186
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, spectral characterisation, biocidal investigation, in-silico and molecular docking studies of 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid derived triorganotin(IV) compounds

, , , , , , , & show all
Pages 1826-1845 | Received 12 Dec 2022, Accepted 08 Apr 2023, Published online: 28 Apr 2023

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., & Verschoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis (N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper (II) perchlorate. Journal of the Chemical Society, Dalton Transactions 7, 1349–1356. https://doi.org/10.1039/DT9840001349
  • Alkhamis, K., Alatawi, N. M., Alsoliemy, A., Qurban, J., Alharbi, A., Khalifa, M. E., Zaky, R., & El-Metwaly, N. M. (2023). Synthesis and investigation of bivalent thiosemicarbazone complexes: Conformational analysis, methyl green DNA binding and in-silico studies. Arabian Journal for Science and Engineering, 48(1), 273–290. https://doi.org/10.1007/s13369-022-06941-z
  • Blaskovich, M. A., Zuegg, J., Elliott, A. G., & Cooper, M. A. (2015). Helping chemists discover new antibiotics. ACS Infectious Diseases, 1(7), 285–287. https://doi.org/10.1021/acsinfecdis.5b00044
  • Bragina, M. E., Daina, A., Perez, M. A., Michielin, O., & Zoete, V. (2022). The SwissSimilarity 2021 Web Tool: Novel chemical libraries and additional methods for an enhanced ligand-based virtual screening experience. International Journal of Molecular Sciences, 23(2), 811. https://doi.org/10.3390/ijms23020811
  • Camacho‐Camacho, C., Rojas‐Oviedo, I., Garza‐Ortiz, A., Cárdenas, J., Toscano, R. A., & Gaviño, R. (2013). Synthesis, structural characterization and in vitro cytotoxic activity of novel polymeric triorganotin (IV) complexes of urocanic acid. Applied Organometallic Chemistry, 27(1), 45–51. https://doi.org/10.1002/aoc.2937
  • Clark, D. E., & Pickett, S. D. (2000). Computational methods for the prediction of ‘drug-likeness’. Drug Discovery Today, 5(2), 49–58. https://doi.org/10.1016/s1359-6446(99)01451-8
  • Crystal Impact. (2006). DIAMOND (Version 3.1 e). Crystal Impact GbR.
  • Cuozzo, A., Daina, A., Perez, M. A., Michielin, O., & Zoete, V. (2022). SwissBioisostere 2021: Updated structural, bioactivity and physicochemical data delivered by a reshaped web interface. Nucleic Acids Research, 50(D1), D1382–D1390. https://doi.org/10.1093/nar/gkab1047
  • Dahmani, M., Harit, T., Et-Touhami, A., Yahyi, A., Eddike, D., Tillard, M., & Benabbes, R. (2021). Two novel macrocyclic organotin (IV) carboxylates based on bipyrazoledicarboxylic acid derivatives: Syntheses, crystal structures and antifungal activities. Journal of Organometallic Chemistry, 948, 121913. https://doi.org/10.1016/j.jorganchem.2021.121913
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Davies, A. G., Gielen, M., Pannell, K. H., & Tiekink, E. R. T. (2008). Tin chemistry: Fundamentals, frontiers, and applications. John Wiley & Sons.
  • de Martel, C., Georges, D., Bray, F., Ferlay, J., & Clifford, G. M. (2020). Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. The Lancet. Global Health, 8(2), e180–e190. https://doi.org/10.1016/S2214-109X(19)30488-7
  • Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences, 44(3), 1000–1005. https://doi.org/10.1021/ci034243x
  • Ebrahimisadr, P., Ghaffarifar, F., & Hassan, Z. M. (2013). In-vitro evaluation of antileishmanial activity and toxicity of artemether with focus on its apoptotic effect. Iranian Journal of Pharmaceutical Research: IJPR, 12(4), 903.
