356
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Computational screening of natural MtbDXR inhibitors for novel anti-tuberculosis compound discovery

ORCID Icon, ORCID Icon &
Pages 3593-3603 | Received 15 Mar 2023, Accepted 08 May 2023, Published online: 05 Jun 2023

References

  • Abrahams, K. A., & Besra, G. S. (2018). Mycobacterial cell wall biosynthesis: A multifaceted antibiotic target. Parasitology, 145(2), 116–133. https://doi.org/10.1017/S0031182016002377
  • Ahammad, F., Alam, R., Mahmud, R., Akhter, S., Talukder, E. K., Tonmoy, A. M., Fahim, S., Al-Ghamdi, K., Samad, A., & Qadri, I. (2021). Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein. Briefings in Bioinformatics, 22(5), 1–15. https://doi.org/10.1093/bib/bbab098
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230. https://doi.org/10.3389/fchem.2021.661230
  • Allouche, A. (2011). Software news and updates gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Azzaoui, K., Hamon, J., Faller, B., Whitebread, S., Jacoby, E., Bender, A., Jenkins, J. L., & Urban, L. (2007). Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem, 2(6), 874–880. https://doi.org/10.1002/cmdc.200700036
  • Badshah, S. L., Faisal, S., Muhammad, A., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2021). Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy, 140, 111596. https://doi.org/10.1016/j.biopha.2021.111596
  • Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life Sciences, 78(5), 431–441. https://doi.org/10.1016/j.lfs.2005.09.012
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Bergström, C. A. S., Strafford, M., Lazorova, L., Avdeef, A., Luthman, K., & Artursson, P. (2003). Absorption Classification of Oral Drugs Based on Molecular Surface Properties. Journal of Medicinal Chemistry, 46(4), 558–570. https://doi.org/10.1021/jm020986i
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D Biological Crystallography, 58(6), 899–907. https://doi.org/10.1107/S0907444902003451
  • Biovia, D. S. (2017). Discovery studio modeling environment.
  • Björkelid, C., Bergfors, T., Unge, T., Mowbray, S. L., & Jones, T. A. (2012). Structural studies on Mycobacterium tuberculosis DXR in complex with the antibiotic FR-900098. Acta Crystallographica Section D Biological Crystallography, 68(2), 134–143. https://doi.org/10.1107/S0907444911052231
  • Blomberg, B., Spinaci, S., Fourie, B., & Laing, R. (2001). The rationale for recommending fixed-dose combination tablets for treatment of tuberculosis. Bulletin of the World Health Organization, 79(1), 61–68. https://doi.org/10.1590/S0042-96862001000100012
  • Bottaro Larsen, B. (2008). 基因的改变NIH public access. Bone, 23(1), 1–7. https://doi.org/10.2174/157340811796575317.Inhibition
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.
  • Brown, A. C., & Parish, T. (2008). Dxr is essential in Mycobacterium tuberculosis and fosmidomycin resistance is due to a lack of uptake. BMC Microbiology, 8(1), 78. https://doi.org/10.1186/1471-2180-8-78
  • Courtens, C., Risseeuw, M., Caljon, G., Maes, L., Martin, A., & Van Calenbergh, S. (2019). Amino acid based prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorganic & Medicinal Chemistry, 27(5), 729–747. https://doi.org/10.1016/j.bmc.2019.01.016
  • Crick, D. C., Schulbach, M. C., Zink, E. E., Macchia, M., Barontini, S., Besra, G. S., & Brennan, P. J. (2000). Polyprenyl phosphate biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. Journal of Bacteriology, 182(20), 5771–5778. https://doi.org/10.1128/JB.182.20.5771-5778.2000
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. (2015). Participation in global governance: Coordinating “the voices of those most affected by food insecurity. Global Food Security Governance, 1263, 1–11. https://doi.org/10.1007/978-1-4939-2269-7
  • Darban, R. A., Shareghi, B., Asoodeh, A., & Chamani, J. (2017). Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. Journal of Biomolecular Structure & Dynamics, 35(16), 3648–3662. https://doi.org/10.1080/07391102.2016.1264892
  • DeRango-Adem, E. F., & Blay, J. (2021). Does oral Apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Frontiers in Pharmacology, 12(May), 681477. https://doi.org/10.3389/fphar.2021.681477
