328
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In-silico design, pharmacophore-based screening, and molecular docking studies reveal that benzimidazole-1,2,3-triazole hybrids as novel EGFR inhibitors targeting lung cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Received 02 May 2023, Accepted 18 Aug 2023, Published online: 30 Aug 2023

References

  • Abad-Zapatero, C. (2007). Ligand efficiency indices for effective drug discovery. Expert Opinion on Drug Discovery, 2(4), 469–488. https://doi.org/10.1517/17460441.2.4.469
  • Abbas, F., Ali, U., Muhammad Rizwan Ahmad, H., Tallat, A., Shehzad, A., Zeb, Z., Hussain, I., Saeed, A., & Tariq, M. (2022). Role of iodo-substituted subphthalocyanine (Subpcs) π-conjugated aromatic N-fused di-iminoisonidole units on the performance of non-fullerene small organic solar cells. Computational and Theoretical Chemistry, 1207, 113508. https://doi.org/10.1016/j.comptc.2021.113508
  • Abughanimeh, O., Kaur, A., el Osta, B., & Ganti, A. K. (2022). Novel targeted therapies for advanced non-small lung cancer. Seminars in Oncology, 49(3–4), 326–336. https://doi.org/10.1053/j.seminoncol.2022.03.003
  • Ahirwar, D. K., Peng, B., Charan, M., Misri, S., Mishra, S., Kaul, K., Sassi, S., Gadepalli, V. S., Siddiqui, J., Miles, W. O., Ganju, R. K., Ahirwar, D. K., & Ganju, R. K. (2022). Slit2/Robo1 signaling inhibits small-cell lung cancer by targeting β-catenin signaling in tumor cells and macrophages. Molecular Oncology, 17(5), 839–856. https://doi.org/10.1002/1878-0261.13289
  • Ahmed Saleh Alzahrani, S., Nazreen, S., Elhenawy, A. A., Neamatallah, T., & Mahboob, M. (2022). Synthesis, biological evaluation, and molecular docking of new benzimidazole-1,2,3-triazole hybrids as antibacterial and antitumor agents. Polycyclic Aromatic Compounds, 43(4), 3380–3391. https://doi.org/10.1080/10406638.2022.2069133
  • Akhtar, J., Khan, A. A., Ali, Z., Haider, R., & Shahar Yar, M. (2017). Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. European Journal of Medicinal Chemistry, 125, 143–189. https://doi.org/10.1016/j.ejmech.2016.09.023
  • Alam, M. M. (2022). 1,2,3-triazole hybrids as anticancer agents: A review. Archiv Der Pharmazie, 355(1), e2100158. https://doi.org/10.1002/ardp.202100158
  • Ali, A. M., Tawfik, S. S., Mostafa, A. S., & Massoud, M. A. M. (2022). Benzimidazole-based protein kinase inhibitors: Current perspectives in targeted cancer therapy. Chemical Biology & Drug Design, 100(5), 656–673. https://doi.org/10.1111/CBDD.14130
  • Ali, U., Tariq, A., Kiran, A., Abbas, F., & Khalil, M. T. (2021). Tuning the absorption and optoelectronic properties of naphthalene diimide based solar cells with non-fullerene acceptors. Chemical Papers, 75(8), 4327–4336. https://doi.org/10.1007/s11696-021-01671-2
  • Almehmadi, M. A., Aljuhani, A., Alraqa, S. Y., Ali, I., Rezki, N., Aouad, M. R., & Hagar, M. (2021). Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates. Journal of Molecular Structure, 1225, 129148. https://doi.org/10.1016/j.molstruc.2020.129148
  • Alzahrani, H. A., Alam, M. M., Elhenawy, A. A., Malebari, A. M., & Nazreen, S. (2022). Synthesis, antiproliferative, docking and DFT studies of benzimidazole derivatives as EGFR inhibitors. Journal of Molecular Structure, 1253, 132265. https://doi.org/10.1016/j.molstruc.2021.132265
  • Avci, E. (2012). A new expert system for diagnosis of lung cancer: Gda-ls-svm. Journal of Medical Systems, 36(3), 2005–2009. https://doi.org/10.1007/s10916-011-9660-y
