348
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Animal Models of Type 2 Diabetes Complications: A Review

, , & ORCID Icon
Pages 46-58 | Received 28 Feb 2023, Accepted 27 Oct 2023, Published online: 10 Nov 2023

References

  • Biondi B, Kahaly GJ, Robertson RP. Thyroid dysfunction and diabetes mellitus: two closely associated disorders [J]. Endocr Rev. 2019;40(3):789–824. doi:10.1210/er.2018-00163.
  • Huang DD, SHI G, Jiang Y, et al. A review on the potential of resveratrol in prevention and therapy of diabetes and diabetic complications [J]. Biomed Pharmacother. 2020;125:109767. doi:10.1016/j.biopha.2019.109767.
  • Ali MK, Pearson-Stuttard J, Selvin E, et al. Interpreting global trends in type 2 diabetes complications and mortality [J]. Diabetologia. 2022;65(1):3–13. doi:10.1007/s00125-021-05585-2.
  • Papatheodorou K, Banach M, Edmonds M, et al. Complications of diabetes [J]. J Diabetes Res. 2015;2015:189525. doi:10.1155/2015/189525.
  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 [J]. Diabetes Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119.
  • Katsuda Y, Ohta T, Miyajima K, et al. Diabetic complications in obese type 2 diabetic rat models [J]. Exp Anim. 2014;63(2):121–132. doi:10.1538/expanim.63.121.
  • 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021 [J]. Diabetes Care. 2021;44(Suppl 1):S15–s33. doi:10.2337/dc21-S002.
  • Burhans MS, Hagman DK, Kuzma JN, et al. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus [J]. Compr Physiol. 2018;9(1):1–58. doi:10.1002/cphy.c170040.
  • Kumar S, Singh R, Vasudeva N, et al. Acute and chronic animal models for the evaluation of anti-diabetic agents [J]. Cardiovasc Diabetol. 2012;11(1):9. doi:10.1186/1475-2840-11-9.
  • Flyvbjerg A. The role of the complement system in diabetic nephropathy [J]. Nat Rev Nephrol. 2017;13(5):311–318. doi:10.1038/nrneph.2017.31.
  • Ma RC. Genetics of cardiovascular and renal complications in diabetes [J]. J Diabetes Investig. 2016;7(2):139–154. doi:10.1111/jdi.12391.
  • Muskiet MH, Tonneijck L, Smits MM, et al. Pleiotropic effects of type 2 diabetes management strategies on renal risk factors [J]. Lancet Diabetes Endocrinol. 2015;3(5):367–381. doi:10.1016/S2213-8587(15)00030-3.
  • Yamanouchi M, Furuichi K, Hoshino J, et al. Nonproteinuric diabetic kidney disease [J]. Clin Exp Nephrol. 2020;24(7):573–581. doi:10.1007/s10157-020-01881-0.
  • Oshima M, Shimizu M, Yamanouchi M, et al. Trajectories of kidney function in diabetes: a clinicopathological update [J]. Nat Rev Nephrol. 2021;17(11):740–750. doi:10.1038/s41581-021-00462-y.
  • Brosius FC 3rd, Alpers CE. New targets for treatment of diabetic nephropathy: what we have learned from animal models [J]. Curr Opin Nephrol Hypertens. 2013;22(1):17–25. doi:10.1097/MNH.0b013e32835b3766.
  • Eleazu CO, Eleazu KC, Chukwuma S, et al. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans [J]. J Diabetes Metab Disord. 2013;12(1):60. doi:10.1186/2251-6581-12-60.
  • Furman BL. Streptozotocin-induced diabetic models in mice and rats [J]. Curr Protoc Pharmacol. 2015;70(1):5.47.1–5.20. doi:10.1002/0471141755.ph0547s70.
  • Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy [J]. Nephrology (Carlton). 2007;12(3):261–266. doi:10.1111/j.1440-1797.2007.00796.x.
