Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 34, 2017 - Issue 9
436
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis

, , , &

References

  • Abran D, Anctil M, Ali MA. (1994). Melatonin activity rhythms in eyes and cerebral ganglia of Aplysia californica. Gen Comp Endocrinol. 96:215–22. doi:10.1006/gcen.1994.1176.
  • Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A. (2008). The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythms. 23:26–36. doi:10.1177/0748730407311254.
  • Amano T, Matsushita A, Hatanaka Y, Watanabe T, Oishi K, Ishida N, Anzai M, Mitani T, Kato H, Kishigami S, et al. (2009). Expression and functional analyses of circadian genes in mouse oocytes and preimplantation embryos: cry1 is involved in the meiotic process independently of circadian clock regulation. Biol Reprod. 80:473–83. doi:10.1095/biolreprod.108.069542.
  • André E, Gawlas K, Steinmayr M, Becker-André M. (1998). A novel isoform of the orphan nuclear receptor RORβ is specifically expressed in pineal gland and retina. Gene. 216:277–83. doi:10.1016/S0378-1119(98)00348-5.
  • Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR, Gillette MU. (2003). Requirement of mammalian Timeless for circadian rhythmicity. Science. 302:439–42. doi:10.1126/science.1086593.
  • Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. (2002). Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci USA. 99:2134–39. doi:10.1073/pnas.032426699.
  • Beaver LM, Rush BL, Gvakharia BO, Giebultowicz JM. (2003). Noncircadian regulation and function of clock genes period and timeless in oogenesis of Drosophila melanogaster. J Biol Rhythms. 18:463–72. doi:10.1177/0748730403259108.
  • Benna C, Bonaccorsi S, Wülbeck C, Helfrich-Förster C, Gatti M, Kyriacou CP, Costa R, Sandrelli F. (2010). Drosophila timeless2 is required for chromosome stability and circadian photoreception. Curr Biol. 20:346–52. doi:10.1016/j.cub.2009.12.048.
  • Bignell JP, Dodge MJ, Feist SW, Lyons B, Martin PD, Taylor NGH, Stone D, Travalent L, Stentiford GD. (2008). Mussel histopathology: effects of season, disease and species. Aquatic Biol. 2:1–15. doi:10.3354/ab00031.
  • Brunnberg S, Pettersson K, Rydin E, Matthews J, Hanberg A, Pongratz I. (2003). The basic helix–loop–helix–PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription. Proc Natl Acad Sci USA. 100:6517–22. doi:10.1073/pnas.1136688100.
  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 55:611–22. doi:10.1373/clinchem.2008.112797.
  • Cai X, Huang Y, Zhang X, Wang S, Zou Z, Wang G, Wang Y, Zhang Z. (2014). Cloning, characterization, hypoxia and heat shock response of hypoxia inducible factor-1 (HIF-1) from the small abalone Haliotis diversicolor. Gene. 534:256–64. doi:10.1016/j.gene.2013.10.048.
  • Carney GE, Wade AA, Sapra R, Goldstein ES, Bender M. (1997). DHR3, an ecdysone-inducible early-late gene encoding a Drosophila nuclear receptor, is required for embryogenesis. Proc Natl Acad Sci USA. 94:12024–29. doi:10.1073/pnas.94.22.12024.
  • Ciocan CM, Cubero-Leon E, Minier C, Rotchell JM. (2011). Identification of reproduction-specific genes associated with maturation and estrogen exposure in a marine bivalve Mytilus edulis. Plos One. 6:e22326. doi:10.1371/journal.pone.0022326.
  • Connor KM, Gracey AY. (2011). Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus. Proc Natl Acad Sci USA. 108:16110–15. doi:10.1073/pnas.1111076108.
  • Constance CM, Green CB, Tei H, Block GD. (2002). Bulla gouldiana period exhibits unique regulation at the mRNA and protein levels. J Biol Rhythms. 17:413–27. doi:10.1177/074873002237136.
  • Davie A, Minghetti M, Migaud H. (2009). Seasonal variations in clock‐gene expression in Atlantic Salmon (Salmo salar). Chronobiol Int. 26:379–95. doi:10.1080/07420520902820947.