  • Beau-Faller, M., Prim, N., Ruppert, A.-M., Nanni-Metéllus, I., Lacave, R., Lacroix, L., Escande, F., Lizard, S., Pretet, J.-L., Rouquette, I., de Crémoux, P., Solassol, J., de Fraipont, F., Bièche, I., Cayre, A., Favre-Guillevin, E., Tomasini, P., Wislez, M., Besse, B., … Cadranel, J. (2014). Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: A multicentre observational study by the French ERMETIC-IFCT network. Annals of Oncology : official Journal of the European Society for Medical Oncology, 25(1), 126–131. https://doi.org/10.1093/annonc/mdt418
  • Bembenek, S. D., Tounge, B. A., & Reynolds, C. H. (2009). Ligand efficiency and fragment-based drug discovery. Drug Discovery Today, 14(5–6), 278–283. https://doi.org/10.1016/j.drudis.2008.11.007
  • Bistrović, A., Krstulović, L., Harej, A., Grbčić, P., Sedić, M., Koštrun, S., Pavelić, S. K., Bajić, M., & Raić-Malić, S. (2018). Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. European Journal of Medicinal Chemistry, 143, 1616–1634. https://doi.org/10.1016/j.ejmech.2017.10.061
  • Bronte, G., Rizzo, S., la Paglia, L., Adamo, V., Siragusa, S., Ficorella, C., Santini, D., Bazan, V., Colucci, G., Gebbia, N., & Russo, A. (2010). Driver mutations and differential sensitivity to targeted therapies: A new approach to the treatment of lung adenocarcinoma. Cancer Treatment Reviews, 36, S21–S29. https://doi.org/10.1016/S0305-7372(10)70016-5
  • Buchwald, P. (2010). Small-molecule protein–protein interaction inhibitors: Therapeutic potential in light of molecular size, chemical space, and ligand binding efficiency considerations. IUBMB Life, 62(10), 724–731. https://doi.org/10.1002/iub.383
  • Chai, J. Y., Jung, B. K., & Hong, S. J. (2021). Albendazole and mebendazole as anti-parasitic and anti-cancer agents: An update. Korean Journal of Parasitology, 59(3), 189–225. https://doi.org/10.3347/KJP.2021.59.3.189
  • Chang, J. W. C., Huang, C. Y., Fang, Y. F., Chang, C. F., Yang, C. T., Kuo, C. H. S., Hsu, P., C., & Wu, C. E. (2022). Risk stratification using a novel nomogram for 2190 EGFR-mutant NSCLC patients receiving the first or second generation EGFR-TKI. Cancers, 14(4), 977. https://doi.org/10.3390/cancers14040977
  • Chaudhari, R., & Li, Z. (2015). PyMine: A PyMOL plugin to integrate and visualize data for drug discovery bioinformatics. BMC Research Notes, 8(1), 517. https://doi.org/10.1186/S13104-015-1483-3
  • Cooper, Z. D. (2016). Adverse effects of synthetic cannabinoids: Management of acute toxicity and withdrawal. Current Psychiatry Reports, 18(5), 52. https://doi.org/10.1007/s11920-016-0694-1
  • Cortes-Ciriano, I. (2016). Benchmarking the predictive power of ligand efficiency indices in QSAR. Journal of Chemical Information and Modeling, 56(8), 1576–1587. https://doi.org/10.1021/acs.jcim.6b00136
  • Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual screening with AutoDock: Theory and practice. Expert Opinion on Drug Discovery, 5(6), 597–607. https://doi.org/10.1517/17460441.2010.484460
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Danielson, M. L., Hu, B., Shen, J., & Desai, P. V. (2017). In silico ADME techniques used in early-phase drug discovery. AAPS Advances in the Pharmaceutical Sciences Series, 25, 81–117. https://doi.org/10.1007/978-3-319-50042-3_4