  • Dhiman, R. K., Schaeffer, M. L., Bailey, A. M., Testa, C. A., Scherman, H., & Crick, D. C. (2005). 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: Towards understanding mycobacterial resistance to fosmidomycin. Journal of Bacteriology, 187(24), 8395–8402. https://doi.org/10.1128/JB.187.24.8395-8402.2005
  • Do, P. C., Lee, E. H., & Le, L. (2018). Steered molecular dynamics simulation in rational drug design. Journal of Chemical Information and Modeling, 58(8), 1473–1482. https://doi.org/10.1021/acs.jcim.8b00261
  • Dror, R. O., Jensen, M. Ø., Borhani, D. W., & Shaw, D. E. (2010). Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. Journal of General Physiology, 135(6), 555–562. https://doi.org/10.1085/jgp.200910373
  • Eoh, H., Brennan, P. J., & Crick, D. C. (2010). The Mycobacterium tuberculosis MEP (2C-methyl-D-Erythritol 4- phosphate) pathway as a new drug target. Tuberculosis, 89(1), 1–11. https://doi.org/10.1016/j.tube.2008.07.004.The
  • Fischer, T., Gazzola, S., & Riedl, R. (2019). Approaching target selectivity by De Novo drug design. Expert Opinion on Drug Discovery, 14(8), 791–803. https://doi.org/10.1080/17460441.2019.1615435
  • Garcia, A. R., Oliveira, D. M. P., Jesus, J. B., Souza, A. M. T., Sodero, A. C. R., Vermelho, A. B., Leal, I. C. R., Souza, R. O. M. A., Miranda, L. S. M., Pinheiro, A. S., & Rodrigues, I. A. (2020). Identification of chalcone derivatives as inhibitors of Leishmania infantum arginase and promising antileishmanial agents. Frontiers in Chemistry, 8(January), 624678. https://doi.org/10.3389/fchem.2020.624678
  • Gleeson, M. P., Hersey, A., Montanari, D., & Overington, J. (2011). Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Reviews. Drug Discovery, 10(3), 197–208. https://doi.org/10.1038/nrd3367
  • Greene, N., Aleo, M. D., Louise-May, S., Price, D. A., & Will, Y. (2010). Using an in vitro cytotoxicity assay to aid in compound selection for in vivo safety studies. Bioorganic & Medicinal Chemistry Letters, 20(17), 5308–5312. https://doi.org/10.1016/j.bmcl.2010.06.129
  • Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373. https://doi.org/10.1093/femsre/fux011
  • Henriksson, L. M., Unge, T., Carlsson, J., Åqvist, J., Mowbray, S. L., & Jones, T. A. (2007). Structures of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase provide new insights into catalysis. The Journal of Biological Chemistry, 282(27), 19905–19916. https://doi.org/10.1074/jbc.M701935200
  • Hoeffler, J. F., Tritsch, D., Grosdemange-Billiard, C., & Rohmer, M. (2002). Isoprenoid biosynthesis via the methylerythritol phosphate pathway. Mechanistic investigations of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. European Journal of Biochemistry, 269(18), 4446–4457. https://doi.org/10.1046/j.1432-1033.2002.03150.x
  • Hsiao, Y., Su, B. H., & Tseng, Y. J. (2021). Current development of integrated web servers for preclinical safety and pharmacokinetics assessments in drug development. Briefings in Bioinformatics, 22(3), 1–13. https://doi.org/10.1093/bib/bbaa160
  • Khashkhashi-Moghadam, S., Ezazi-Toroghi, S., Kamkar-Vatanparast, M., Jouyaeian, P., Mokaberi, P., Yazdyani, H., Amiri-Tehranizadeh, Z., Reza Saberi, M., & Chamani, J. (2022). Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. Journal of Molecular Liquids, 356, 119042. https://doi.org/10.1016/j.molliq.2022.119042
  • Kostopoulou, I., Tzani, A., Polyzos, N. I., Karadendrou, M. A., Kritsi, E., Pontiki, E., Liargkova, T., Hadjipavlou-Litina, D., Zoumpoulakis, P., & Detsi, A. (2021). Exploring the 2′-hydroxy-chalcone framework for the development of dual antioxidant and soybean lipoxygenase inhibitory agents. Molecules, 26(9), 2777. https://doi.org/10.3390/molecules26092777
  • Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in Molecular Biology, 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Mac Sweeney, A., Lange, R., Fernandes, R. P. M., Schulz, H., Dale, G. E., Douangamath, A., Proteau, P. J., & Oefner, C. (2005). The crystal structure of E. coli 1-deoxy-D-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. Journal of Molecular Biology, 345(1), 115–127. https://doi.org/10.1016/j.jmb.2004.10.030