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • El‐bendary, M. M., & Etaiw, S. E. d. H. (2018). Structure and applications of organotin complex based on trimethyltin cation and quinaldic acid. Applied Organometallic Chemistry, 32(3), e4152. https://doi.org/10.1002/aoc.4152
  • Farrugia, L. J. (2012). WinGX and ORTEP for Windows: An update. Journal of Applied Crystallography, 45(4), 849–854. https://doi.org/10.1107/S0021889812029111
  • Frei, A., Zuegg, J., Elliott, A. G., Baker, M., Braese, S., Brown, C., Chen, F., G Dowson, C., Dujardin, G., Jung, N., King, A. P., Mansour, A. M., Massi, M., Moat, J., Mohamed, H. A., Renfrew, A. K., Rutledge, P. J., Sadler, P. J., Todd, M. H., … Blaskovich, M. A. T. (2020). Metal complexes as a promising source for new antibiotics. Chemical Science, 11(10), 2627–2639. https://doi.org/10.1039/c9sc06460e
  • Fukunishi, Y., Kurosawa, T., Mikami, Y., & Nakamura, H. (2014). Prediction of synthetic accessibility based on commercially available compound databases. Journal of Chemical Information and Modeling, 54(12), 3259–3267. https://doi.org/10.1021/ci500568d
  • Ghazi, D., Rasheed, Z., & Yousif, E. (2018). Review of organotin compounds: Chemistry and applications. International Journal of Research in Engineering and Innovation, 2(4), 340–348.
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Gielen, M. (1996). Tin-based antitumour drugs. Coordination Chemistry Reviews, 151(1), 41–51. https://doi.org/10.1016/S0010-8545(96)90193-9
  • Hadjikakou, S. K., & Hadjiliadis, N. (2009). Antiproliferative and anti-tumor activity of organotin compounds. Coordination Chemistry Reviews, 253(1–2), 235–249. https://doi.org/10.1016/j.ccr.2007.12.026
  • Hanifa, B., Sirajuddin, M., Khan, H., Lo, K. M., & Tiekink, E. R. T. (2020a). Crystal structure of 4-[(2-methoxyphenyl) carbamoyl] butanoic acid, C12H15NO4. Zeitschrift Für Kristallographie - New Crystal Structures, 235(6), 1481–1483. https://doi.org/10.1515/ncrs-2020-0364
  • Hanifa, B., Sirajuddin, M., Kubicki, M., & Tiekink, E. R. T. (2022a). Three isomeric 4-[(n-bromophenyl) carbamoyl] butanoic acids (n= 2, 3 and 4) as DNA intercalator: Synthesis, physicochemical characterization, antimicrobial activity, antioxidant potential and in silico study. Journal of Molecular Structure, 1262, 133033. https://doi.org/10.1016/j.molstruc.2022.133033
  • Hanifa, B., Sirajuddin, M., Lo, K. M., & Tiekink, E. R. T. (2020b). Crystal structure of 4-[(3,5-dichlorophenyl) carbamoyl] butanoic acid, C11H11Cl2NO3. Zeitschrift Für Kristallographie - New Crystal Structures, 235(6), 1495–1497. https://doi.org/10.1515/ncrs-2020-0368
  • Hanifa, B., Sirajuddin, M., Tiekink, E. R. T., Khan, I., Kubicki, M., & Bari, A. (2022b). Designing, physiochemical confirmation, evaluation of biological and in-silico potential of Triorganotin (IV) complexes. Journal of Molecular Structure, 1260, 132814. https://doi.org/10.1016/j.molstruc.2022.132814
  • Hanifa, B., Sirajuddin, M., Ullah, Z., Mahboob, S., Lee, S. M., Lo, K. M., & Tiekink, E. R. T. (2021). 4-[(2,4-Dichlorophenyl) carbamoyl] butanoic Acid. Molbank, 2021(2), M1227. https://doi.org/10.3390/M1227
  • Hansford, K. A., Blaskovich, M. A., & Cooper, M. A. (2016). Chemical philanthropy: A path forward for antibiotic discovery? Future Medicinal Chemistry, 8(9), 925–929. https://doi.org/10.4155/fmc-2016-0029
  • Jakupec, M. A., Galanski, M. S., Arion, V. B., Hartinger, C. G., & Keppler, B. K. (2008). Antitumour metal compounds: More than theme and variations. Dalton Transactions, 2, 183–194. https://doi.org/10.1039/B712656P
