99
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In silico study of antibacterial tyrosyl-tRNA synthetase and toxicity of main phytoconstituents from three active essential oils

, , & ORCID Icon
Pages 1404-1416 | Received 28 Jul 2022, Accepted 01 Apr 2023, Published online: 17 Apr 2023

References

  • Aati, H. Y., Perveen, S., Aati, S., Orfali, R., Alqahtani, J. H., Al-Taweel, A. M., Wanner, J., & Aati, A. Y. (2022). Headspace solid-phase microextraction method for extracting volatile constituents from the different parts of Saudi Anethum graveolens L. and their antimicrobial activity. Heliyon, 8(3), e09051. https://doi.org/10.1016/j.heliyon.2022.e09051
  • Alehaideb, Z., Alatar, G., Nehdi, A., Albaz, A., Al-Eidi, H., Almutairi, M., Hawsa, E., Alshuail, N., & Matou-Nasri, S. (2021). Commiphora myrrha (Nees) Engl. resin extracts induce phase-I cytochrome P450 2C8, 2C9, 2C19, and 3A4 isoenzyme expressions in human hepatocellular carcinoma (HepG2) cells. Saudi Pharmaceutical Journal : SPJ, 29(5), 361–368. https://doi.org/10.1016/j.jsps.2021.03.002
  • Alminderej, F., Bakari, S., Almundarij, T. I., Snoussi, M., Aouadi, K., & Kadri, A. (2021). Antimicrobial and wound healing potential of a new chemotype from Piper cubeba L. essential oil and in silico study on S. aureus tyrosyl-tRNA synthetase protein. Plants, 10(2), 205. https://doi.org/10.3390/plants10020205
  • Al-Nagar, N. M. A., Abou-Taleb, H. K., Shawir, M. S., & Abdelgaleil, S. A. M. (2020). Comparative toxicity, growth inhibitory and biochemical effects of terpenes and phenylpropenes on Spodoptera littoralis (Boisd.). Journal of Asia-Pacific Entomology, 23(1), 67–75. https://doi.org/10.1016/j.aspen.2019.09.005
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Avato, P., Tava, A., Bucci, R., & Vitali, C. (2017). Rosmarinus officinalis leaves as a natural source of bioactive compounds. International Journal of Food Sciences and Nutrition, 68(7), 790–811. https://doi.org/10.1080/09637486.2017.1294353
  • Baptiste Hzounda Fokou, J., Michel Jazet Dongmo, P., & Fekam Boyom, F. (2020). Essential oil’s chemical composition and pharmacological properties. In: H. A. El-Shemy (Ed.), Essential oils - oils of nature. IntechOpen. https://doi.org/10.5772/intechopen.86573
  • Cesari, I., Hoerlé, M., Simoes-Pires, C., Grisoli, P., Queiroz, E. F., Dacarro, C., Marcourt, L., Moundipa, P. F., Carrupt, P. A., Cuendet, M., Caccialanza, G., Wolfender, J. L., & Brusotti, G. (2013). Anti-inflammatory, antimicrobial and antioxidant activities of Diospyros bipindensis (Gürke) extracts and its main constituents. Journal of Ethnopharmacology, 146(1), 264–270. https://doi.org/10.1016/j.jep.2012.12.041
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • De Ruysscher, D., Pang, L., Mattelaer, C.-A., Nautiyal, M., De Graef, S., Rozenski, J., Strelkov, S. V., Lescrinier, E., Weeks, S. D., & Van Aerschot, A. (2020). Phenyltriazole-functionalized sulfamate inhibitors targeting tyrosyl- or isoleucyl-tRNA synthetase. Bioorganic & Medicinal Chemistry, 28(15), 115580. https://doi.org/10.1016/j.bmc.2020.115580
  • Delgado, J. A., Sánchez-Vioque, R., & González-Coloma, A. (2021). Essential oils and their components as natural biopesticides to control pest insects of agronomic and medical interest. Molecules, 26(4), 880. https://doi.org/10.3390/molecules26040880
  • Di Sotto, A., Maffei, F., Hrelia, P., Castelli, F., Sarpietro, M. G., & Mazzanti, G. (2013). Genotoxicity assessment of β-caryophyllene oxide. Regulatory Toxicology and Pharmacology : RTP, 66(3), 264–268. https://doi.org/10.1016/j.yrtph.2013.04.006