  • Liu C, Zhao S, ZHU C, et al. Ergosterol ameliorates renal inflammatory responses in mice model of diabetic nephropathy [J]. Biomed Pharmacother. 2020;128:110252. doi:10.1016/j.biopha.2020.110252.
  • Jiang T, Shen S, Wang L, et al. Grifola frondosa polysaccharide ameliorates early diabetic nephropathy by suppressing the TLR4/NF-κB pathway [J]. Appl Biochem Biotechnol. 2022;194(9):4093–4104. doi:10.1007/s12010-022-03976-8.
  • Ahmed S, Mundhe N, Borgohain M, et al. Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy [J]. Inflammation. 2016;39(5):1783–1797. doi:10.1007/s10753-016-0413-4.
  • Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies [J]. Medicina (Kaunas). 2017;53(6):365–374. doi:10.1016/j.medici.2018.02.001.
  • Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes [J]. Diabetologia. 2008;51(2):216–226. doi:10.1007/s00125-007-0886-7.
  • Kong LL, WU H, Cui WP, et al. Advances in murine models of diabetic nephropathy [J]. J Diabetes Res. 2013;2013:797548. doi:10.1155/2013/797548.
  • Clee SM, Attie SD. The genetic landscape of type 2 diabetes in mice [J]. Endocr Rev. 2007;28(1):48–83. doi:10.1210/er.2006-0035.
  • Chakraborty G, Thumpayil S, Lafontant DE, et al. Age dependence of glucose tolerance in adult KK-Ay mice, a model of non-insulin dependent diabetes mellitus [J]. Lab Anim (NY). 2009;38(11):364–368. doi:10.1038/laban1109-364.
  • Tomino Y, Tanimoto M, Shike T, et al. Pathogenesis and treatment of type 2 diabetic nephropathy: lessons from the spontaneous KK/Ta mouse model [J]. Curr Diabetes Rev. 2005;1(3):281–286. doi:10.2174/157339905774574374.
  • Bhatnagar S, OLER AT, Rabaglia ME, et al. Positional cloning of a type 2 diabetes quantitative trait locus; tomosyn-2, a negative regulator of insulin secretion [J]. PLoS Genet. 2011;7(10):e1002323. doi:10.1371/journal.pgen.1002323.
  • Choi R, KIM BH, Naowaboot J, et al. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes [J]. Exp Mol Med. 2011;43(12):676–683. doi:10.3858/emm.2011.43.12.078.
  • Zhang H, Li P, Burczynski FJ, et al. Attenuation of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with a combination of chinese herbs (tangshen formula) [J]. Evid Based Complement Alternat Med. 2011;2011:613737. doi:10.1155/2011/613737.
  • Hudkins KL, Pichaiwong W, Wietecha T, et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy [J]. J Am Soc Nephrol. 2010;21(9):1533–1542. doi:10.1681/ASN.2009121290.
  • Bivona BJ, Park S, Harrison-Bernard LM. Glomerular filtration rate determinations in conscious type II diabetic mice [J]. Am J Physiol Renal Physiol. 2011;300(3):F618–25. doi:10.1152/ajprenal.00421.2010.
  • Groop PH, Forsblom C, Thomas MC. Mechanisms of disease: pathway-selective insulin resistance and microvascular complications of diabetes [J]. Nat Clin Pract Endocrinol Metab. 2005;1(2):100–110. doi:10.1038/ncpendmet0046.
  • Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease [J]. Circ Res. 2020;126(11):1501–1525. doi:10.1161/CIRCRESAHA.120.315913.
  • Shao C, Wang J, Tian J, et al. Coronary artery disease: from mechanism to clinical practice [J]. Adv Exp Med Biol. 2020;1177:1–36.
  • Richter C, Hinkel R. Research(‘s) sweet hearts: experimental biomedical models of diabetic cardiomyopathy [J]. Front Cardiovasc Med. 2021;8:703355. doi:10.3389/fcvm.2021.703355.
