192
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Proposing lead compounds for the development of SARS-CoV-2 receptor-binding inhibitors

&
Pages 2282-2297 | Received 23 Aug 2022, Accepted 11 Apr 2023, Published online: 28 Apr 2023

References

  • Abdool Karim, S. S., & de Oliveira, T. (2021). New SARS-CoV-2 variants - clinical, public health, and vaccine implications. The New England Journal of Medicine, 384(19), 1866–1868. https://doi.org/10.1056/NEJMc2100362
  • Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J., & Kirton, S. B. (2012). Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. Journal of Chemical Information and Modeling, 52(2), 420–428. https://doi.org/10.1021/ci200387c
  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Arpicco, S., Battaglia, L., Brusa, P., Cavalli, R., Chirio, D., Dosio, F., Gallarate, M., Milla, P., Peira, E., Rocco, F., Sapino, S., Stella, B., Ugazio, E., & Ceruti, M. (2016). Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. Journal of Drug Delivery Science and Technology, 32, 298–312. https://doi.org/10.1016/j.jddst.2015.09.004
  • Awuni, E., & Mu, Y. (2019). Effect of A22 on the conformation of bacterial actin MreB. International Journal of Molecular Sciences, 20(6), 1304. https://doi.org/10.3390/ijms20061304
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–w263. https://doi.org/10.1093/nar/gky318
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Bitencourt-Ferreira, G., Veit-Acosta, M., & de Azevedo, W. F. Jr (2019). Hydrogen bonds in protein-ligand complexes. Methods in Molecular Biology (Clifton, N.J.), 2053, 93–107. https://doi.org/10.1007/978-1-4939-9752-7_7
  • Blundell, T. L. (1996). Structure-based drug design. Nature, 384(6604), 23–26.
  • Boehm, E., Kronig, I., Neher, R. A., Eckerle, I., Vetter, P., & Kaiser, L. (2021). Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(8), 1109–1117. https://doi.org/10.1016/j.cmi.2021.05.022
  • Bojadzic, D., Alcazar, O., Chen, J., Chuang, S. T., Condor Capcha, J. M., Shehadeh, L. A., & Buchwald, P. (2021). Small-molecule inhibitors of the coronavirus spike: ACE2 protein-protein interaction as blockers of viral attachment and entry for SARS-CoV-2. ACS Infectious Diseases, 7(6), 1519–1534. https://doi.org/10.1021/acsinfecdis.1c00070
  • Brodeur, A., Gray, D., Islam, A., & Bhuiyan, S. (2021). A literature review of the economics of COVID-19. Journal of Economic Surveys, 35(4), 1007–1044. https://doi.org/10.1111/joes.12423
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The AMBER biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chanphai, P., Bekale, L., & Tajmir-Riahi, H. A. (2015). Effect of hydrophobicity on protein–protein interactions. European Polymer Journal. 67, 224–231. https://doi.org/10.1016/j.eurpolymj.2015.03.069
  • Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., Li, Y., Wang, R., & Lai, L. (2007). Computation of octanol-water partition coefficients by guiding an additive model with knowledge. Journal of Chemical Information and Modeling, 47(6), 2140–2148. https://doi.org/10.1021/ci700257y
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117(19), 5179–5197. https://doi.org/10.1021/ja00124a002
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald - An N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • David, A. B., Diamant, E., Dor, E., Barnea, A., Natan, N., Levin, L., Chapman, S., Mimran, L. C., Epstein, E., Zichel, R., & Torgeman, A. (2021). Identification of SARS-CoV-2 receptor binding inhibitors by in vitro screening of drug libraries. Molecules, 26(11), 3213. https://doi.org/10.3390/molecules26113213
  • Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences, 44(3), 1000–1005. https://doi.org/10.1021/ci034243x
  • Downing, N. S., Shah, N. D., Aminawung, J. A., Pease, A. M., Zeitoun, J. D., Krumholz, H. M., & Ross, J. S. (2017). Postmarket safety events among novel therapeutics approved by the US food and drug administration between 2001 and 2010. JAMA, 317(18), 1854–1863. https://doi.org/10.1001/jama.2017.5150
  • Dubey, R., & Dubey, K. (2022). SARS-CoV-2: Potential drug targets and its virtual screening. In A. T. Azar & A. E. Hassanien (Eds.), Modeling, control and drug development for COVID-19 outbreak prevention (pp. 203–244). Springer International Publishing.