  • Daoud, N. E.-H., Borah, P., Deb, P. K., Venugopala, K. N., Hourani, W., Alzweiri, M., Bardaweel, S. K., & Tiwari, V. (2021). ADMET profiling in drug discovery and development: Perspectives of in silico, in vitro and integrated approaches. Current Drug Metabolism, 22(7), 503–522. https://doi.org/10.2174/1389200222666210705122913
  • Dearden, J. C. (2003). In silico prediction of drug toxicity. Journal of Computer-Aided Molecular Design, 17(2–4), 119–127. https://doi.org/10.1023/A:1025361621494
  • Efferth, T. (2017). Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 37, 58–61. https://doi.org/10.1016/j.phymed.2017.11.003
  • Engel, J., Becker, C., Lategahn, J., Keul, M., Ketzer, J., Mühlenberg, T., Kollipara, L., Schultz-Fademrecht, C., Zahedi, R. P., Bauer, S., & Rauh, D. (2016). Insight into the inhibition of drug-resistant mutants of the receptor tyrosine kinase EGFR. Angewandte Chemie (International ed. in English), 55(36), 10909–10912. https://doi.org/10.1002/anie.201605011
  • Feng, L. S., Su, W. Q., Cheng, J. B., Xiao, T., Li, H. Z., Chen, D. A., & Zhang, Z. L. (2022). Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure–activity relationship, and mechanisms of action (2019–2021). Archiv Der Pharmazie, 355(6), e2200051. https://doi.org/10.1002/ardp.202200051
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., & Petersson, G. A. (2009). Gaussian 09, Revis. B. 01, Gaussian. Inc., Wallingford CT, 1–20. https://gaussian.com/glossary/g09/
  • Gabrielson, E., & Hopkins, J. (2006). Worldwide trends in lung cancer pathology. Respirology (Carlton, Vic.), 11(5), 533–538. https://doi.org/10.1111/J.1440-1843.2006.00909.X
  • Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., & Reynolds, C. H. (2014). The role of ligand efficiency metrics in drug discovery. Nature Reviews. Drug Discovery, 13(2), 105–121. https://doi.org/10.1038/nrd4163
  • Hu, S., Xie, G., Zhang, D. X., Davis, C., Long, W., Hu, Y., Wang, F., Kang, X., Tan, F., Ding, L., & Wang, Y. (2012). Synthesis and biological evaluation of crown ether fused quinazoline analogues as potent EGFR inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(19), 6301–6305. https://doi.org/10.1016/j.bmcl.2012.06.067
  • Hu, Y., Zhou, L., Zhu, X., Dai, D., Bao, Y., & Qiu, Y. (2019). Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. Journal of Biomolecular Structure & Dynamics, 37(10), 2703–2715. https://doi.org/10.1080/07391102.2018.1495576
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/PROT.10613
  • Jawad, B., Adhikari, P., Podgornik, R., & Ching, W.-Y. (2021). Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: Combination of molecular dynamics simulation and density functional calculation. Journal of Chemical Information and Modeling, 61(9), 4425–4441. https://doi.org/10.1021/acs.jcim.1c00560
  • Jia, C. Y., Li, J. Y., Hao, G. F., & Yang, G. F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258. https://doi.org/10.1016/J.DRUDIS.2019.10.014
  • Johnson, M., Garassino, M. C., Mok, T., & Mitsudomi, T. (2022). Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors: Focus on novel therapies. Lung Cancer (Amsterdam, Netherlands), 170, 41–51. https://doi.org/10.1016/j.lungcan.2022.05.011
  • Khuder, S. A., & Mutgi, A. B. (2001). Effect of smoking cessation on major histologic types of lung cancer. Chest, 120(5), 1577–1583. https://doi.org/10.1378/CHEST.120.5.1577
  • Kiran, A., Ali, U., Hussain, A., Ahmad, H. M. R., Abbas, F., Memon, T. A., & Hussain, A. (2021). Molecular designing of tetra-aryl-p-benzoquinones derivatives toward strong optical properties. Chemical Papers, 75(12), 6661–6671. https://doi.org/10.1007/s11696-021-01834-1