  • Diniz, B. S., Reppold, C. T., Laks, J., Cristino, E. D., Damasceno, L. S., & Bolsoni, L. M. (2021). Alzheimer’s disease and COVID-19: a systematic review of the biological mechanisms and epidemiological risk factors for cognitive decline. Journal of Alzheimer’s Disease, 81(4), 1427–1443. https://doi.org/10.3233/JAD-201082
  • Dosoky, N. S., & Setzer, W. N. (2021). Maternal reproductive toxicity of some essential oils and their constituents. International Journal of Molecular Sciences, 22(5), 2380. https://doi.org/10.3390/ijms22052380
  • Frohlich, K. M., Weintraub, S. F., Bell, J. T., Todd, G. C., Väre, V. Y. P., Schneider, R., Kloos, Z. A., Tabe, E. S., Cantara, W. A., Stark, C. J., Onwuanaibe, U. J., Duffy, B. C., Basanta‐Sanchez, M., Kitchen, D. B., McDonough, K. A., & Agris, P. F. (2019). Discovery of small‐molecule antibiotics against a unique tRNA‐mediated regulation of transcription in gram‐positive bacteria. ChemMedChem, 14(7), 758–769. https://doi.org/10.1002/cmdc.201800744
  • Genčić, M. S., Aksić, J. M., Živković Stošić, M. Z., Randjelović, P. J., Stojanović, N. M., Stojanović-Radić, Z. Z., & Radulović, N. S. (2021). Linking the antimicrobial and anti-inflammatory effects of immortelle essential oil with its chemical composition – The interplay between the major and minor constituents. Food and Chemical Toxicology, 158, 112666. https://doi.org/10.1016/j.fct.2021.112666
  • Gendy, E. A., Khodair, A. I., Fahim, A. M., Oyekunle, D. T., & Chen, Z. (2022). Synthesis, characterization, antibacterial activities, molecular docking, and computational investigation of novel imine-linked covalent organic framework. Journal of Molecular Liquids, 358, 119191. https://doi.org/10.1016/j.molliq.2022.119191
  • He, F., Qian, Y. L., & Qian, M. C. (2018). Flavor and chiral stability of lemon-flavored hard tea during storage. Food Chemistry, 239, 622–630. https://doi.org/10.1016/j.foodchem.2017.06.136
  • Hughes, C. A., Gorabi, V., Escamilla, Y., Dean, F. B., & Bullard, J. M. (2020). Two forms of tyrosyl-tRNA synthetase from Pseudomonas aeruginosa: Characterization and discovery of inhibitory compounds. SLAS Discovery : Advancing Life Sciences R & D, 25(9), 1072–1086. https://doi.org/10.1177/2472555220934793
  • Isman, M. B. (2008). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 53, 471–491. https://doi.org/10.1146/annurev.ento.52.110405.09141
  • Jia, C.-Y., Li, J.-Y., Hao, G.-F., & Yang, G.-F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258. https://doi.org/10.1016/j.drudis.2019.10.014
  • Kasula, S., Bommera, R. K., & Eppakayala, L. (2022). Evaluation of antibacterial efficacy and molecular docking studies of quinoxaline and benzthiazole-containing benzamide derivatives. Materials Today: Proceedings, 66, 1585–1590. https://doi.org/10.1016/j.matpr.2022.05.244
  • Khatun, Most C. S., Muhit, M., Hossain, M., Al-Mansur, M. A., & Rahman, S. M. A. (2021). Isolation of phytochemical constituents from Stevia rebaudiana (Bert.) and evaluation of their anticancer, antimicrobial and antioxidant properties via in vitro and in silico approaches. Heliyon, 7(12), e08475. https://doi.org/10.1016/j.heliyon.2021.e08475
  • Laouer, H., El Kolli, M., Boulaacheb, N., & Akkal, S. (2014). Chemical composition and antibacterial activity of the essential oil of Anthemis pedunculata and Anthemis punctata. Yanbu Journal of Engineering and Science, 9(1), 76-83. https://doi.org/10.53370/001c.24231
  • Lima, P. S. S., Lucchese, A. M., Araújo-Filho, H. G., Menezes, P. P., Araújo, A. A. S., Quintans-Júnior, L. J., & Quintans, J. S. S. (2016). Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches. Carbohydrate Polymers, 151, 965–987. https://doi.org/10.1016/j.carbpol.2016.06.040
