herz,· H. Falk, G. W. Kirby &· R. E. Moore (Eds.), Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products (pp. 103–234). Vienna: Springer. https://doi.org/10.1007/978-3-7091-8717-3_2
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Fiedler, P., Gambaro, V., Garbarino, J. A., & Quilhot, W. (1986). Epiphorellic acids 1 and 2, two diaryl ethers from the lichen Cornicularia epiphorella. Phytochemistry, 25(2), 461–465. https://doi.org/10.1016/S0031-9422(00)85501-6
  • Fraga, C. G., Martino, V. S., Ferraro, G. E., Coussio, J. D., & Boveris, A. (1987). Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochemical Pharmacology, 36(5), 717–720. https://doi.org/10.1016/0006-2952(87)90724-6
  • Gauslaa, Y., & McEvoy, M. (2005). Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic and Applied Ecology, 6(1), 75–82. https://doi.org/10.1016/j.baae.2004.10.003
  • Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: An overview of some secondary metabolites and their biological potential. In J. M. Merillon & K. G. Ramawat (Eds.), Co-evolution of secondary metabolites (pp. 175–209). Cham: Springer. https://doi.org/10.1007/978-3-319-96397-6_57
  • Gunasekaran, S., Rajan, V. P., Ramanathan, S., Murugaiyah, V., Samsudin, M. W., & Din, L. B. (2016). Antibacterial and antioxidant activity of lichens Usnea rubrotincta, Ramalina dumeticola, Cladonia verticillata and their chemical constituents. Malaysian Journal of Analytical Sciences, 20(1), 1–13. https://doi.org/10.17576/mjas-2016-2001-01
  • Hameed, A., Al-Rashida, M., Alharthy, R. D., Uroos, M., Mughal, E. U., Ali, S. A., & Khan, K. M. (2017). Small molecules as activators in medicinal chemistry (2000–2016). Expert Opinion on Therapeutic Patents, 27(10), 1089–1110. https://doi.org/10.1080/13543776.2017.1349103
  • Honegger, R., Zippler, U., & Scherrer, S. (2004). Genetic diversity in Xanthoria parietina (L.) Th. Fr.(lichen-forming ascomycete) from worldwide locations. The Lichenologist, 36(6), 381–390. https://doi.org/10.1017/S002428290401477X
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c
  • Huneck, S. (1999). The significance of lichens and their metabolites. Die Naturwissenschaften, 86(12), 559–570. https://doi.org/10.1007/s001140050676
  • Ingolfsdottir, K. (2002). Usnic acid. Phytochemistry, 61(7), 729–736. https://doi.org/10.1016/S0031-9422(02)00383-7
  • Karagöz, Y., & Karagöz, B. Ö. (2022). Lichens in pharmacological action: What happened in the last decade? The Eurasian Journal of Medicine, 54(Suppl1), 195–208. https://doi.org/10.5152/eurasianjmed.2022.22335
  • Kengne, I. C., Feugap, L. D. T., Njouendou, A. J., Ngnokam, C. D. J., Djamalladine, M. D., Ngnokam, D., Voutquenne-Nazabadioko, L., & Tamokou, J.-D.-D. (2021). Antibacterial, antifungal and antioxidant activities of whole plant chemical constituents of Rumex abyssinicus. BMC Complementary Medicine and Therapies, 21(1), 1–14. https://doi.org/10.1186/s12906-021-03325-y
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kosanić, M., Ranković, B., Stanojković, T., Rančić, A., & Manojlović, N. (2014). Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT-Food Science and Technology, 59(1), 518–525. https://doi.org/10.1016/j.lwt.2014.04.047
  • Kosanić, M., Ristić, S., Stanojković, T., Manojlović, N., & Ranković, B. (2018). Extracts of five cladonia lichens as sources of biologically active compounds. Farmacia, 66, 644–651. https://doi.org/10.31925/farmacia.2018.4.13
  • Laughton, M. J., Evans, P. J., Moroney, M. A., Hoult, J., & Halliwell, B. (1991). Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: Relationship to antioxidant activity and to iron ion-reducing ability. Biochemical Pharmacology, 42(9), 1673–1681. https://doi.org/10.1016/0006-2952(91)90501-u
  • Lawrey, J. D. (1986). Biological role of lichen substances. Bryologist, 89, 111–122. https://doi.org/10.2307/3242751
  • Liu, T.-T., Liu, X.-T., Chen, Q.-X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 128, 110314. https://doi.org/10.1016/j.biopha.2020.110314
  • Llano, G. (1950). Economic uses of lichens. Annual Report. Smithsonian Institution. https://doi.org/10.1038/165641a0
  • Lopina, O. D. (2017). Enzyme inhibitors and activators, IntechOpen. https://doi.org/10.5772/67248
  • Malhotra, S., Subban, R., & Singh, A. (2008). Lichens-role in traditional medicine and drug discovery. The Internet Journal of Alternative Medicine, 5(2), 1–5. https://doi.org/10.5580/3d9