  • Junaid, M., Shah, M., Khan, A., Li, C.-D., Khan, M. T., Kaushik, A. C., Ali, A., Mehmood, A., Nangraj, A. S., Choi, S., & Wei, D.-Q. (2019). Structural-dynamic insights into the H. pylori cytotoxin-associated gene A (CagA) and its abrogation to interact with the tumor suppressor protein ASPP2 using decoy peptides. Journal of Biomolecular Structure and Dynamics, 37(15), 4035–4050. https://doi.org/10.1080/07391102.2018.1537895
  • Khan, T., Ahmad, R., Azad, I., Raza, S., Joshi, S., & Khan, A. R. (2018). Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone. Computational Biology and Chemistry, 75, 178–195. https://doi.org/10.1016/j.compbiolchem.2018.05.008
  • Khan, M. S., Sirajuddin, M., Zubair, M., Khan, H., Tariq, M., Mehwish, S., & Ullah, N. (2021a). Synthesis, characterization, POM analyses and biological evaluation of n-[(2-methoxy-5-nitrophenyl)]-4-oxo-4-[oxy] butenamide based zinc (II) carboxylate complexes. Bulletin of the Chemical Society of Ethiopia, 35(2), 365–380. https://doi.org/10.4314/bcse.v35i2.11
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2021b). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure & Dynamics, 39(7), 2607–2616. https://doi.org/10.1080/07391102.2020.1751298
  • Kumar, M., Abbas, Z., Tuli, H. S., & Rani, A. (2020). Organotin complexes with promising therapeutic potential. Current Pharmacology Reports, 6(4), 167–181. https://doi.org/10.1007/s40495-020-00222-9
  • Liebl, K., & Zacharias, M. (2021). Accurate modeling of DNA conformational flexibility by a multivariate Ising model. Proceedings of the National Academy of Sciences, 118(15), e2021263118. https://doi.org/10.1073/pnas.2021263118
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lobo, S. (2020). Is there enough focus on lipophilicity in drug discovery? Expert Opinion on Drug Discovery, 15(3), 261–263. https://doi.org/10.1080/17460441.2020.1691995
  • Lockhart, T. P., Manders, W. F., & Holt, E. M. (1986). Solution and solid-state molecular structures of Me2Sn (OAc) 2 and its hydrolyzate,([Me2Sn (OAc)] 2O) 2, by solution and solid-state carbon-13 NMR. X-ray diffraction study of the hydrolyzate. Journal of the American Chemical Society, 108(21), 6611–6616. https://doi.org/10.1021/ja00281a026
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/10.1021/jm0492002
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Muhammad, N.,Ahmad, M.,Sirajuddin, M.,Ali, Z.,Tumanov, N.,Wouters, J.,Chafik, A.,Solak, K.,Mavi, A.,Muhammad, S.,Shujah, S.,Ali, S., &Al-Sehemi, A. G. (2022). Synthesis, Characterization, Biological Activity and Molecular Docking Studies of Novel Organotin(IV) Carboxylates. Frontiers in Pharmacology, 13, 864336 10.3389/fphar.2022.864336PMC:35450047
  • Naz, N., Sirajuddin, M., Haider, A., Abbas, S. M., Ali, S., Wadood, A., Ghufran, M., Rehman, G., & Mirza, B. (2019). Synthesis, characterization, biological screenings and molecular docking study of Organotin (IV) derivatives of 2,4-dichlorophenoxyacetic acid. Journal of Molecular Structure, 1179, 662–671. https://doi.org/10.1016/j.molstruc.2018.11.011
  • Nelson, P. N., & Taylor, R. A. (2014). Theories and experimental investigations of the structural and thermotropic mesomorphic phase behaviors of metal carboxylates. Applied Petrochemical Research, 4(3), 253–285. https://doi.org/10.1007/s13203-014-0044-3
  • Piñeros, M., Mery, L., Soerjomataram, I., Bray, F., & Steliarova-Foucher, E. (2021). Scaling up the surveillance of childhood cancer: A global roadmap. Journal of the National Cancer Institute, 113(1), 9–15. https://doi.org/10.1093/jnci/djaa069
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 9(5), 663–669. https://doi.org/10.1023/a:1015810312465
  • Rigaku: CrysAlisProSoftware System, Version 171.40.53, Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2020.
