Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 2
157
Views
22
CrossRef citations to date
0
Altmetric
Original

Two Steady‐Entrainment Phases and Graded Masking Effects by Light Generate Different Circadian Chronotypes in Octodon degus

, &
Pages 219-241 | Received 05 Jun 2008, Accepted 24 Nov 2008, Published online: 07 Jul 2009

References

  • Anglés‐Pujolrás M, Díez‐Noguera A, Cambras T. Exposure to T‐cycles of 22 and 23 h during lactation modifies the later dissociation of motor activity and temperature circadian rhythms in rats. Chronobiol. Int. 2007; 24: 1049–1064
  • Bennett E T. Characters of a new genus of rodent Mammalia, presented by Mr. Cuming. Proc. Zool. Soc. London 1832; 46–48
  • Blanchong J A, McElhinny T L, Mahoney M M, Smale L. Nocturnal and diurnal rhythms in the unstriped Nile rat. Arvicanthis niloticus. J. Biol. Rhythms 1999; 14: 364–377
  • Bowmaker J K, Hunt D M. Evolution of vertebrate visual pigments. Current Biol. 2006; 16: 484–489
  • Chiesa J J, Díez‐Noguera A, Cambras T. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light‐dark cycles in female hamsters. Chronobiol. Int. 2007; 24: 215–234
  • Curtis D J, Rasmussen M A. The evolution of cathemerality in primates and other mammals: A comparative and chronoecological approach. Folia Primatol. 2006; 77: 178–193
  • Daan S. Colin Pittendrigh, Jurgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms 2000; 15: 195–207
  • Everts L, Strijkstra A M, Hut R A, Hoffmann I E, Millesi E. Seasonal variation in daily activity patterns of free‐ranging European ground squirrels (Spermophilus citellus). Chronobiol. Int. 2004; 21: 57–71
  • Fulk G W. Notes on the activity, reproduction, and social behavior of Octodon degus. J. Mammal. 1976; 57: 495–505
  • García‐Allegue R, Lax P, Madariaga A M, Madrid J A. Locomotor and feeding activity rhythms in a light‐entrained diurnal rodent. Octodon degus. Am. J. Physiol. 1999; 277: 523–531
  • Gorman M R, Evans J A, Elliott J A. Potent circadian effects of dim illumination at night in hamsters. Chronobiol. Int. 2006; 23: 245–250
  • Haim A, Shanas U, El Salam Zubidad A, Scantelbury M. Seasonality and seasons out of time—the thermoregulatory effects of light interference. Chronobiol. Int. 2005; 22: 59–66
  • Iriarte J A, Contreras L C, Jaksic F M. A long‐term study of a small‐mammal assemblage in the central Chilean matorral. J. Mammal. 1989; 70: 79–87
  • Jiao Y Y, Rusak B. Electrophysiology of optic nerve input to suprachiasmatic nucleus neurons in rats and degus. Brain Res. 2003; 960: 142–151
  • Johnson C H, Elliott J A, Foster R. Entrainment of circadian programs. Chronobiol. Int. 2003; 20: 741–774
  • Kas M JH, Edgar D M. A nonphotic stimulus inverts the diurnal‐nocturnal phase in Octodon degus. J. Neurosci. 1999; 19: 328–333
  • Kas M JH, Edgar D M. Scheduled voluntary wheel running activity modulates free‐running circadian body temperature rhythms in Octodon degus. J. Biol. Rhythms 2001; 16: 66–75
  • Kenagy G J, Nespoldo R F, Vasquez R A, Bozinovic F. Daily and seasonal limits of time and temperature to activity of degus. Rev. Chil. Hist. Nat. 2002; 75: 567–581
  • Krajnak K, Dickenson L, Lee T M. The induction of Fos‐like proteins in the suprachiasmatic nuclei and intergeniculate leaflet by light pulses in degus (Octodon degus) and rats. J. Biol. Rhythms 1997; 12: 401–412