  • Kaur N, Raja R, Ruiz-Velasco A, et al. Cellular protein quality control in diabetic cardiomyopathy: from bench to bedside [J]. Front Cardiovasc Med. 2020;7:585309. doi:10.3389/fcvm.2020.585309.
  • Niemann M, Herrmann S, Ertl G, et al. Echocardiography in diabetic cardiomyopathy [J]. Herz. 2013;38(1):42–47. doi:10.1007/s00059-012-3726-6.
  • Jintao X, Nanqian Z, Yuping Y, et al. Puerarin-loaded ultrasound microbubble contrast agent used as sonodynamic therapy for diabetic cardiomyopathy rats [J]. Colloids Surf B Biointerfaces. 2020;190:110887. doi:10.1016/j.colsurfb.2020.110887.
  • Huo Y, Mijiti A, Cai R, et al. Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice [J]. Hum Exp Toxicol. 2021;40(12_suppl):S460–s74. doi:10.1177/09603271211045948.
  • Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue [J]. Nature. 1994;372(6505):425–432. doi:10.1038/372425a0.
  • Zibadi S, Cordova F, Slack EH, et al. Leptin’s regulation of obesity-induced cardiac extracellular matrix remodeling [J]. Cardiovasc Toxicol. 2011;11(4):325–333. doi:10.1007/s12012-011-9124-0.
  • Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse [J]. Science. 1966;153(3740):1127–1128. doi:10.1126/science.153.3740.1127.
  • Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice [J]. Cell. 1996;84(3):491–495. doi:10.1016/S0092-8674(00)81294-5.
  • Venardos K, De Jong KA, Elkamie M, et al. The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice [J]. PLoS One. 2015;10(3):e0120934. doi:10.1371/journal.pone.0120934.
  • Phillips MS, LIU Q, Hammond HA, et al. Leptin receptor missense mutation in the fatty Zucker rat [J]. Nat Genet. 1996;13(1):18–19. doi:10.1038/ng0596-18.
  • Baynes J, Murray DB. Cardiac and renal function are progressively impaired with aging in zucker diabetic fatty type II diabetic rats [J]. Oxid Med Cell Longev. 2009;2(5):328–334. doi:10.4161/oxim.2.5.9831.
  • Mátyás C, Németh DT, Oláh A, et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes [J]. Eur J Heart Fail. 2017;19(3):326–336. doi:10.1002/ejhf.711.
  • Ramírez E, Klett-Mingo M, Ares-Carrasco S, et al. Eplerenone attenuated cardiac steatosis, apoptosis and diastolic dysfunction in experimental type-II diabetes [J]. Cardiovasc Diabetol. 2013;12(1):172. doi:10.1186/1475-2840-12-172.
  • Lum-Naihe K, Toedebusch R, Mahmood A, et al. Cardiovascular disease progression in female zucker diabetic fatty rats occurs via unique mechanisms compared to males [J]. Sci Rep. 2017;7(1):17823. doi:10.1038/s41598-017-18003-8.
  • Corsetti JP, Sparks JD, Peterson RG, et al. Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese zucker diabetic fatty male and female rats [J]. Atherosclerosis. 2000;148(2):231–241. doi:10.1016/S0021-9150(99)00265-8.
  • Marsh SA, Powell PC, Agarwal A, et al. Cardiovascular dysfunction in zucker obese and zucker diabetic fatty rats: role of hydronephrosis [J]. Am J Physiol Heart Circ Physiol. 2007;293(1):H292–8. doi:10.1152/ajpheart.01362.2006.
  • Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes [J]. Diabet Med. 2006;23(6):594–608. doi:10.1111/j.1464-5491.2006.01773.x.
  • Brocco E, Ninkovic S, Marin M, et al. Diabetic foot management: multidisciplinary approach for advanced lesion rescue [J]. J Cardiovasc Surg (Torino). 2018;59(5):670–684. doi:10.23736/S0021-9509.18.10606-9.