  • Rana, M., Faizan, M. I., Dar, S. H., Ahmad, T., & Rahisuddin. (2022). Design and synthesis of carbothioamide/carboxamide-based pyrazoline analogs as potential anticancer agents: Apoptosis, molecular docking, ADME assay, and DNA binding studies. ACS Omega, 7(26), 22639–22656. https://doi.org/10.1021/acsomega.2c02033
  • Rocha, C., De Morais, B., Rodrigues, B., Donnici, C., De Lima, G., Ardisson, J., Takahashi, J., & Bitzer, R. (2017). Spectroscopic and X‐ray structural characterization of new polymeric organotin (IV) carboxylates and their in vitro antifungal activities: Part II. Applied Organometallic Chemistry, 31(7), e3645. https://doi.org/10.1002/aoc.3645
  • Rosenberg, B. (1973). Platinum coordination-complexes in the treatment of cancer. Die Naturwissenschaften, 60(9), 399–406. https://doi.org/10.1007/BF00623551
  • Sánchez-Vergara, M. E., Hamui, L., Gómez, E., Chans, G. M., & Galván-Hidalgo, J. M. (2021). Design of promising heptacoordinated organotin (IV) complexes-PEDOT: PSS-Based composite for new-generation optoelectronic devices applications. Polymers, 13(7), 1023. https://doi.org/10.3390/polym13071023
  • Saroya, S., Asija, S., Deswal, Y., Kumar, N., & Kumar, A. (2022). Synthesis, spectral studies, in vitro antimicrobial activity and molecular docking studies of organotin (IV) complexes derived from tridentate Schiff base ligands. Research on Chemical Intermediates, 48(7), 2949–2971. https://doi.org/10.1007/s11164-022-04731-8
  • Sheldrick, G. M. (2015a). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3–8.
  • Sheldrick, G. M. (2015b). SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica. Section A, Foundations and Advances, 71(Pt 1), 3–8. https://doi.org/10.1107/S2053273314026370
  • Sirajuddin, M., & Ali, S. (2016). Organotin (IV) carboxylates as promising potential drug candidates in the field of cancer chemotherapy. Current Pharmaceutical Design, 22(44), 6665–6681. https://doi.org/10.2174/1381612822666160906143249
  • Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology. B, Biology, 124, 1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013
  • Sirajuddin, M., Ali, S., Haider, A., Shah, N. A., Shah, A., & Khan, M. R. (2012a). Synthesis, characterization, biological screenings and interaction with calf thymus DNA as well as electrochemical studies of adducts formed by azomethine [2-((3,5-dimethylphenylimino) methyl) phenol] and organotin (IV) chlorides. Polyhedron, 40(1), 19–31. https://doi.org/10.1016/j.poly.2012.03.048
  • Sirajuddin, M., Ali, S., McKee, V., Akhtar, N., Andleeb, S., & Wadood, A. (2019a). Spectroscopic characterizations, structural peculiarities, molecular docking study and evaluation of biological potential of newly designed organotin (IV) carboxylates. Journal of Photochemistry and Photobiology. B, Biology, 197, 111516. https://doi.org/10.1016/j.jphotobiol.2019.111516
  • Sirajuddin, M., Ali, S., McKee, V., Wadood, A., & Ghufran, M. (2019b). Exploration of organotin (IV) derivatives for medicinal applications: Synthesis, spectroscopic characterization, structural elucidation and molecular docking study. Journal of Molecular Structure, 1181, 93–108. https://doi.org/10.1016/j.molstruc.2018.12.041
  • Sirajuddin, M., Ali, S., McKee, V., Zaib, S., & Iqbal, J. (2014). Organotin (IV) carboxylate derivatives as a new addition to anticancer and antileishmanial agents: Design, physicochemical characterization and interaction with Salmon sperm DNA. RSC Advances, 4(101), 57505–57521. https://doi.org/10.1039/C4RA10487K