  • Domínguez L, Villalba A, Fuentes J. (2010). Effects of photoperiod and the duration of conditioning on gametogenesis and spawning of the mussel Mytilus galloprovincialis (Lamarck). Aquac Res. 41:e807–e818. doi:10.1111/j.1365-2109.2010.02601.x.
  • Dubruille R, Emery P. (2008). A plastic clock: how circadian rhythms respond to environmental cues in Drosophila. Mol Neurobiol. 38:129–45. doi:10.1007/s12035-008-8035-y.
  • Duinker A, Saout C, Paulet YM. 2000. Effect of photoperiod on conditioning of the great scallop. Aquacult Int. 7:449–57. doi:10.1023/A:1009298024046.
  • Errico A, Costanzo V. (2010). Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Rep. 11:270–78. doi:10.1038/embor.2010.27.
  • Fabioux C, Huvet A, Le Souchu P, Le Pennec M, Pouvreau S. (2005). Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture. 250:458–70. doi:10.1016/j.aquaculture.2005.02.038.
  • Falcón J, Coon SL, Besseau L, Cazaméa-Catalan D, Fuentès M, Magnanou E, Paulin CH, Boeuf G, Sauzet S, Jørgensen EH, et al. (2014). Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. Proc Natl Acad Sci USA. 111:314–19. doi:10.1073/pnas.1312634110.
  • Food and Agriculture Organization of the United Nations (FAO). (2016) Global aquaculture production online query. http://www.fao.org/fishery/topic/16140/en
  • Goto SG. (2013). Roles of circadian clock genes in insect photoperiodism. Entomol Sci. 16:1–16. doi:10.1111/ens.12000.
  • Gotter AL. (2006). A Timeless debate: resolving TIM’s noncircadian roles with possible clock function. Neuroreport. 17:1229–33. doi:10.1097/01.wnr.0000233092.90160.92.
  • Griffin EA, Staknis D, Weitz CJ. (1999). Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science. 286:768–71. doi:10.1126/science.286.5440.768.
  • Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO. (2003). Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos. 101:79–90. doi:10.1034/j.1600-0706.2003.12322.x.
  • Hardin PE. (2005). The circadian timekeeping system of Drosophila. Curr Biol. 15:R714–R722. doi:10.1016/j.cub.2005.08.019.
  • Haug MF, Gesemann M, Lazović V, Neuhauss SC. (2015). Eumetazoan cryptochrome phylogeny and evolution. Genome Biol Evol. 7:601–19. doi:10.1093/gbe/evv010.
  • Heath-Heckman EA, Peyer SM, Whistler CA, Apicella MA, Goldman WE, McFall-Ngai MJ. (2013). Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. MBio. 4:e00167–13.
  • Herrero MJ, Lepesant JM. (2014). Daily and seasonal expression of clock genes in the pituitary of the European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol. 208:30–38. doi:10.1016/j.ygcen.2014.08.002.
  • Hiragaki S, Suzuki T, Mohamed AA, Takeda M. (2015). Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods. Front Physiol. 6:113. doi:10.3389/fphys.2015.00113.
  • Ikeno T, Ishikawa K, Numata H, Goto SG. (2013). Circadian clock gene clock is involved in the photoperiodic response of the bean bug Riptortus pedestris. Physiol Entomol. 38:157–62. doi:10.1111/phen.12013.
  • Ikeno T, Numata H, Goto SG. (2011). Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol. 57:935–38. doi:10.1016/j.jinsphys.2011.04.006.
  • Inoue K, J H W, Matsuoka M, Odo S, Harayama S. (1995). Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus. Biol Bull. 189:370–75. doi:10.2307/1542155.
  • IPCC. (2013). Summary for policymakers. In: Tf S, Qin D, Gk P, Tignor M, Sk A, Boschung J, Nauels A, Xia Y, Bex V, PM M, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. UK and USA: Cambridge University Press.
  • Jetten AM, Kurebayashi S, Ueda E. (2001). The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog Nucleic Acid Re. 69:205–47.
  • Kamae Y, Uryu O, Miki T, Tomioka K. (2014). The Nuclear Receptor Genes HR3 and E75 are required for the circadian rhythm in a primitive insect. Plos One. 9:e114899. doi:10.1371/journal.pone.0114899.
  • Kewley RJ, Whitelaw ML, Chapman-Smith A. (2004). The mammalian basic helix–loop–helix/PAS family of transcriptional regulators. ‎Int J Biochem Cell Biol. 36:189–204. doi:10.1016/S1357-2725(03)00211-5.