  • Madhavaram, M., Nampally, V., Gangadhari, S., Palnati, M. K., & Tigulla, P. (2019). High-throughput virtual screening, ADME analysis, and estimation of MM/GBSA binding-free energies of azoles as potential inhibitors of Mycobacterium tuberculosis H37Rv. Journal of Receptor and Signal Transduction Research, 39(4), 312–320. https://doi.org/10.1080/10799893.2019.1660895
  • McKenney, E. S., Sargent, M., Khan, H., Uh, E., Jackson, E. R., Jose, G. S., Couch, R. D., Dowd, C. S., & van Hoek, M. L. (2012). Lipophilic prodrugs of FR900098 are antimicrobial against Francisella novicida in vivo and in vitro and show GlpT independent efficacy. PLoS One, 7(10), e38167. https://doi.org/10.1371/journal.pone.0038167
  • Messiaen, A. S., Verbrugghen, T., Declerck, C., Ortmann, R., Schlitzer, M., Nelis, H., Van Calenbergh, S., & Coenye, T. (2011). Resistance of the Burkholderia cepacia complex to fosmidomycin and fosmidomycin derivatives. International Journal of Antimicrobial Agents, 38(3), 261–264. https://doi.org/10.1016/j.ijantimicag.2011.04.020
  • Moezzi, M. S. (2022). Comprehensive in silico screening of flavonoids against SARS-COV-2 main protease. Journal of Biomolecular Structure and Dynamics, 1–14. Advance online publication. https://doi.org/10.1080/07391102.2022.2142297
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian Medicinal Plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-22631-z
  • Narayanasamy, P., Eoh, H., Brennan, P. J., & Crick, D. C. (2010). Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF. Chemistry & Biology, 17(2), 117–122. https://doi.org/10.1016/j.chembiol.2010.01.013
  • Obiol-Pardo, C., Rubio-Martinez, J., & Imperial, S. (2011). The methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis as a target for the development of new drugs against tuberculosis. Current Medicinal Chemistry, 18(9), 1325–1338. https://doi.org/10.2174/092986711795029582
  • Odom, A. R. (2011). Five questions about non-mevalonate isoprenoid biosynthesis. PLoS Pathogens, 7(12), e1002323. https://doi.org/10.1371/journal.ppat.1002323
  • Patil, R., Das, S., Stanley, A., Yadav, L., & Sudhakar, A. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PloS One, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029
  • Periferakis, A., Periferakis, K., Badarau, I. A., Petran, E. M., Popa, D. C., Caruntu, A., Costache, R. S., Scheau, C., Caruntu, C., & Costache, D. O. (2022). Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications. International Journal of Molecular Sciences, 23(23), 15054. https://doi.org/10.3390/ijms232315054
  • Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews. Computational Molecular Science, 6(2), 147–172. https://doi.org/10.1002/wcms.1240
  • Rehman, M. U., Ali, A., Ansar, R., Arafah, A., Imtiyaz, Z., Wani, T. A., Zargar, S., & Ganie, S. A. (2022). In Silico molecular docking and dynamic analysis of natural compounds against major non-structural proteins of SARS-COV-2. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2022.2139766
  • Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., Lucarini, M., Santini, A., Souto, E. B., Novellino, E., Antolak, H., Azzini, E., Setzer, W. N., & Martins, N. (2019). The therapeutic potential of Apigenin. International Journal of Molecular Sciences, 20(6), 1305. https://doi.org/10.3390/ijms20061305
  • San Jose, G., Jackson, E. R., Uh, E., Johny, C., Haymond, A., Lundberg, L., Pinkham, C., Kehn-Hall, K., Boshoff, H. I., Couch, R. D., & Dowd, C. S. (2013). Design of potential bisubstrate inhibitors against Mycobacterium tuberculosis (Mtb) 1-deoxy-d-xylulose 5-phosphate reductoisomerase (Dxr)-evidence of a novel binding mode. MedChemComm, 4(7), 1099–1104. https://doi.org/10.1039/c3md00085k
  • Sanders, S., Bartee, D., Harrison, M. J., Phillips, P. D., Koppisch, A. T., & Freel Meyers, C. L. (2018). Growth medium-dependent antimicrobial activity of early stage MEP pathway inhibitors. Plos One, 13(5), e0197638. https://doi.org/10.1371/journal.pone.0197638
  • Schleinkofer, K., Wang, T., & Wade, R. C. (2006). Molecular docking. In Encyclopedic reference of genomics and proteomics in molecular medicine (Vol. 443, pp. 1149–1153). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-29623-9_3820
  • Seung, K. J., Keshavjee, S., & Rich, M. L. (2015). Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harbor Perspectives in Medicine, 5(9), a017863.