  • Sirajuddin, M., Ali, S., Shah, N. A., Khan, M. R., & Tahir, M. N. (2012b). Synthesis, characterization, biological screenings and interaction with calf thymus DNA of a novel azomethine 3-((3,5-dimethylphenylimino) methyl) benzene-1,2-diol. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 94, 134–142. https://doi.org/10.1016/j.saa.2012.03.068
  • Sirajuddin, M., Ali, S., Shahnawaz, A., Perveen, F., Andleeb, S., & Ali, S. (2020a). Exploration of biological potency of carboxylic acid derivatives: Designing, synthesis, characterizations and molecular docking study. Journal of Molecular Structure, 1207, 127809. https://doi.org/10.1016/j.molstruc.2020.127809
  • Sirajuddin, M., Ali, S., & Tahir, M. N. (2021). Organotin (IV) derivatives based on 2-((2-methoxyphenyl) carbamoyl) benzoic acid: Synthesis, spectroscopic characterization, assessment of antibacterial, DNA interaction, anticancer and antileishmanial potentials. Journal of Molecular Structure, 1229, 129600. https://doi.org/10.1016/j.molstruc.2020.129600
  • Sirajuddin, M., Hanifa, B., Ullah, S., Lo, K. M., & Tiekink, E. R. T. (2020b). Crystal structure of 4-[(3-methoxyphenyl) carbamoyl] butanoic acid, C12H15NO4. Zeitschrift Für Kristallographie - New Crystal Structures, 235(6), 1519–1521. https://doi.org/10.1515/ncrs-2020-0376
  • Spek, A. L. (2020). checkCIF validation ALERTS: What they mean and how to respond. Acta Crystallographica. Section E, Crystallographic Communications, 76(Pt 1), 1–11. https://doi.org/10.1107/S2056989019016244
  • Tahir, M., Sirajuddin, M., Haider, A., Ali, S., Nadhman, A., & Rizzoli, C. (2019). Synthesis, spectroscopic characterization, crystal structure, interaction with DNA, CTAB as well as evaluation of biological potency, docking and molecular dynamics studies of N-(3,4,5-trimethoxybenzylidene)-2,3-dimethylbenzenamine. Journal of Molecular Structure, 1178, 29–38. https://doi.org/10.1016/j.molstruc.2018.10.014
  • Tiekink, E. R. T. (2008). Tin dithiocarbamates: Applications and structures. Applied Organometallic Chemistry, 22(9), 533–550. https://doi.org/10.1002/aoc.1441
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Walters, W. P., & Murcko, M. A. (2002). Prediction of ‘drug-likeness. Advanced Drug Delivery Reviews, 54(3), 255–271. https://doi.org/10.1016/s0169-409x(02)00003-0
  • Waring, M. J. (2010). Lipophilicity in drug discovery. Expert Opinion on Drug Discovery, 5(3), 235–248. https://doi.org/10.1517/17460441003605098
  • Wei, W., Cherukupalli, S., Jing, L., Liu, X., & Zhan, P. (2020). Fsp3: A new parameter for drug-likeness. Drug Discovery Today, 25(10), 1839–1845. https://doi.org/10.1016/j.drudis.2020.07.017
  • Wu, G., Zhao, T., Kang, D., Zhang, J., Song, Y., Namasivayam, V., Kongsted, J., Pannecouque, C., De Clercq, E., Poongavanam, V., Liu, X., & Zhan, P. (2019). Overview of recent strategic advances in medicinal chemistry. Journal of Medicinal Chemistry, 62(21), 9375–9414. https://doi.org/10.1021/acs.jmedchem.9b00359
  • Zubair, M., Sirajuddin, M., Haider, A., Ullah, K., Ullah, I., Munir, A., Ali, S., & Tahir, M. N. (2018). Synthesis, physicochemical characterizations and in vitro biological evaluations of amide based Zn (II) carboxylates. Inorganica Chimica Acta, 482, 567–578. https://doi.org/10.1016/j.ica.2018.07.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.