  • Kontoyianni, M. (2017). Docking and virtual screening in drug discovery. Methods in Molecular Biology (Clifton, N.J.), 1647, 255–266. https://doi.org/10.1007/978-1-4939-7201-2_18
  • Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer biological and clinical implications. Cancer Research, 64(24), 8919–8923. https://doi.org/10.1158/0008-5472.CAN-04-2818
  • Kumar, S., Abbas, F., Ali, I., Gupta, M. K., Kumar, S., Garg, M., & Kumar, D. (2023). Integrated network pharmacology and in-silico approaches to decipher the pharmacological mechanism of Selaginella tamariscina in the treatment of non-small cell lung cancer. Phytomedicine Plus, 3(2), 100419. https://doi.org/10.1016/j.phyplu.2023.100419
  • Kumar, S., Ali, I., Abbas, F., Khan, N., Gupta, M. K., Garg, M., Kumar, S., & Kumar, D. (2023). In-silico identification of small molecule benzofuran-1,2,3-triazole hybrids as potential inhibitors targeting EGFR in lung cancer via ligand-based pharmacophore modeling and molecular docking studies. In Silico Pharmacology, 11(1), 20. https://doi.org/10.1007/s40203-023-00157-1
  • Kumar, S., Sharma, A. K., Lalhlenmawia, H., & Kumar, D. (2021). Natural compounds targeting major signaling pathways in lung cancer. In Targeting Cellular Signalling Pathways in Lung Diseases (pp. 821–846). https://doi.org/10.1007/978-981-33-6827-9_37
  • Kurter, H., Mert-Ozupek, N., Ellidokuz, H., & Calibasi-Kocal, G. (2022). In-silico drug-likeness analysis, ADME properties, and molecular docking studies of cyanidin-3-arabinoside, pelargonidin-3-glucoside, and peonidin-3-arabinoside as natural anticancer compounds against acting receptor-like kinase 5 receptor. Anti-Cancer Drugs, 33(6), 517–522. https://doi.org/10.1097/CAD.0000000000001297
  • Law, C. S. W., & Yeong, K. Y. (2021). Benzimidazoles in drug discovery: A patent review. ChemMedChem, 16(12), 1861–1877. https://doi.org/10.1002/CMDC.202100004
  • Lemjabbar-Alaoui, H., Hassan, O. U. I., Yang, Y. W., & Buchanan, P. (2015). Lung cancer: Biology and treatment options. Biochimica et Biophysica Acta, 1856(2), 189–210. https://doi.org/10.1016/J.BBCAN.2015.08.002
  • Li, B. H., Ge, J. Q., Wang, Y. L., Wang, L. J., Zhang, Q., & Bian, C. (2021). Ligand-based and docking-based virtual screening of MDM2 inhibitors as potent anticancer agents. Computational and Mathematical Methods in Medicine, 2021, 3195957. https://doi.org/10.1155/2021/3195957
  • Liu, Q., Yu, S., Zhao, W., Qin, S., Chu, Q., & Wu, K. (2018). EGFR-TKIs resistance via EGFR-independent signaling pathways. Molecular Cancer, 17(1), 53. https://doi.org/10.1186/S12943-018-0793-1
  • Maghraby, M. T. E., Salem, O. I. A., Youssif, B. G. M., & Sheha, M. M. (2023). Design, synthesis, and modelling study of new 1,2,3-triazole/chalcone hybrids with antiproliferative action as epidermal growth factor receptor inhibitors. Chemical Biology & Drug Design, 101(3), 749–759. https://doi.org/10.1111/cbdd.14178
  • Honório, K. M.,Moda, T. L., &Andricopulo, A. D. (2013). Pharmacokinetic properties and in silico ADME modeling in drug discovery. Medicinal Chemistry (Shariqah (United Arab Emirates)), 9(2), 163–176. 10.2174/1573406411309020002 23016542
  • Mignani, S., Rodrigues, J., Tomas, H., Jalal, R., Singh, P. P., Majoral, J. P., & Vishwakarma, R. A. (2018). Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: How far can they be simplified? Drug Discovery Today, 23(3), 605–615. https://doi.org/10.1016/j.drudis.2018.01.010