  • Mehmood, R., Mughal, E. U., Elkaeed, E. B., Obaid, R. J., Nazir, Y., Al-Ghulikah, H. A., Naeem, N., Al-Rooqi, M. M., Ahmed, S. A., & Shah, S. W. A. (2022). Synthesis of novel 2, 3-dihydro-1, 5-benzothiazepines as α-glucosidase inhibitors: In vitro, in vivo, kinetic, SAR, molecular docking, and QSAR studies. ACS Omega, 7(34), 30215–30232. https://doi.org/10.1021/acsomega.2c03328
  • Mehmood, R., Sadiq, A., Alsantali, R. I., Mughal, E. U., Alsharif, M. A., Naeem, N., Javid, A., Al-Rooqi, M. M., Chaudhry, G-e-S., & Ahmed, S. A. (2022). Synthesis and evaluation of 1, 3, 5-triaryl-2-pyrazoline derivatives as potent dual inhibitors of urease and α-glucosidase together with their cytotoxic, molecular modeling and drug-likeness studies. ACS Omega, 7(4), 3775–3795. https://doi.org/10.1021/acsomega.1c06694
  • Mendili, M., Essghaier, B., Seaward, M., & Khadhri, A. (2021). In vitro evaluation of lysozyme activity and antimicrobial effect of extracts from four Tunisian lichens: Diploschistes ocellatus, Flavoparmelia caperata, Squamarina cartilaginea and Xanthoria parietina. Archives of Microbiology, 203(4), 1461–1469. https://doi.org/10.1007/s00203-020-02129-x
  • Minh, T. N., Van, T. M., Andriana, Y., Vinh, L. T., Hau, D. V., Duyen, D. H., & Guzman-Gelani, C. (2019). Antioxidant, xanthine oxidase, α-amylase and α-glucosidase inhibitory activities of bioactive compounds from Rumex crispus L. root. Molecules, 24(21), 3899. https://doi.org/10.3390/molecules24213899
  • Mughal, E. U., Ashraf, J., Hussein, E. M., Nazir, Y., Alwuthaynani, A. S., Naeem, N., Sadiq, A., Alsantali, R. I., & Ahmed, S. A. (2022). Design, synthesis, and structural characterization of thioflavones and thioflavonols as potential tyrosinase inhibitors: In vitro and in silico studies. ACS Omega, 7, 17444–17461. https://doi.org/10.1021/acsomega.2c01841
  • Mughal, E. U., Sadiq, A., Murtaza, S., Rafique, H., Zafar, M. N., Riaz, T., Khan, B. A., Hameed, A., & Khan, K. M. (2017). Synthesis, structure–activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 25(1), 100–106. https://doi.org/10.1016/j.bmc.2016.10.016
  • Mükemre, M., Zengin, G., Türker, R. S., Aslan, A., & Dalar, A. (2021). Biological activities and chemical composition of Xanthoria lichens from Turkey. International Journal of Secondary Metabolite, 8(4), 376–388. https://doi.org/10.21448/ijsm.994427
  • Müller, K. (2001). Pharmaceutically relevant metabolites from lichens. Applied Microbiology and Biotechnology, 56(1–2), 9–16. https://doi.org/10.1007/s002530100684
  • Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2022). Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochemistry, 120, 250–259. https://doi.org/10.1016/j.procbio.2022.06.009
  • Obaid, R. J., Mughal, E. U., Naeem, N., Sadiq, A., Alsantali, R. I., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2021). Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Advances, 11(36), 22159–22198. https://doi.org/10.1039/d1ra03196a
  • Obaid, R. J., Naeem, N., Mughal, E. U., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z., & Ahmed, S. A. (2022). Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Advances, 12(31), 19764–19855. https://doi.org/10.1039/d2ra03081k
  • Ogbonnia, S., Enwuru, N., Onyemenem, E., Oyedele, G., & Enwuru, C. (2008). Phytochemical evaluation and antibacterial profile of Treculia africana Decne bark extract on gastrointestinal bacterial pathogens. African Journal of Biotechnology, 7(10), 1385-1389. https://doi.org/10.4314/AJB.V7I10.58680
  • Onder, F. C., Sahin, K., Senturk, M., Durdagi, S., & Ay, M. (2022). Identifying highly effective coumarin-based novel cholinesterase inhibitors by in silico and in vitro studies. Journal of Molecular Graphics & Modelling, 115(, 108210. https://doi.org/10.1016/j.jmgm.2022.108210
  • Oyaizu, M. (1986). Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307
  • Ozen, T., Bora, N., Yenigun, S., & Korkmaz, H. (2020). An investigation of chemical content, enzyme inhibitory propert, antioxidant and antibacterial activity of Aristolochia bodamae Dingler (develiotu)(Aristolochiaceae) root extracts from Samsun, Turkey. Flavour and Fragrance Journal, 35(3), 270–283. https://doi.org/10.1002/ffj.3559
  • Perry, N. B., Benn, M. H., Brennan, N. J., Burgess, E. J., Ellis, G., Galloway, D. J., Lorimer, S. D., & Tangney, R. S. (1999). Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. The Lichenologist, 31(6), 627–636. https://doi.org/10.1006/lich.1999.0241