  • Gao, Y., Gesenberg, C., & Zheng, W. (2017). Chapter 17 - oral formulations for preclinical studies: Principle, design, and development considerations. In Y. Qiu, Y. Chen, G. G. Z. Zhang, L. Yu, & R. V. Mantri (Eds.), Developing solid oral dosage forms (2nd ed., pp. 455–495). Academic Press.
  • Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. Á., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: Drug targets and potential treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606
  • Gleeson, M. P. (2008). Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, 51(4), 817–834. https://doi.org/10.1021/jm701122q
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(Suppl 1), S162–S173. https://doi.org/10.1002/elps.200900140
  • Guo, Y., & Shen, H. (2004). pKa, solubility, and lipophilicity. In Z. Yan & G. W. Caldwell (Eds.), Optimization in drug discovery: In vitro methods (pp. 1–17). Humana Press.
  • Harris, C. J., Hill, R. D., Sheppard, D. W., Slater, M. J., & Stouten, P. F. (2011). The design and application of target-focused compound libraries. Combinatorial Chemistry & High Throughput Screening, 14(6), 521–531. https://doi.org/10.2174/138620711795767802
  • Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews. Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature Reviews. Drug Discovery, 1(9), 727–730. https://doi.org/10.1038/nrd892
  • Huang, Y., Yang, C., Xu, X-f., Xu, W., & Liu, S-w (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
  • Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews. Molecular Cell Biology, 23(1), 3–20. https://doi.org/10.1038/s41580-021-00418-x
  • Jena, N. R. (2021). Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2. Chemical Physics Impact, 2, 100011. https://doi.org/10.1016/j.chphi.2021.100011
  • Jhoti, H., Rees, S., & Solari, R. (2013). High-throughput screening and structure-based approaches to hit discovery: Is there a clear winner? Expert Opinion on Drug Discovery, 8(12), 1449–1453. https://doi.org/10.1517/17460441.2013.857654
  • Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor-sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245(1), 43–53. https://doi.org/10.1016/s0022-2836(95)80037-9
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Jones, S., & Thornton, J. M. (1996). Principles of protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 93(1), 13–20. https://doi.org/10.1073/pnas.93.1.13
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kashte, S., Gulbake, A., El-Amin Iii, S. F., & Gupta, A. (2021). COVID-19 vaccines: Rapid development, implications, challenges and future prospects. Human Cell, 34(3), 711–733. https://doi.org/10.1007/s13577-021-00512-4
  • Kretschmer, R., Kinzel, D., & González, L. (2012). The role of hydrogen bonds in protein–ligand interactions. DFT calculations in 1,3-dihydrobenzimidazole-2 thione derivatives with glycinamide as model HIV RT inhibitors. International Journal of Quantum Chemistry, 112(7), 1786–1795. https://doi.org/10.1002/qua.23001
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R., & Donnelly, R. F. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
  • Lavecchia, A., & Di Giovanni, C. (2013). Virtual screening strategies in drug discovery: A critical review. Current Medicinal Chemistry, 20(23), 2839–2860. https://doi.org/10.2174/09298673113209990001
  • Lin, Y., Sun, Y., Weng, Y., Matsuura, A., Xiang, L., & Qi, J. (2016). Parishin from Gastrodia elata extends the lifespan of yeast via regulation of Sir2/Uth1/TOR signaling pathway. Oxidative Medicine and Cellular Longevity, 2016, 4074690. https://doi.org/10.1155/2016/4074690