  • Moradi, M., Mousavi, A., Emamgholipour, Z., Giovannini, J., Moghimi, S., Peytam, F., Honarmand, A., Bach, S., & Foroumadi, A. (2023). Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies. European Journal of Medicinal Chemistry, 259, 115626. https://doi.org/10.1016/j.ejmech.2023.115626
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/JCC.21256
  • Nath, J., Paul, R., Ghosh, S. K., Paul, J., Singha, B., & Debnath, N. (2020). Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sciences, 258, 118189. https://doi.org/10.1016/J.LFS.2020.118189
  • Nawareg, N. A., Mostafa, A. S., El-Messery, S. M., & Nasr, M. N. A. (2022). New benzimidazole based hybrids: Synthesis, molecular modeling study and anticancer evaluation as TopoII inhibitors. Bioorganic Chemistry, 127, 106038. https://doi.org/10.1016/j.bioorg.2022.106038
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(10), 33. https://doi.org/10.1186/1758-2946-3-33
  • Othman, D., I. A., Hamdi, A., Tawfik, S. S., Elgazar, A. A., & Mostafa, A. S. (2023). Identification of new benzimidazole-triazole hybrids as anticancer agents: Multi-target recognition, in vitro and in silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1), 2166037. https://doi.org/10.1080/14756366.2023.2166037
  • Pandi, S., Kulanthaivel, L., Subbaraj, G. K., Rajaram, S., & Subramanian, S. (2022). Screening of potential breast cancer inhibitors through molecular docking and molecular dynamics simulation. BioMed Research International, 2022, 3338549–3338549. https://doi.org/10.1155/2022/3338549
  • Panigrahi, D., Mishra, A., & Sahu, S. K. (2020). Pharmacophore modelling, QSAR study, molecular docking and insilico ADME prediction of 1,2,3-triazole and pyrazolopyridones as DprE1 inhibitor antitubercular agents. SN Applied Sciences, 2(5), 1–28. https://doi.org/10.1007/s42452-020-2638-y
  • Park, J. H., Liu, Y., Lemmon, M. A., & Radhakrishnan, R. (2012). Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochemical Journal, 448(3), 417–423. https://doi.org/10.1042/BJ20121513
  • Paul Gleeson, M., Hersey, A., & Hannongbua, S. (2011). In-silico ADME models: A general assessment of their utility in drug discovery applications. Current Topics in Medicinal Chemistry, 11(4), 358–381. https://doi.org/10.2174/156802611794480927
  • Peng, L., Song, Z. G., & Jiao, S. C. (2014). Efficacy analysis of tyrosine kinase inhibitors on rare non-small cell lung cancer patients harboring complex EGFR mutations. Scientific Reports, 4(1), 6104. https://doi.org/10.1038/SREP06104
  • Perola, E. (2010). An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs. Journal of Medicinal Chemistry, 53(7), 2986–2997. https://doi.org/10.1021/jm100118x 20235539
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/IJMS20184331
  • Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews. Computational Molecular Science, 6(2), 147–172. https://doi.org/10.1002/WCMS.1240
  • Rasheed, M. A., Iqbal, M. N., Saddick, S., Ali, I., Khan, F. S., Kanwal, S., Ahmed, D., Ibrahim, M., Afzal, U., & Awais, M. (2021). Identification of lead compounds against SCM (Fms10) in enterococcus faecium using computer aided drug designing. Life (Basel, Switzerland), 11(2), 77. https://doi.org/10.3390/life11020077
  • Raymond, E., Faivre, S., & Armand, J. P. (2000). Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs, 60(Supplement 1), 15–23. https://doi.org/10.2165/00003495-200060001-00002
