138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential suppression of multidrug-resistance-associated protein 1 by coumarin derivatives: an insight from molecular docking and MD simulation studies

, , & ORCID Icon
Received 24 Apr 2023, Accepted 15 Aug 2023, Published online: 05 Sep 2023

References

  • Akif, M., Masuyer, G., Bingham, R. J., Sturrock, E. D., Isaac, R. E., & Acharya, K. R. (2012). Structural basis of peptide recognition by the angiotensin-1 converting enzyme homologue AnCE from Drosophila melanogaster. FEBS Journal, 279(24), 4525–4534. https://doi.org/10.1111/febs.12038
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Bhakat, S., Shaikh, F., Yadav, S., & Rawal, R. (2013). Identification of neuraminidase inhibitors by structure-based screening: Promising new leads for influenza. Medicinal Chemistry Research, 22, 2803–2809.
  • Bickers, S. C., Sayewich, J. S., & Kanelis, V. (2020). Intrinsically disordered regions regulate the activities of ATP binding cassette transporters. Biochimica et Biophysica Acta. Biomembranes, 1862(6), 183202. https://doi.org/10.1016/j.bbamem.2020.183202
  • Bisi, A., Cappadone, C., Rampa, A., Farruggia, G., Sargenti, A., Belluti, F., Di Martino, R. M. C., Malucelli, E., Meluzzi, A., Iotti, S., & Gobbi, S. (2017). Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. European Journal of Medicinal Chemistry, 127, 577–585. https://doi.org/10.1016/j.ejmech.2017.01.020
  • Bitencourt-Ferreira, G., & de Azevedo, W. F. Jr. (2019). Molegro virtual docker for docking. Methods in Molecular Biology, 2053, 149–167.
  • Bürgi, J., Xue, B., Uversky, V. N., & van der Goot, F. G. (2016). Intrinsic disorder in transmembrane proteins: Roles in signaling and topology prediction. PLOS One, 11(7), e0158594. https://doi.org/10.1371/journal.pone.0158594
  • Cole, S. P. (2014). Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. Journal of Biological Chemistry, 289(45), 30880–30888. https://doi.org/10.1074/jbc.R114.609248
  • Cole, S. P. C. (2014). Targeting multidrug resistance protein 1 (MRP1, ABCC1): Past, present, and future. Annual Review of Pharmacology and Toxicology, 54(1), 95–117. https://doi.org/10.1146/annurev-pharmtox-011613-135959
  • Cragg, G. M., & Pezzuto, J. M. (2016). Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre, 25(Suppl 2), 41–59.
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology, 1084, 193–226.
  • Demain, A. L., & Vaishnav, P. (2011). Natural products for cancer chemotherapy. Microbial Biotechnology, 4(6), 687–699. https://doi.org/10.1111/j.1751-7915.2010.00221.x
  • Dhamodharan, P., Ponnusamy, N., Odumpatta, R., Lulu, S., & Arumugam, M. (2018). Computational investigation of marine bioactive compounds against E6 oncoprotein of Human Papilloma Virus-HPV16. Journal of Applied Pharmaceutical Science, 8, 23–032.
  • Dulhanty, A. M., & Riordan, J. R. (1994). Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Biochemistry, 33(13), 4072–4079. https://doi.org/10.1021/bi00179a036
  • Froimowitz, M. (1993). HyperChem: a software package for computational chemistry and molecular modeling. BioTechniques, 14(6), 1010–1013.
  • Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53(1), 615–627. https://doi.org/10.1146/annurev.med.53.082901.103929
  • Haimeur, A., Deeley, R. G., & Cole, S. P. C. (2002). Charged amino acids in the sixth transmembrane helix of multidrug resistance protein 1 (MRP1/ABCC1) are critical determinants of transport activity. Journal of Biological Chemistry, 277(44), 41326–41333. https://doi.org/10.1074/jbc.M206228200
  • Hegedus, T., Aleksandrov, A., Mengos, A., Cui, L., Jensen, T. J., & Riordan, J. R. (2009). Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A. Biochimica et Biophysica Acta, 1788(6), 1341–1349. https://doi.org/10.1016/j.bbamem.2009.03.015
  • Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews. Cancer, 13(10), 714–726. https://doi.org/10.1038/nrc3599
  • Huang, J., & MacKerell, A. D. Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Johnson, Z. L., & Chen, J. (2017). Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell, 168(6), 1075–1085.e9. https://doi.org/10.1016/j.cell.2017.01.041
  • Johnson, Z. L., & Chen, J. (2018). ATP binding enables substrate release from multidrug resistance protein 1. Cell, 172(1–2), 81–89.e10. https://doi.org/10.1016/j.cell.2017.12.005
  • Kazmi, S. R., Jun, R., Yu, M. S., Jung, C., & Na, D. (2019). In silico approaches and tools for the prediction of drug metabolism and fate: A review. Computers in Biology and Medicine, 106, 54–64. https://doi.org/10.1016/j.compbiomed.2019.01.008
  • Kim, Y., & Chen, J. (2018). Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science, 359(6378), 915–919. https://doi.org/10.1126/science.aar7389
  • https://www.molinspiration.com
  • Lacy, A., & O'Kennedy, R. (2004). Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Current Pharmaceutical Design, 10(30), 3797–3811. https://doi.org/10.2174/1381612043382693
  • Lemkul, J. A. (2018). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 5068.
  • Li, W., Zhang, H., Assaraf, Y. G., Zhao, K., Xu, X., Xie, J., Yang, D.-H., & Chen, Z.-S. (2016). Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resistance Updates, 27, 14–29. https://doi.org/10.1016/j.drup.2016.05.001
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Louisa, M., Soediro, T. M., & Suyatna, F. D. (2014). In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells. Asian Pacific Journal of Cancer Prevention, 15(4), 1639–1642. https://doi.org/10.7314/apjcp.2014.15.4.1639
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Meredith, A. M., & Dass, C. R. (2016). Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. Journal of Pharmacy and Pharmacology, 68(6), 729–741. https://doi.org/10.1111/jphp.12539
  • Mohammad, I. S., He, W., & Yin, L. (2018). Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomedicine & Pharmacotherapy, 100, 335–348. https://doi.org/10.1016/j.biopha.2018.02.038
  • Mohammad, I.-L., Mateos, B., & Pons, M. (2019). The disordered boundary of the cell: Emerging properties of membrane-bound intrinsically disordered proteins. Biomolecular Concepts, 10(1), 25–36. https://doi.org/10.1515/bmc-2019-0003
  • Mor, A., Ziv, G., & Levy, Y. (2008). Simulations of proteins with inhomogeneous degrees of freedom: The effect of thermostats. Journal of Computational Chemistry, 29(12), 1992–1998. https://doi.org/10.1002/jcc.20951
  • Munoz, M., Henderson, M., Haber, M., & Norris, M. (2007). Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life, 59(12), 752–757. https://doi.org/10.1080/15216540701736285
  • Muriithi, W., Macharia, L. W., Heming, C. P., Echevarria, J. L., Nyachieo, A., Filho, P. N., & Neto, V. M. (2020). ABC transporters and the hallmarks of cancer: Roles in cancer aggressiveness beyond multidrug resistance. Cancer Biology & Medicine, 17(2), 253–269. https://doi.org/10.20892/j.issn.2095-3941.2019.0284
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Obreque-Balboa, J. E., Sun, Q., Bernhardt, G., König, B., & Buschauer, A. (2016). Flavonoid derivatives as selective ABCC1 modulators: Synthesis and functional characterization. European Journal of Medicinal Chemistry, 109, 124–133. https://doi.org/10.1016/j.ejmech.2015.12.010