  • Du Y, Wang J, Fan W, et al. Preclinical study of diabetic foot ulcers: from pathogenesis to vivo/vitro models and clinical therapeutic transformation [J]. Int Wound J. 2023. doi:10.1111/iwj.14311.
  • Rai V, Moellmer R, Agrawal DK. Clinically relevant experimental rodent models of diabetic foot ulcer [J]. Mol Cell Biochem. 2022;477(4):1239–1247. doi:10.1007/s11010-022-04372-w.
  • Masson-Meyers DS, Andrade TAM, Caetano GF, et al. Experimental models and methods for cutaneous wound healing assessment [J]. Int J Exp Pathol. 2020;101(1–2):21–37. doi:10.1111/iep.12346.
  • LI J, Pincu Y, Marjanovic M, et al. In vivo evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy [J]. J Biomed Opt. 2016;21(8):86006. doi:10.1117/1.JBO.21.8.086006.
  • Gao S, Shen Y, Geng F, et al. Research progress on the animal models and treatment strategies of diabetic foot ulcer] [J. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2017;46(1):97–105. doi:10.3785/j.1008-9292.2017.02.15.
  • Lévigne D, Tobalem M, Modarressi A, et al. Hyperglycemia increases susceptibility to ischemic necrosis [J]. Biomed Res Int. 2013;2013:490964. doi:10.1155/2013/490964.
  • Lobmann R. Neuropathy and diabetic foot ulcers] [J. Internist (Berl). 2015;56(5):503–512. doi:10.1007/s00108-014-3630-7.
  • Kale B, Yüksel F, Celiköz B, et al. Effect of various nerve decompression procedures on the functions of distal limbs in streptozotocin-induced diabetic rats: further optimism in diabetic neuropathy [J]. Plast Reconstr Surg. 2003;111(7):2265–2272. doi:10.1097/01.PRS.0000060100.80687.D9.
  • Bowling FL, Jude EB, Boultona AJ. MRSA and diabetic foot wounds: contaminating or infecting organisms? [j]. Curr Diab Rep. 2009;9(6):440–444.doi:10.1007/s11892-009-0072-z.
  • Lee JH, Ja Kwak J, Shin HB, et al. Comparative efficacy of silver-containing dressing materials for treating MRSA-infected wounds in rats with streptozotocin-induced diabetes [J]. Wounds. 2013;25(12):345–354.
  • Feldman EL, Nave KA, Jensen TS, et al. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain [J]. Neuron. 2017;93(6):1296–1313. doi:10.1016/j.neuron.2017.02.005.
  • Sajic M. Mitochondrial dynamics in peripheral neuropathies [J]. Antioxid Redox Signal. 2014;21(4):601–620. doi:10.1089/ars.2013.5822.
  • Green AQ, Krishnan S, Finucane FM, et al. Altered C-fiber function as an indicator of early peripheral neuropathy in individuals with impaired glucose tolerance [J]. Diabetes Care. 2010;33(1):174–176. doi:10.2337/dc09-0101.
  • Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American diabetes association [J]. Diabetes Care. 2017;40(1):136–154. doi:10.2337/dc16-2042.
  • O’brien PD, Sakowski SA, Feldman EL. Mouse models of diabetic neuropathy [J]. Ilar j. 2014;54(3):259–272. doi:10.1093/ilar/ilt052.
  • Sullivan KA, Hayes JM, Wiggin TD, et al. Mouse models of diabetic neuropathy [J]. Neurobiol Dis. 2007;28(3):276–285. doi:10.1016/j.nbd.2007.07.022.
  • Dang JK, Wu Y, Cao H, et al. Establishment of a rat model of type II diabetic neuropathic pain [J]. Pain Med. 2014;15(4):637–646. doi:10.1111/pme.12387_1.