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Sharifi-Rad, J., Salehi, B., Stojanović-Radić, Z. Z., Fokou, P. V. T., Sharifi-Rad, M., Mahady, G. B., Sharifi-Rad, M., Masjedi, M. R., Lawal, T. O., Ayatollahi, S. A., Masjedi, J., Sharifi-Rad, R., Setzer, W. N., Sharifi-Rad, M., Kobarfard, F., Rahman, A. u., Choudhary, M. I., Ata, A., & Iriti, M. (2020). Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnology Advances, 44, 107629. https://doi.org/10.1016/j.biotechadv.2020.107629
  • Srinivasan, D., Nathan, S., Suresh, T., & Lakshmana Perumalsamy, P. (2001). Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. Journal of Ethnopharmacology, 74(3), 217–220. https://doi.org/10.1016/S0378-8741(00)00345-7
  • Sureshkumar, M. (2014). Antimicrobial activity of medicinally important plant- Tephrosia purpurea Linn. against pathogenic bacteria. Journal of Chemical and Pharmaceutical Research, 6(9), 61–64.
  • Uh, E., Jackson, E. R., San Jose, G., Maddox, M., Lee, R. E., Lee, R. E., Boshoff, H. I., & Dowd, C. S. (2011). Antibacterial and antitubercular activity of fosmidomycin, FR900098, and their lipophilic analogs. Bioorganic & Medicinal Chemistry Letters, 21(23), 6973–6976. https://doi.org/10.1016/j.bmcl.2011.09.123
  • Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243
  • ur Rashid, H., Xu, Y., Ahmad, N., Muhammad, Y., & Wang, L. (2019). Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E 2, inducible NO synthase and nuclear factor κb activities. Bioorganic Chemistry, 87(March), 335–365. https://doi.org/10.1016/j.bioorg.2019.03.033
  • Ushamalini, & Naik D. P. (2008). Antimicrobial activity of some medicinal plants. Ecology, Environment and Conservation, 14(2–3), 413–415.
  • Volmink, J., & Garner, P. (2005). Directly observed therapy for treating tuberculosis [Systematic Review]. Cochrane Database of Systematic Reviews, 4, CD003343. https://doi.org/10.1002/14651858.CD003343.pub3
  • Wang, M., Firrman, J., Liu, L. S., & Yam, K. (2019). A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Research International, 2019, 7010467. https://doi.org/10.1155/2019/7010467
  • WHO. (2021). Tuberculosis (TB). World Health Organization. https://www.who.int/news-room/fact-sheets/detail/tuberculosis
  • Xu, M., Wu, P., Shen, F., Ji, J., & Rakesh, K. P. (2019). Chalcone derivatives and their antibacterial activities: Current development. Bioorganic Chemistry, 91(July), 103133. https://doi.org/10.1016/j.bioorg.2019.103133
  • Yadav, N., Dixit, S. K., Bhattacharya, A., Mishra, L. C., Sharma, M., Awasthi, S. K., & Bhasin, V. K. (2012). Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chemical Biology & Drug Design, 80(2), 340–347. https://doi.org/10.1111/j.1747-0285.2012.01383.x
  • Yuan, Y., Pei, J., & Lai, L. (2013). Binding site detection and druggability prediction of protein targets for structure- based drug design. Current Pharmaceutical Design, 19(12), 2326–2333. https://doi.org/10.2174/1381612811319120019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.