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, X., Testa, B., & Fahr, A. (2011). Lipophilicity and its relationship with passive drug permeation. Pharmaceutical Research, 28(5), 962–977. https://doi.org/10.1007/s11095-010-0303-7
  • Lo Conte, L., Chothia, C., & Janin, J. (1999). The atomic structure of protein-protein recognition sites. Journal of Molecular Biology, 285(5), 2177–2198. https://doi.org/10.1006/jmbi.1998.2439
  • McKibbin, W., & Fernando, R. (2021). The global macroeconomic impacts of COVID-19: Seven scenarios. Asian Economic Papers, 20(2), 1–30. https://doi.org/10.1162/asep_a_00796
  • Mirchandani, Y., Patravale, V. B., & Brijesh, S. (2021). Solid lipid nanoparticles for hydrophilic drugs. Journal of Controlled Release: Official Journal of the Controlled Release Society, 335, 457–464. https://doi.org/10.1016/j.jconrel.2021.05.032
  • Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I., & Matsushita, Y. (1992). Simple method of calculating octanol/water partition coefficient. Chemical and Pharmaceutical Bulletin, 40(1), 127–130. https://doi.org/10.1248/cpb.40.127
  • Moriguchi, I., Hirono, S., Nakagome, I., & Hirano, H. (1994). Comparison of reliability of log p values for drugs calculated by several methods. Chemical and Pharmaceutical Bulletin, 42(4), 976–978. https://doi.org/10.1248/cpb.42.976
  • Muhseen, Z. T., Hameed, A. R., Al-Hasani, H. M. H., Tahir Ul Qamar, M., & Li, G. (2020). Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. Journal of Molecular Liquids, 320, 114493. https://doi.org/10.1016/j.molliq.2020.114493
  • Nassar, A. E., Kamel, A. M., & Clarimont, C. (2004). Improving the decision-making process in structural modification of drug candidates: Reducing toxicity. Drug Discovery Today, 9(24), 1055–1064. https://doi.org/10.1016/s1359-6446(04)03297-0
  • Ndwandwe, D., & Wiysonge, C. S. (2021). COVID-19 vaccines. Current Opinion in Immunology, 71, 111–116. https://doi.org/10.1016/j.coi.2021.07.003
  • Papageorgiou, A. C., & Mohsin, I. (2020). The SARS-CoV-2 spike glycoprotein as a drug and vaccine target: Structural insights into its complexes with ACE2 and antibodies. Cells, 9(11), 2343. https://doi.org/10.3390/cells9112343
  • Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., & Schacht, A. L. (2010). How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nature Reviews. Drug Discovery, 9(3), 203–214. https://doi.org/10.1038/nrd3078
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1-3), 1–41. https://doi.org/10.1016/0010-4655(95)00041-D
  • Pollard, C. A., Morran, M. P., & Nestor-Kalinoski, A. L. (2020). The COVID-19 pandemic: A global health crisis. Physiological Genomics, 52(11), 549–557. https://doi.org/10.1152/physiolgenomics.00089.2020
  • Rowland, R., & Brandariz-Nuñez, A. (2021). Analysis of the role of N-linked glycosylation in cell surface expression, function, and binding properties of SARS-CoV-2 receptor ACE2. Microbiology Spectrum, 9(2), e0119921. https://doi.org/10.1128/Spectrum.01199-21
  • Rumpf, T., Schiedel, M., Karaman, B., Roessler, C., North, B. J., Lehotzky, A., Oláh, J., Ladwein, K. I., Schmidtkunz, K., Gajer, M., Pannek, M., Steegborn, C., Sinclair, D. A., Gerhardt, S., Ovádi, J., Schutkowski, M., Sippl, W., Einsle, O., & Jung, M. (2015). Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nature Communications, 6(1), 6263. https://doi.org/10.1038/ncomms7263
  • Sareen, S., Mathew, G., & Joseph, L. (2012). Improvement in solubility of poor water-soluble drugs by solid dispersion. International Journal of Pharmaceutical Investigation, 2(1), 12–17. https://doi.org/10.4103/2230-973x.96921
  • Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012, 195727. https://doi.org/10.5402/2012/195727
  • Schrödinger, L. (2014). The PyMOL molecular graphics system, version 1.7.4.