  • He J, Yuan GH, Zhang JQ, et al. Approach to creating early diabetic peripheral neuropathy rat model] [J. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51(6):1150–1154. doi:10.19723/j.1671-167X.2019.06.030.
  • Dong HY, Jiang XM, Niu CB, et al. Cerebrolysin improves sciatic nerve dysfunction in a mouse model of diabetic peripheral neuropathy [J]. Neural Regen Res. 2016;11(1):156–162. doi:10.4103/1673-5374.175063.
  • Wang X, Li Q, Han X, et al. Electroacupuncture alleviates diabetic peripheral neuropathy by regulating glycolipid-related GLO/AGEs/RAGE axis [J]. Front Endocrinol (Lausanne). 2021;12:655591. doi:10.3389/fendo.2021.655591.
  • Ramanaiah I, Sudeep HV, Shyamprasad K. Viphyllin(TM), a standardized black pepper extract exerts antihyperglycemic effect and improves sciatic nerve conduction in high fat diet/streptozotocin-induced diabetic model rats [J]. Diabetes Metab Syndr Obes. 2022;15:1819–1829. doi:10.2147/DMSO.S366609.
  • Jack MM, Ryals JM, Wright DE. Protection from diabetes-induced peripheral sensory neuropathy–a role for elevated glyoxalase I? [j]. Exp Neurol. 2012;234(1):62–69.doi:10.1016/j.expneurol.2011.12.015.
  • Lupachyk S, Watcho P, Stavniichuk R, et al. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy [J]. Diabetes. 2013;62(3):944–952. doi:10.2337/db12-0716.
  • Johnson MS, Ryals JM, Wright DE. Early loss of peptidergic intraepidermal nerve fibers in an STZ-induced mouse model of insensate diabetic neuropathy [J]. Pain. 2008;140(1):35–47. doi:10.1016/j.pain.2008.07.007.
  • Nam JS, Cheong YS, Karm MH, et al. Effects of nefopam on streptozotocin-induced diabetic neuropathic pain in rats [J]. Korean J Pain. 2014;27(4):326–333. doi:10.3344/kjp.2014.27.4.326.
  • Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats [J]. Curr Protoc Pharmacol. 2008;40(1): Chapter 5: Unit 5.47. doi:10.1002/0471141755.ph0547s40.
  • Wang C, Zhang HX, Xing HY, et al. Effects of Tongxinluo capsule on sciatic nerve apoptosis in spontaneous type II diabetic KK/Upj-Ay mice and mechanism research] [J. Zhongguo Zhong Yao Za Zhi. 2015;40(7):1396–1399.
  • Kan M, Guo G, Singh B, et al. Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy [J]. J Neuropathol Exp Neurol. 2012;71(6):494–510. doi:10.1097/NEN.0b013e3182580673.
  • Wang L, Chopp M, Szalad A, et al. Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice [J]. Neuroscience. 2011;193:399–410. doi:10.1016/j.neuroscience.2011.07.039.
  • Drel VR, Mashtalir N, Ilnytska O, et al. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity [J]. Diabetes. 2006;55(12):3335–3343. doi:10.2337/db06-0885.
  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy [J]. Lancet. 2010;376(9735):124–136. doi:10.1016/S0140-6736(09)62124-3.
  • Cunha-Vaz J. Characterization and relevance of different diabetic retinopathy phenotypes [J]. Dev Ophthalmol. 2007;39:13–30.
  • Robinson R, Barathi VA, Chaurasia AS, et al. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals [J]. Dis Model Mech. 2012;5(4):444–456. doi:10.1242/dmm.009597.
  • Lai AK, Lo A C. Animal models of diabetic retinopathy: summary and comparison [J]. J Diabetes Res. 2013;2013:106594. doi:10.1155/2013/106594.
  • Qiu F, MA X, Shin YH, et al. Pathogenic role of human C-reactive protein in diabetic retinopathy [J]. Clin Sci (Lond). 2020;134(13):1613–1629. doi:10.1042/CS20200085.