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Mannhold, R., Poda, G. I., Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilicity: state-of-the-art and comparison of LogP methods on more than 96,000 compounds. Journal of Pharmaceutical Sciences, 98(3), 861–893. https://doi.org/10.1002/jps.21494
  • Mehdizadeh, L., Ghasemi Pirbalouti, A., & Moghaddam, M. (2017). Storage stability of essential oil of cumin (Cuminum Cyminum L.) as a function of temperature. International Journal of Food Properties, 20(S2), S1742–S1750. https://doi.org/10.1080/10942912.2017.1354018
  • Mekheimer, R. A., Abuo-Rahma, G. E.-D. A., Abd-Elmonem, M., Yahia, R., Hisham, M., Hayallah, A. M., Mostafa, S. M., Abo-Elsoud, F. A., & Sadek, K. U. (2022). New s-triazine/tetrazole conjugates as potent antifungal and antibacterial agents: Design, molecular docking and mechanistic study. Journal of Molecular Structure, 1267, 133615. https://doi.org/10.1016/j.molstruc.2022.133615
  • Mendanha, S. A., Moura, D. J., Anjos, J. L., & Zucolotto, V. (2013). Nanoparticles and nanotoxicology: the quest for safety. Journal of Nanoscience and Nanotechnology, 13(7), 4016–4030. https://doi.org/10.1166/jnn.2013.7281
  • Mohan, V., Gibbs, A., Cummings, M., Jaeger, E., & DesJarlais, R. (2005). Docking: Successes and challenges. Current Pharmaceutical Design, 11(3), 323–333. https://doi.org/10.2174/1381612053382106
  • Mosavi, H., & Alizadeh, A. (2019). Phytochemical constituents and antimicrobial activity of Allium eriophyllum Var. Eriophyllum from Iran. Natural Product Research, 33(21), 3148–3152. https://doi.org/10.1080/14786419.2018.1516663
  • Muthukumar, R., Karnan, M., Elangovan, N., Karunanidhi, M., & Thomas, R. (2022). Synthesis, spectral analysis, antibacterial activity, quantum chemical studies and supporting molecular docking of Schiff base (E)-4-((4-bromobenzylidene) amino)benzenesulfonamide. Journal of the Indian Chemical Society, 99(5), 100405. https://doi.org/10.1016/j.jics.2022.100405
  • Nischitha, R., & Shivanna, M. B. (2022). Diversity and in silico docking of antibacterial potent compounds in endophytic fungus Chaetomium subaffine Sergeeva and host Heteropogon contortus (L.) P. Beauv. Process Biochemistry, 112, 124–138. https://doi.org/10.1016/j.procbio.2021.11.013
  • Othman, I. M. M., Gad-Elkareem, M. A. M., Hassane Anouar, E., Aouadi, K., Snoussi, M., & Kadri, A. (2021). New substituted pyrazolones and dipyrazolotriazines as promising tyrosyl-tRNA synthetase and peroxiredoxin-5 inhibitors: Design, synthesis, molecular docking and structure-activity relationship (SAR) analysis. Bioorganic Chemistry, 109, 104704. https://doi.org/10.1016/j.bioorg.2021.104704
  • Rahman, F., Tabrez, S., Ali, R., Alqahtani, A. S., Ahmed, M. Z., & Rub, A. (2021). Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. Journal of Traditional and Complementary Medicine, 11(2), 173–179. https://doi.org/10.1016/j.jtcme.2021.01.006
  • Rai, J., & Kaushik, K. (2018). Reduction of animal sacrifice in biomedical science & research through alternative design of animal experiments. Saudi Pharmaceutical Journal : SPJ, 26(6), 896–902. https://doi.org/10.1016/j.jsps.2018.03.006
  • Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews. Computational Molecular Science, 6(2), 147–172. https://doi.org/10.1002/wcms.1240
  • Sahilu, R., Eswaramoorthy, R., Mulugeta, E., & Dekebo, A. (2022). Synthesis, DFT analysis, dyeing potential and evaluation of antibacterial activities of azo dye derivatives combined with in-silico molecular docking and ADMET predictions. Journal of Molecular Structure, 1265, 133279. https://doi.org/10.1016/j.molstruc.2022.133279