  • Plsíkova, J., Stepankova, J., Kasparkova, J., Brabec, V., Backor, M., & Kozurkova, M. (2014). Lichen secondary metabolites as DNA-interacting agents. Toxicology in Vitro, 28(2), 182–186. https://doi.org/10.1016/j.tiv.2013.11.003
  • Pöykkö, H., & Hyvärinen, M. (2003). Host preference and performance of lichenivorous Eilema spp. larvae in relation to lichen secondary metabolites. Journal of Animal Ecology, 72, 383–390. https://doi.org/10.1046/j.1365-2656.2003.00709.x
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019
  • Ranković, B. R., Kosanić, M. M., & Stanojković, T. P. (2011). Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complementary and Alternative Medicine, 11(1), 1–8. https://doi.org/10.1186/1472-6882-11-97
  • Ranković, B., Mišić, M., & Sukdolak, S. (2007). Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica. Microbiology, 76(6), 723–727. https://doi.org/10.1134/s0026261707060112
  • Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research, 22(4), 375–383. https://doi.org/10.3109/10715769509145649
  • Romagni, J. G., & Dayan, F. E. (2002). Structural diversity of lichen metabolites and their potential use. Springer. https://doi.org/10.1007/978-1-4757-4439-2_11
  • Saklani, A., & Upreti, D. (1992). Folk uses of some lichens in Sikkim. Journal of Ethnopharmacology, 37(3), 229–233. https://doi.org/10.1016/0378-8741(92)90038-s
  • Sastry, A., Vedula, G. S., & Tatipamula, V. B. (2018). In-vitro biological profile of mangrove associated lichen, Roccella montagnei extracts. Inventi Impact: Ethnopharmacology, 2018(3), 153–158. https://doi.org/10.15254/h.j.d.med.10.2018.174
  • Sevgi, K., Tepe, B., & Sarikurkcu, C. (2015). Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 77(1), 12–21. https://doi.org/10.1016/j.fct.2014.12.006
  • Shapiro, R., & Vallee, B. L. (1991). Interaction of human placental ribonuclease with placental ribonuclease inhibitor. Biochemistry, 30(8), 2246–2255. https://doi.org/10.1021/bi00222a030
  • Solhaug, K. A., & Gauslaa, Y. (1996). Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia, 108(3), 412–418. https://doi.org/10.1007/bf00333715
  • Tepe, B., Daferera, D., Sokmen, A., Sokmen, M., & Polissiou, M. (2005). Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chemistry, 90(3), 333–340. https://doi.org/10.1016/j.foodchem.2003.09.013
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Trentin, R., Custódio, L., Rodrigues, M. J., Moschin, E., Sciuto, K., da Silva, J. P., & Moro, I. (2020). Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Research, 50, 101980. https://doi.org/10.1016/j.algal.2020.101980
  • Yavuz, M. (2013). Lichens in the prescriptions of Pliny the Elder. Oltenia. Studii şi comunicări. Ştiinţele Naturii, 29, 115–119.
  • Yazici, K., & Aslan, A. (2003). Lichens from the regions of Gumushane, Erzincan and Bayburt (Turkey). Cryptogamie Mycologie, 24(3), 287–300. https://doi.org/10.1556/abot.49.2007.1-2.19
  • Yazici, K., Aslan, A., & Aptroot, A. (2004). Four new lichen species from Turkey. Science Citation Index Expanded (SCI-EXPANDED), Scopus, 90, 177–180.
  • Yılmaz, M., Türk, A. Ö., Tay, T., & Kıvanç, M. (2004). The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (–)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Zeitschrift Für Naturforschung C, 59(3–4), 249–254. https://doi.org/10.3329/bjpt.v20i2.17395
  • Zafar, M. N., Butt, A. M., Chaudhry, G.-E.-S., Perveen, F., Nazar, M. F., Masood, S., Dalebrook, A. F., Mughal, E. U., Sumrra, S. H., Sung, Y. Y., Muhammad, T. S. T., & Wright, L. J. (2021). Pd (II) complexes with chelating N-(1-alkylpyridin-4 (1H)-ylidene) amide (PYA) ligands: Synthesis, characterization and evaluation of anticancer activity. Journal of Inorganic Biochemistry, 224(2), 111590. https://doi.org/10.1016/j.jinorgbio.2021.111590
  • Zafar, M. N., Masood, S., Muhammad, T. S. T., Dalebrook, A. F., Nazar, M. F., Malik, F. P., Mughal, E. U., & Wright, L. J. (2019). Synthesis, characterization and anti-cancer properties of water-soluble bis (PYE) pro-ligands and derived palladium (ii) complexes. Dalton Transactions, 48(41), 15408–15418. https://doi.org/10.1039/c9dt01923e
  • Zhang, L., Kong, Y., Wu, D., Zhang, H., Wu, J., Chen, J., Ding, J., Hu, L., Jiang, H., & Shen, X. (2008). Three flavonoids targeting the β‐hydroxyacyl‐acyl carrier protein dehydratase from Helicobacter pylori: Crystal structure characterization with enzymatic inhibition assay. Protein Science, 17(11), 1971–1978. https://doi.org/10.1110/ps.036186.108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.