  • Weerasekera LY, Balmer LA, Ram R, et al. Characterization of retinal vascular and neural damage in a novel model of diabetic retinopathy [J]. Invest Ophthalmol Vis Sci. 2015;56(6):3721–3730. doi:10.1167/iovs.14-16289.
  • Gaucher D, Chiappore JA, Pâques M, et al. Microglial changes occur without neural cell death in diabetic retinopathy [J]. Vision Res. 2007;47(5):612–623. doi:10.1016/j.visres.2006.11.017.
  • Zhang Y, Chen F, Wang L. Metformin inhibits development of diabetic retinopathy through microRNA-497a-5p [J]. Am J Transl Res. 2017;9:5558–5566.
  • Ahiskali I, Pinar GL, Kiki M, et al. Effect of taxifolin on development of retinopathy in alloxan-induced diabetic rats [J]. Cutan Ocul Toxicol. 2019;38(3):227–232. doi:10.1080/15569527.2019.1588289.
  • Danilova I, Medvedeva S, Shmakova S, et al. Pathological changes in the cellular structures of retina and choroidea in the early stages of alloxan-induced diabetes [J]. World J Diabetes. 2018;9(12):239–251. doi:10.4239/wjd.v9.i12.239.
  • Schlotterer A, Kolibabka M, Lin J, et al. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model [J]. Faseb J. 2019;33(3):4141–4153. doi:10.1096/fj.201801146RR.
  • Liu Y, Yang Z, P Lai, et al. Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy [J]. Theranostics. 2020;10(9):4250–4264. doi:10.7150/thno.43731.
  • Zhang P, Wang H, Cao H, et al. Insulin-like growth factor binding protein-related protein 1 inhibit retinal neovascularization in the mouse model of oxygen-induced retinopathy [J]. J Ocul Pharmacol Ther. 2017;33(6):459–465. doi:10.1089/jop.2016.0171.
  • Rajagopal R, Bligard GW, Zhang S, et al. Functional deficits precede structural lesions in mice with high-fat diet-induced diabetic retinopathy [J]. Diabetes. 2016;65(4):1072–1084. doi:10.2337/db15-1255.
  • Hammoum I, Mbarek S, Dellaa A, et al. Study of retinal alterations in a high fat diet-induced type ii diabetes rodent: meriones shawi [J]. Acta Histochem. 2017;119(1):1–9. doi:10.1016/j.acthis.2016.05.005.
  • Tang L, Zhang Y, Jiang Y, et al. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes [J]. Exp Biol Med (Maywood). 2011;236(9):1051–1063. doi:10.1258/ebm.2011.010400.
  • Luo Y, Lu S, Liu LT, et al. Preventive and therapeutic effects of keluoxin capsules on early diabetic retinopathy in db/db mice] [J. Zhongguo Zhong Yao Za Zhi. 2019;44(11):2324–2330. doi:10.19540/j.cnki.cjcmm.20190422.402.
  • Fernandez-Bueno I, Jones R, Soriano-Romaní L, et al. Histologic characterization of retina neuroglia modifications in diabetic zucker diabetic fatty rats [J]. Invest Ophthalmol Vis Sci. 2017;58(11):4925–4933. doi:10.1167/iovs.17-21742.
  • Szabó K, Énzsöly A, Dékány B, et al. Histological evaluation of diabetic neurodegeneration in the retina of Zucker Diabetic Fatty (ZDF) rats [J]. Sci Rep. 2017;7(1):8891. doi:10.1038/s41598-017-09068-6.
  • Kubota R, Hayashi N, Kinoshita K, et al. Inhibition of γ-glutamyltransferase ameliorates ischaemia-reoxygenation tissue damage in rats with hepatic steatosis [J]. Br J Pharmacol. 2020;177(22):5195–5207. doi:10.1111/bph.15258.