  • Russell, É., Conroy, M. J., & Barr, M. P. (2022). Harnessing natural killer cells in non-small cell lung cancer. Cells, 11(4), 605. https://doi.org/10.3390/CELLS11040605
  • Russo, T. V., Martin, R. L., & Hay, P. J. (1994). Density functional calculations on first‐row transition metals. Journal of Chemical Physics, 101(9), 7729–7737. https://doi.org/10.1063/1.468265
  • Safdar, A., Malathum, K., Rodriguez, S. J., Husni, R., & Rolston, K. V. I. (2004). Strongyloidiasis in patients at a comprehensive cancer center in the United States. Cancer, 100(7), 1531–1536. https://doi.org/10.1002/CNCR.20120
  • Sander, T., Freyss, J., von Korff, M., Reich, J. R., & Rufener, C. (2009). OSIRIS, an entirely in-house developed drug discovery informatics system. Journal of Chemical Information and Modeling, 49(2), 232–246. https://doi.org/10.1021/CI800305F
  • Sarna, L., Evangelista, L., Tashkin, D., Padilla, G., Holmes, C., Brecht, M. L., & Grannis, F. (2004). Impact of respiratory symptoms and pulmonary function on quality of life of long-term survivors of non-small cell lung cancer. Chest, 125(2), 439–445. https://doi.org/10.1378/CHEST.125.2.439
  • Satija, G., Sharma, B., Madan, A., Iqubal, A., Shaquiquzzaman, M., Akhter, M., Parvez, S., Khan, M. A., & Alam, M. M. (2022). Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. Journal of Heterocyclic Chemistry, 59(1), 22–66. https://doi.org/10.1002/jhet.4355
  • Scagliotti, G. V., Selvaggi, G., Novello, S., & Hirsch, F. R. (2004). The biology of epidermal growth factor receptor in lung cancer. Clinical Cancer Research, 10(12), 4227s–4232s. https://doi.org/10.1158/1078-0432.CCR-040007
  • Sharma, A., Shambhwani, D., Pandey, S., Singh, J., Lalhlenmawia, H., Kumarasamy, M., Singh, S. K., Chellappan, D. K., Gupta, G., Prasher, P., Dua, K., & Kumar, D. (2023). Advances in lung cancer treatment using nanomedicines. ACS Omega, 8(1), 10–41. https://doi.org/10.1021/acsomega.2c04078
  • Singu, P. S., Chilakamarthi, U., Mahadik, N. S., Keerti, B., Valipenta, N., Mokale, S. N., Nagesh, N., & Kumbhare, R. M. (2021). Benzimidazole-1,2,3-triazole hybrid molecules: Synthesis and study of their interaction with G-quadruplex DNA. RSC Medicinal Chemistry, 12(3), 416–429. https://doi.org/10.1039/D0MD00414F
  • Smits, A. J. J., Kummer, J. A., Hinrichs, J. W. J., Herder, G. J. M., Scheidel-Jacobse, K. C., Jiwa, N. M., Ruijter, T. E. G., Nooijen, P. T. G. A., Looijen-Salamon, M. G., Ligtenberg, M. J. L., Thunnissen, F. B., Heideman, D. A. M., de Weger, R. A., & Vink, A. (2012). EGFR and KRAS mutations in lung carcinomas in the Dutch population: Increased EGFR mutation frequency in malignant pleural effusion of lung adenocarcinoma. Cellular Oncology (Dordrecht), 35(3), 189–196. https://doi.org/10.1007/S13402-012-0078-4
  • Sridhar Goud, N., Pooladanda, V., Muni Chandra, K., Lakshmi Soukya, P. S., Alvala, R., Kumar, P., Nagaraj, C., Dawn Bharath, R., Qureshi, I. A., Godugu, C., & Alvala, M. (2020). Novel benzimidazole-triazole hybrids as apoptosis inducing agents in lung cancer: Design, synthesis, 18F-radiolabeling & galectin-1 inhibition studies. Bioorganic Chemistry, 102, 104125. https://doi.org/10.1016/j.bioorg.2020.104125
  • Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry, 60, 273–343. https://doi.org/10.1016/BS.PMCH.2021.01.004
  • Tannock, I. F. (1980). In vivo interaction of anti-cancer drugs with misonidazole or metronidazole: Methotrexate, 5-fluorouracil and adriamycin. British Journal of Cancer, 42(6), 871–880. https://doi.org/10.1038/bjc.1980.334