  • Sarpietro, M. G., Di Sotto, A., Accolla, M. L., & Castelli, F. (2015). Interaction of β-caryophyllene and β-caryophyllene oxide with phospholipid bilayers: Differential scanning calorimetry study. Thermochimica Acta, 600, 28–34. https://doi.org/10.1016/j.tca.2014.11.029
  • Sayout, A., Ouarhach, A., Rabie, R., Dilagui, I., Soraa, N., & Romane, A. (2020). Evaluation of antibacterial activity of Lavandula pedunculata subsp. atlantica (BRAUN‐BLANQ.) ROMO essential oil and selected terpenoids against resistant bacteria strains–structure–activity relationships. Chemistry & Biodiversity, 17(1), e1900496. https://doi.org/10.1002/cbdv.201900496
  • Skupińska, M., Stępniak, P., Łętowska, I., Rychlewski, L., Barciszewska, M., Barciszewski, J., & Giel-Pietraszuk, M. (2017). Natural compounds as inhibitors of tyrosyl-tRNA synthetase. Microbial Drug Resistance (Larchmont, N.Y.), 23(3), 308–320. https://doi.org/10.1089/mdr.2015.0272
  • Sun, J., Lv, P.-C., & Zhu, H.-L. (2017). Tyrosyl-tRNA synthetase inhibitors: A patent review. Expert Opinion on Therapeutic Patents, 27(5), 557–564. https://doi.org/10.1080/13543776.2017.1273350
  • Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. https://doi.org/10.1016/j.micpath.2019.103580
  • Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: A review: Stability of essential oils. Comprehensive Reviews in Food Science and Food Safety, 12(1), 40–53. https://doi.org/10.1111/1541-4337.12006
  • Veith, H., Southall, N., Huang, R., James, T., Fayne, D., Artemenko, N., Shen, M., Inglese, J., Austin, C. P., Lloyd, D. G., & Auld, D. S. (2009). Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nature Biotechnology, 27(11), 1050–1055. https://doi.org/10.1038/nbt.1581
  • Vidya, M., Bano, T., Velmakanni, R. P., Merugu, R., & Jayasree, D. (2022). Molecular docking and antibacterial activity of some natural products against cariogenic Staphylococcus aureus. Materials Today: Proceedings, 66, 496–500. https://doi.org/10.1016/j.matpr.2022.05.588
  • Wojtunik-Kulesza, K. A. (2022). Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules, 27(5), 1716. https://doi.org/10.3390/molecules27051716
  • Wu, Y. M., Salas, Y. L., Leung, Y. C., Hunter, L., & Ho, J. (2020). Predicting octanol–water partition coefficients of fluorinated drug-like molecules: A combined experimental and theoretical study. Australian Journal of Chemistry, 73(8), 677. https://doi.org/10.1071/CH19648
  • Xiang, M., Lin, Y., He, G., Chen, L., Yang, M., Yang, S., & Mo, Y. (2012). Correlation between biological activity and binding energy in systems of integrin with cyclic RGD-containing binders: a QM/MM molecular dynamics study. Journal of Molecular Modeling, 18(11), 4917–4927. https://doi.org/10.1007/s00894-012-1487-z
  • Yaermaimaiti, S., Wu, T., & Aisa, H. A. (2021). Bioassay-guided isolation of antioxidant, antimicrobial, and antiviral constituents of Cordia dichotoma fruits. Industrial Crops and Products, 172, 113977. https://doi.org/10.1016/j.indcrop.2021.113977
  • Zhang, Y., Xie, C., Liu, Y., Shang, F., Shao, R., Yu, J., Wu, C., Yao, X., Liu, D., & Wang, Z. (2021). Synthesis, biological activities and docking studies of pleuromutilin derivatives with piperazinyl urea linkage. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 764–775. https://doi.org/10.1080/14756366.2021.1900163
  • Zhu, N., Lin, Y., Li, D., Gao, N., Liu, C., You, X., Jiang, J., Jiang, W., & Si, S. (2015). Identification of an anti-TB compound targeting the tyrosyl-tRNA synthetase. The Journal of Antimicrobial Chemotherapy, 70(8), 2287–2294. https://doi.org/10.1093/jac/dkv110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.