  • Fujita N, Goto N, Nakamura T, et al. Hyperbaric normoxia improved glucose metabolism and decreased inflammation in obese diabetic rat [J]. J Diabetes Res. 2019;2019:2694215. doi:10.1155/2019/2694215.
  • Baek SM, Kim K, Kim S, et al. SP prevents T2DM complications by immunomodulation [J]. Sci Rep. 2020;10(1):16753. doi:10.1038/s41598-020-73994-1.
  • Deguchi S, Ogata F, Yamaguchi M, et al. In situ gel incorporating disulfiram nanoparticles rescues the retinal dysfunction via ATP collapse in otsuka long-evans tokushima fatty rats[J]. Cells. 2020;9(10):2171. doi:10.3390/cells9102171.
  • Ostenson CG, Efendic S. Islet gene expression and function in type 2 diabetes; studies in the goto-kakizaki rat and humans [J]. Diabetes Obes Metab. 2007;9(Suppl 2):180–186. doi:10.1111/j.1463-1326.2007.00787.x.
  • Campos A, Martins J, Campos EJ, et al. Choroidal and retinal structural, cellular and vascular changes in a rat model of type 2 diabetes [J]. Biomed Pharmacother. 2020;132:110811. doi:10.1016/j.biopha.2020.110811.
  • Kakehashi A, Saito Y, Mori K, et al. Characteristics of diabetic retinopathy in SDT rats [J]. Diabetes Metab Res Rev. 2006;22(6):455–461. doi:10.1002/dmrr.638.
  • Matsui K, Ohta T, Oda T, et al. Diabetes-associated complications in spontaneously diabetic torii fatty rats [J]. Exp Anim. 2008;57(2):111–121. doi:10.1538/expanim.57.111.
  • King AJF, Estil Les E, Montanya E. Use of streptozotocin in rodent models of islet transplantation [J]. Methods Mol Biol. 2020;2128:135–147.
  • Yang Z, Chen M, Fialkow LB, et al. The novel anti-inflammatory compound, lisofylline, prevents diabetes in multiple low-dose streptozotocin-treated mice [J]. Pancreas. 2003;26(4):e99–104. doi:10.1097/00006676-200305000-00021.
  • Pandey S, Dvorakova MC. Future perspective of diabetic animal models [J]. Endocr Metab Immune Disord Drug Targets. 2020;20(1):25–38. doi:10.2174/1871530319666190626143832.
  • Picatoste B, Ramírez E, Caro-Vadillo A, et al. Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms [J]. PLoS One. 2013;8(10):e78330. doi:10.1371/journal.pone.0078330.
  • Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview [J]. Indian J Med Res. 2007;125:451–472.
  • Guest PC. Characterization of the Goto-Kakizaki (GK) Rat Model of Type 2 Diabetes. Methods Mol Biol. 2019;1916:203–211. doi:10.1007/978-1-4939-8994-2_19. PMID: 30535697.
  • Chen D, Wang MW. Development and application of rodent models for type 2 diabetes [J]. Diabetes Obes Metab. 2005;7(4):307–317. doi:10.1111/j.1463-1326.2004.00392.x.
  • Al-Awar A, Kupai K, Veszelka M, et al. Experimental diabetes mellitus in different animal models [J]. J Diabetes Res. 2016;2016:9051426. doi:10.1155/2016/9051426.
  • Furman BL. Streptozotocin-induced diabetic models in mice and rats [J]. Curr Protoc. 2021;1(4):e78.doi:10.1002/cpz1.78.
  • Zhang M, Y Lvx, Li J, et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model [J]. Exp Diabetes Res. 2008;2008:704045. doi:10.1155/2008/704045.
  • Rees DA, Alcolado JC. Animal models of diabetes mellitus [J]. Diabet Med. 2005;22(4):359–370. doi:10.1111/j.1464-5491.2005.01499.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.