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
  • Silveira, M. M., Moreira, G. M. S. G., & Mendonça, M. (2021). DNA vaccines against COVID-19: Perspectives and challenges. Life Sciences, 267, 118919. https://doi.org/10.1016/j.lfs.2020.118919
  • Southall, N. T., Dill, K. A., & Haymet, A. D. J. (2002). A view of the hydrophobic effect. The Journal of Physical Chemistry B, 106(3), 521–533. https://doi.org/10.1021/jp015514e
  • Tarcsay, Á., & Keserű, G. M. (2013). Contributions of molecular properties to drug promiscuity. Journal of Medicinal Chemistry, 56(5), 1789–1795. https://doi.org/10.1021/jm301514n
  • Tay, J. H., Porter, A. F., Wirth, W., & Duchene, S. (2022). The emergence of SARS-CoV-2 variants of concern is driven by acceleration of the substitution rate. Molecular Biology and Evolution, 39(2), 1-9. https://doi.org/10.1093/molbev/msac013
  • Tregoning, J. S., Brown, E. S., Cheeseman, H. M., Flight, K. E., Higham, S. L., Lemm, N.-M., Pierce, B. F., Stirling, D. C., Wang, Z., & Pollock, K. M. (2020). Vaccines for COVID-19. Clinical and Experimental Immunology, 202(2), 162–192. https://doi.org/10.1111/cei.13517
  • Tsai, C. J., Lin, S. L., Wolfson, H. J., & Nussinov, R. (1997). Studies of protein-protein interfaces: A statistical analysis of the hydrophobic effect. Protein Science: A Publication of the Protein Society, 6(1), 53–64. https://doi.org/10.1002/pro.5560060106
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein-ligand docking using GOLD. Proteins, 52(4), 609–623. https://doi.org/10.1002/prot.10465
  • Vindegaard, N., & Benros, M. E. (2020). COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain, Behavior, and Immunity, 89, 531–542. https://doi.org/10.1016/j.bbi.2020.05.048
  • Wade, R. C., & Goodford, P. J. (1989). The role of hydrogen-bonds in drug binding. Progress in Clinical and Biological Research, 289, 433–444.
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, J., & Skolnik, S. (2009). Recent advances in physicochemical and ADMET profiling in drug discovery. Chemistry & Biodiversity, 6(11), 1887–1899. https://doi.org/10.1002/cbdv.200900117
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904.e899. https://doi.org/10.1016/j.cell.2020.03.045
  • Waring, J. F., Ciurlionis, R., Marsh, K., Klein, L. L., Degoey, D. A., Randolph, J. T., Spear, B., & Kempf, D. J. (2010). Identification of proteasome gene regulation in a rat model for HIV protease inhibitor-induced hyperlipidemia. Archives of Toxicology, 84(4), 263–270. https://doi.org/10.1007/s00204-010-0527-7
  • Waring, M. J. (2010). Lipophilicity in drug discovery. Expert Opinion on Drug Discovery, 5(3), 235–248. https://doi.org/10.1517/17460441003605098
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wildman, S. A., & Crippen, G. M. (1999). Prediction of physicochemical parameters by atomic contributions. Journal of Chemical Information and Computer Sciences, 39(5), 868–873. https://doi.org/10.1021/ci990307l
  • Winter, G. E., Buckley, D. L., Paulk, J., Roberts, J. M., Souza, A., Dhe-Paganon, S., & Bradner, J. E. (2015). Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science (New York, N.Y.), 348(6241), 1376–1381. https://doi.org/10.1126/science.aab1433
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, R., Wang, L., Kuo, H.-C. D., Shannar, A., Peter, R., Chou, P. J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G. J., Amorosa, L., Brunetti, L., & Kong, A.-N. (2020). An update on current therapeutic drugs treating COVID-19. Current Pharmacology Reports, 6(3), 56–70. https://doi.org/10.1007/s40495-020-00216-7
  • Xiu, S., Dick, A., Ju, H., Mirzaie, S., Abdi, F., Cocklin, S., Zhan, P., & Liu, X. (2020). Inhibitors of SARS-CoV-2 entry: Current and future opportunities. Journal of Medicinal Chemistry, 63(21), 12256–12274. https://doi.org/10.1021/acs.jmedchem.0c00502
  • Yuan, S., Palczewski, K., Peng, Q., Kolinski, M., Vogel, H., & Filipek, S. (2015). The mechanism of ligand-induced activation or inhibition of μ- and κ-opioid receptors. Angewandte Chemie (International ed. in English), 54(26), 7560–7563. https://doi.org/10.1002/anie.201501742
  • Zhang, Z. F., Chen, H. S., Li, J. R., Jiang, J. D., & Li, Z. R. (2007). Studies on polyphenolic chemical constitutents from root of Salvia yunnansis. Zhongguo Zhongyao Zazhi. China Journal of Chinese Materia Medica, 32(18), 1886–1890.
  • Zhong, H. A. (2017). ADMET properties: Overview and current topics. In A. Grover (Ed.), Drug design: Principles and applications (pp. 113–133). Springer Singapore.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.