  • Klein DC. (2007). Arylalkylamine N-acetyltransferase:“the Timezyme”. J Biol Chem. 282:4233–37. doi:10.1074/jbc.R600036200.
  • Koike N, Hida A, Numano R, Hirose M, Sakaki Y, Tei H. (1998). Identification of the mammalian homologues of the Drosophila timeless gene, Timeless1. FEBS Lett. 441:427–31. doi:10.1016/S0014-5793(98)01597-X.
  • Kubo Y, Takeuchi T, Okano K, Okano T. (2010). Cryptochrome genes are highly expressed in the ovary of the African clawed frog, Xenopus tropicalis. Plos One. 5:e9273. doi:10.1371/journal.pone.0009273.
  • Mat AM, Massabuau JC, Ciret P, Tran D. (2012). Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol Int. 29:857–67. doi:10.3109/07420528.2012.699126.
  • Mat AM, Perrigault M, Massabuau JC, Tran D. (2016). Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms. Chronobiol Int. 33:1–16. doi:10.1080/07420528.2016.1181645.
  • Mechawar N, Anctil M. (1997). Melatonin in a primitive metazoan: seasonal changes of levels and immunohistochemical visualization in neurons. J Comp Neurol. 387:243–54. doi:10.1002/(ISSN)1096-9861.
  • Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. (2004). Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol. 14:1367–73. doi:10.1016/j.cub.2004.07.055.
  • Mohamed AA, Wang Q, Bembenek J, Ichihara N, Hiragaki S, Suzuki T, Takeda M. (2014). N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi. Plos One. 9:e92680. doi:10.1371/journal.pone.0092680.
  • Muñoz JL, Patino MAL, Hermosilla C, Conde-Sieira M, Soengas JL, Rocha F, Míguez JM. (2011). Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite. J Comp Physiol A. 197:789–97. doi:10.1007/s00359-011-0641-x.
  • Numata H, Udaka H. (2010). Photoperiodism in Mollusks. In: Nelson RJ, Denlinger DL, Somers DE, eds. Photoperiodism: the biological calendar. UK: Oxford University Press. p. 173–92.
  • Öztürk N, Song SH, Özgür S, Selby CP, Morrison L, Partch C, Zhong D, Sancar A. (2007). Structure and function of animal cryptochromes. Cold Spring Harb SympQuant Biol. 72:119–31. doi:10.1101/sqb.2007.72.015.
  • Pairett AN, Serb JM. (2013). De novo assembly and characterization of two transcriptomes reveal multiple light-mediated functions in the scallop eye (Bivalvia: pectinidae). Plos One. 8:e69852. doi:10.1371/journal.pone.0069852.
  • Pavlicek J, Sauzet S, Besseau L, Coon SL, Weller JL, Boeuf G, Gaildrat P, Omelchenko MV, Koonin EV, Falcón J, et al. (2010). Evolution of AANAT: expansion of the gene family in the cephalochordate amphioxus. BMC Evol Biol. 10:1–15. doi:10.1186/1471-2148-10-154.
  • Peres R, Amaral FG, Marques AC, Neto JC. (2014). Melatonin production in the sea star Echinaster brasiliensis (Echinodermata). Biol Bull. 226:146–51. doi:10.1086/BBLv226n2p146.
  • Perrigault M, Tran D. (2017). Identification of the molecular clockwork of the Oyster Crassostrea gigas. Plos One. 12(1):e0169790. doi:10.1371/journal.pone.0169790.
  • Peschel N, Chen KF, Szabo G, Stanewsky R. (2009). Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr Biol. 19:241–47. doi:10.1016/j.cub.2008.12.042.
  • Reitzel AM, Behrendt L, Tarrant AM. (2010). Light entrained rhythmic gene expression in the sea anemone Nematostella vectensis: the evolution of the animal circadian clock. Plos One. 5:e12805. doi:10.1371/journal.pone.0012805.
  • Rittschof D, McClellan-Green P. (2005). Molluscs as multidisciplinary models in environment toxicology. Mar Poll Bull. 50:369–73. doi:10.1016/j.marpolbul.2005.02.008.
  • Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G. (2006). Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 16:1352–65. doi:10.1101/gr.5094806.