  • Terstappen, G. C., & Reggiani, A. (2001). In silico research in drug discovery. Trends in Pharmacological Sciences, 22(1), 23–26. https://doi.org/10.1016/S0165-6147(00)01584-4
  • Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 86, 2–10. https://doi.org/10.1016/J.ADDR.2015.01.009
  • Troiani, T., Martinelli, E., Capasso, A., Morgillo, F., Orditura, M., De Vita, F., & Ciardiello, F. (2012). Targeting EGFR in pancreatic cancer treatment. Current Drug Targets, 13(6), 802–810. https://doi.org/10.2174/138945012800564158
  • Upadhyay, J., Gajjar, A., & Suhagia, B. N. (2019). Combined ligand-based and structure-based virtual screening approach for identification of new dipeptidyl peptidase 4 inhibitors. Current Drug Discovery Technologies, 16(4), 426–436. https://doi.org/10.2174/1570163815666180926111558
  • Valerio, L. G. (2009). In silico toxicology for the pharmaceutical sciences. Toxicology and Applied Pharmacology, 241(3), 356–370. https://doi.org/10.1016/J.TAAP.2009.08.022
  • VLifeMDS. (2023). VLifeMDS molecular design suite from VLife Sciences Technologies Pvt. Ltd. SelectScience. https://www.selectscience.net/products/vlifemds-molecular-design-suite
  • Wales, C. T. K., Taylor, F. R., Higa, A. T., McAllister, H. A., & Jacobs, A. T. (2015). ERK-dependent phosphorylation of HSF1 mediates chemotherapeutic resistance to benzimidazole carbamates in colorectal cancer cells. Anti-Cancer Drugs, 26(6), 657–666. https://doi.org/10.1097/CAD.0000000000000231
  • Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488–515. https://doi.org/10.1017/S0033583515000190
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/NAR/GKAB255
  • Yang, Z., Hackshaw, A., Feng, Q., Fu, X., Zhang, Y., Mao, C., & Tang, J. (2017). Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: A meta-analysis. International Journal of Cancer, 140(12), 2805–2819. https://doi.org/10.1002/IJC.30691
  • Yin, X., Li, Y., Wang, H., Jia, T., Wang, E., Luo, Y., Wei, Y., Qin, Z., & Ma, X. (2022). Small cell lung cancer transformation: From pathogenesis to treatment. Seminars in Cancer Biology, 86(Pt 2), 595–606. https://doi.org/10.1016/J.SEMCANCER.2022.03.006
  • Yu-Jing, Y. J.,Zhang, C. M., &Liu, Z. P. (2012). Recent developments of small molecule EGFR inhibitors based on the quinazoline core scaffolds. Anti-Cancer Agents in Medicinal Chemistry, 12(4), 391–406. http://dx.doi.org/10.2174/187152012800228652
  • Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., Meyerson, M., & Eck, M. J. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2070–2075. https://doi.org/10.1073/pnas.0709662105
  • Zhang, C., Zhong, B., Yang, S., Pan, L., Yu, S., Li, Z., Li, S., Su, B., & Meng, X. (2015). Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents. Bioorganic & Medicinal Chemistry, 23(13), 3774–3780. https://doi.org/10.1016/J.BMC.2015.03.085
  • Zhang, X., Perez-Sanchez, H., & Lightstone, F. C. (2017). A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Current Topics in Medicinal Chemistry, 17(14), 1631–1639. https://doi.org/10.2174/1568026616666161117112604
  • Zhao, L. Y., Xin, G. J., Tang, Y. Y., Li, X. F., Li, Y. Z., Tang, N., & Ma, Y. H. (2022). miR-664b-3p inhibits colon cell carcinoma via negatively regulating budding uninhibited by benzimidazole. Bioengineered, 13(3), 4857–4868. https://doi.org/10.1080/21655979.2022.2036400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.