  • Kronfeld‐Schor N, Dayan T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 2003; 34: 153–181
  • Labyak S E, Lee T M, Goel N. Rhythm chronotypes in a diurnal rodent. Octodon degus. Am. J. Physiol. 1997; 273: 1058–1066
  • Lagos V O, Bozinovic F, Contreras L C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk?. J. Mammal. 1995; 76: 900–905
  • Lee T M. Octodon degus: A diurnal, social, and long‐lived rodent. ILAR J. 2004; 45: 14–24
  • Levy O, Dayan T, Kronfeld‐Schor N. The relationship between the golden spiny mouse circadian system and its diurnal activity: An experimental field enclosures and laboratory study. Chronobiol. Int. 2007; 24: 599–613
  • Molina G I. Saggio sulla storia naturale del Chili. 1782; 368, Stamperia di S. Tommaso d'Aquino
  • Morris L G, Tate B A. Phase response curve to melatonin in a putatively diurnal rodent, Octodon degus. Chronobiol. Int. 2007; 24: 407–411
  • Mrosovsky N. Masking: History, definitions, and measurement. Chronobiol. Int. 1999; 16: 415–429
  • Mrosovsky N, Hattar S. Diurnal mice (Mus musculus) and other examples of temporal niche switching. J. Comp. Physiol. A 2005; 191: 1011–1024
  • Mustonen A M, Asikainen J, Kauhala K, Paakkonen T, Nieminen P. Seasonal rhythms of body temperature in the free‐ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep. Chronobiol. Int. 2007; 24: 1095–1107
  • Ocampo‐Garcés A, Mena W, Hernández F, Cortés N, Palacios A G. Circadian chronotypes among wild‐captured west Andean octodontids. Biol. Res. 2006; 39: 209–220
  • Oster H, Avivi A, Joel A, Albrecht U, Nevo E. A switch from diurnal to nocturnal activity in S. ehrenbergi is accompanied by an uncoupling of light input and the circadian clock. Current Biol. 2002; 12: 1919–1922
  • Portaluppi F, Touitou Y, Smolensky M H. Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 2008; 25: 999–1016
  • Refinetti R. Variability of diurnality in laboratory rodents. J. Comp. Physiol. A 2006; 192: 701–714
  • Sánchez‐Vázquez F J, Madrid J A, Zamora S. Circadian rhythms of feeding activity in sea bass, Dicentrarchus labrax L.: Dual phasing capacity of diel demand‐feeding pattern. J. Biol. Rhythms 1995; 10: 256–266
  • Schwartz W J, Reppert S M, Eagan S M, Moore‐Ede M C. In vivo metabolic activity of the suprachiasmatic nuclei: A comparative study. Brain Res. 1983; 274: 184–187
  • Schwartz M D, Nunez A A, Smale L. Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neurosci. 2004; 127: 13–23
  • Smale L, Nunez A A, Schwartz M D. Rhythms in a diurnal brain. Biol. Rhythms Res. 2008; 39: 305–318
  • Van der Veen D R, Van der Pol-Meijer M M Th, Janden K, Smeets M, van der Zee E A, Gerkema M P. Circadian rhythms of C‐FOS expression in the suprachiasmatic nuclei of the common vole (Microtus arvalis). Chronobiol. Int. 2008; 25: 481–499
  • Vivanco P, Ortiz V, Rol M A, Madrid J A. Looking for the keys to diurnality downstream from the circadian clock: Role of melatonin in a dual‐phasing rodent, Octodon degus. J. Pineal Res. 2007; 42: 280–290
  • Weinert D, Weinandy R, Gattermann R. Photic and non‐photic effects on the daily activity pattern of Mongolian gerbils. Physiol. Behav. 2007; 90: 325–333
  • Zubidat A E, Ben‐Shlomo R, Haim A. Thermoregulatory and endocrine responses to light pulses in short‐day acclimated social voles (Microtus socialis). Chronobiol. Int. 2007; 24: 269–288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.