  • Rush BL, Murad A, Emery P, Giebultowicz JM. (2006). Ectopic CRYPTOCHROME renders TIM light sensitive in the Drosophila ovary. J Biol Rhythms. 21:272–78. doi:10.1177/0748730406290416.
  • Schmittgen TD, Livak KJ. (2008). Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 3:1101–08. doi:10.1038/nprot.2008.73.
  • Seed R. (1969). The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. Oecologia. 3:277–316. doi:10.1007/BF00390380.
  • Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S. (1997). The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development. 124:4571–82.
  • Sun XJ, Zhou LQ, Tian JT, Liu ZH, Wu B, Dong YH, Yang AG, Ma WM. (2016). Transcriptome survey of phototransduction and clock genes in marine bivalves. Genet Mol Res. 15:4. doi:10.4238/gmr15048726.
  • Tessmar‐Raible K, Raible F, Arboleda E. (2011). Another place, another timer: marine species and the rhythms of life. Bioessays. 33:165–72. doi:10.1002/bies.201000096.
  • Tobback J, Boerjan B, Vandersmissen HP, Huybrechts R. (2011). The circadian clock genes affect reproductive capacity in the desert locust Schistocerca gregaria. Insect Biochem Molec. 41:313–21. doi:10.1016/j.ibmb.2011.01.008.
  • Tomioka K, Matsumoto A. (2015). Circadian molecular clockworks in non-model insects. Curr Opin Insect Sci. 7:58–64. doi:10.1016/j.cois.2014.12.006.
  • Tournier BB, Menet JS, Dardente H, Poirel VJ, Malan A, Masson-Pevet M, Pevet P, Vuillez P. (2003). Photoperiod differentially regulates clock genes’ expression in the suprachiasmatic nucleus of Syrian hamster. Neuroscience. 118:317–22. doi:10.1016/S0306-4522(03)00008-3.
  • Tran D, Ciutat A, Mat A, Massabuau JC, Hégaret H, Lambert C, Le Goic N, Soudant P. (2015). The toxic dinoflagellate Alexandrium minutum disrupts daily rhythmic activities at gene transcription, physiological and behavioral levels in the oyster Crassostrea gigas. Aquat Toxicol. 158:41–49. doi:10.1016/j.aquatox.2014.10.023.
  • Tran D, Nadau A, Durrieu G, Ciret P, Parisot JP, Massabuau JC. (2011). Field chronobiology of a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms. Chronobiol Int. 28:307–17. doi:10.3109/07420528.2011.565897.
  • Wayne NL. (2001). Regulation of seasonal reproduction in mollusks. J Biol Rhythms. 16:391–402. doi:10.1177/074873001129002097.
  • Wayne NL, Block GD. (1992). Effects of photoperiod and temperature on egg-laying behavior in a marine mollusk, Aplysia californica. Biol Bull. 182:8–14. doi:10.2307/1542176.
  • West A, Dupré SM, Yu L, Paton IR, Miedzinska K, McNeilly AS, Davis JRE, Burt DW, Loudon ASI. (2013). Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis. Mol Endocrinol. 27:979–89. doi:10.1210/me.2012-1366.
  • Whitmore D, Foulkes NS, Strähle U, Sassone-Corsi P. (1998). Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci. 1:701–07. doi:10.1038/3703.
  • Williams BG, Pilditch CA. (1997). The entrainment of persistent tidal rhythmicity in a filter-feeding bivalve using cycles of food availability. J Biol Rhythms. 12:173–81. doi:10.1177/074873049701200208.
  • Xie F, Xiao P, Chen D, Xu L, Zhang B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 80:75–84. doi:10.1007/s11103-012-9885-2.
  • Young MW. (2000). Life’s 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem Sci. 25:601–06. doi:10.1016/S0968-0004(00)01695-9.
  • Zaldibar B, Cancio I, Marigómez I. (2004). Circatidal variation in epithelial cell proliferation in the mussel digestive gland and stomach. Cell Tissue Res. 318:395–402. doi:10.1007/s00441-004-0960-0.
  • Zhang EE, Kay SA. (2010). Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol. 11:764–76. doi:10.1038/nrm2995.
  • Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, Liu X, Atwood A, Huss JW, Janes J, et al. (2009). A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 139:199–210. doi:10.1016/j.cell.2009.08.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.