  • Ostedgaard, L. S., Baldursson, O., Vermeer, D. W., Welsh, M. J., & Robertson, A. D. (2000). A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proceedings of the National Academy of Sciences of the USA, 97(10), 5657–5662. https://doi.org/10.1073/pnas.100588797
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Petersen, H. G. (1995). Accuracy and efficiency of the particle mesh Ewald method. Journal of Chemical Physics, 103(9), 3668–3679. https://doi.org/10.1063/1.470043
  • Pollastri, M. P. (2010). Overview on the Rule of Five. Current Protocols in Pharmacology, Chapter 9, Unit 9.12 10.1002/0471141755.ph0912s49PMC: 22294375
  • Ramaen, O., Leulliot, N., Sizun, C., Ulryck, N., Pamlard, O., Lallemand, J.-Y., van Tilbeurgh, H., & Jacquet, E. (2006). Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site. Journal of Molecular Biology, 359(4), 940–949. https://doi.org/10.1016/j.jmb.2006.04.005
  • Rivel, T., Ramseyer, C., & Yesylevskyy, S. (2019). The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Scientific Reports, 9(1), 5627. https://doi.org/10.1038/s41598-019-41903-w
  • Roberts, J. A., Pea, F., & Lipman, J. (2013). The clinical relevance of plasma protein binding changes. Clinical Pharmacokinetics, 52(1), 1–8. https://doi.org/10.1007/s40262-012-0018-5
  • Rosales-Hernández, M. C., & Correa-Basurto, J. (2015). The importance of employing computational resources for the automation of drug discovery. Expert Opinion on Drug Discovery, 10(3), 213–219. https://doi.org/10.1517/17460441.2015.1005071
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salsbury, F. R. Jr. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 10(6), 738–744.
  • Sheridan, C. (2016). The Python language reference. Lulu.com.
  • Singla, D., Dhanda, S. K., Chauhan, J. S., Bhardwaj, A., Brahmachari, S. K., & Raghava, G. P., & Open Source Drug Discovery Consortium. (2013). Open source software and web services for designing therapeutic molecules. Current Topics in Medicinal Chemistry, 13(10), 1172–1191. https://doi.org/10.2174/1568026611313100005
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. Jr. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Tantama, M., & Yellen, G. (2014). Imaging changes in the cytosolic ATP-to-ADP ratio. Methods in Enzymology, 547, 355–371.
  • Tiwari, A. K., Sodani, K., Dai, C. L., Ashby, C. R., Jr., & Chen, Z. S. (2011). Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Current Pharmaceutical Biotechnology, 12(4), 570–594. https://doi.org/10.2174/138920111795164048
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Valerio, L. G. Jr. (2009). In silico toxicology for the pharmaceutical sciences. Toxicology and Applied Pharmacology, 241(3), 356–370.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37(Web Server issue), W623–W633. https://doi.org/10.1093/nar/gkp456
  • Wojnowski, L., Kulle, B., Schirmer, M., Schlüter, G., Schmidt, A., Rosenberger, A., Vonhof, S., Bickeböller, H., Toliat, M. R., Suk, E. K., Tzvetkov, M., Kruger, A., Seifert, S., Kloess, M., Hahn, H., Loeffler, M., Nürnberg, P., Pfreundschuh, M., Trümper, L.,… Hasenfuss, G. (2005). NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 112(24), 3754–3762.
  • Wong-Ekkabut, J., & Karttunen, M. (2012). Assessment of common simulation protocols for simulations of nanopores, membrane proteins, and channels. Journal of Chemical Theory and Computation, 8(8), 2905–2911. https://doi.org/10.1021/ct3001359
  • Wu, C. P., Ohnuma, S., & Ambudkar, S. V. (2011). Discovering natural product modulators to overcome multidrug resistance in cancer chemotherapy. Current Pharmaceutical Biotechnology, 12(4), 609–620. https://doi.org/10.2174/138920111795163887
  • Xing, J., Huang, S., Heng, Y., Mei, H., & Pan, X. (2020). Computational insights into allosteric conformational modulation of P-glycoprotein by substrate and inhibitor binding. Molecules, 25(24), 6006.https://doi.org/10.3390/molecules25246006
  • Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559. 10.3390/molecules21050559

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.