137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

PKM2 is a Novel Osteoporosis-Associated Protein in Chinese

, , , , , , ORCID Icon & ORCID Icon show all
Pages 92-105 | Received 11 Jul 2023, Accepted 16 Dec 2023, Published online: 30 Jan 2024

References

  • Sharma R, Callaway D, Vanegas D, et al. Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts. PLoS One. 2014;9(4):e93696. doi:10.1371/journal.pone.0093696.
  • Curtis EM, Moon RJ, Harvey NC, Cooper C. The Impact of Fragility Fracture and Approaches to Osteoporosis Risk Assessment Worldwide. Vol. 104. Bone; 2017:29–38. doi:10.1016/j.bone.2017.01.024.
  • Pulkkinen P, Partanen J, Jalovaara P, Jamsa T. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int. 2004;15(4):274–280. doi:10.1007/s00198-003-1556-3.
  • Dy CJ, McCollister KE, Lubarsky DA, Lane JM. An economic evaluation of a systems-based strategy to expedite surgical treatment of hip fractures. J Bone Joint Surg Am. 2011;93(14):1326–1334. doi:10.2106/JBJS.I.01132.
  • Cheng CH, Chen LR, Chen KH. Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci. 2022;23(3):23. doi:10.3390/ijms23031376.
  • Cheng C, Wentworth K, Shoback DM. New frontiers in osteoporosis therapy. Annu Rev Med. 2020;71(1):277–288. doi:10.1146/annurev-med-052218-020620.
  • Hu LF, Yin C, Zhao F, Ali A, Ma JH, Qian AR. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 2018;19(2):360. doi:10.3390/ijms19020360.
  • Macías I, Alcorta-Sevillano N, Rodríguez CI, Infante A. Osteoporosis and the potential of cell-based therapeutic strategies. Int J Mol Sci. 2020;21(5):21. doi:10.3390/ijms21051653.
  • Narni-Mancinelli E, Soudja SM, Crozat K, et al. Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo. PloS Pathog. 2011;7(12):e1002457. doi:10.1371/journal.ppat.1002457.
  • Zhou Y, Deng HW, Shen H. Circulating monocytes: an appropriate model for bone-related study. Osteoporos Int. 2015;26(11):2561–72. doi:10.1007/s00198-015-3250-7.
  • Deng FY, Long JR, Lei SF, Li MX, Deng HW. Potential effect of inter-genic action on peak bone mass (PBM) in Chinese females. Yi Chuan Xue Bao = Acta Genetica Sinica. 2005;32:1003–1010.
  • Fredoni M, Ghatrehsamani M, Abdollahifar MA, Bayat S, Bayat M. Evaluation of the effects of photobiomodulation on vertebras in two rat models of experimental osteoporosis. Lasers Med Sci. 2017;32(7):1545–1560. doi:10.1007/s10103-017-2278-7.
  • Hwang MH, Kim KS, Yoo CM, et al. Photobiomodulation on human annulus fibrosus cells during the intervertebral disk degeneration: extracellular matrix-modifying enzymes. Lasers Med Sci. 2016;31(4):767–777. doi:10.1007/s10103-016-1923-x.
  • Schurman L, Sedlinsky C, Mangano A, et al. Estrogenic status influences nitric oxide-regulated TNF-α release from human peripheral blood monocytes. Exp Clin Endocrinol Diabetes. 2001;109(6):340–344. doi:10.1055/s-2001-17401.
  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64. doi:10.1038/nri1733.
  • Ly T, Endo A, Brenes A, Gierlinski M, Afzal V, Pawellek A, et al. Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells. Wellcome Open Res. 2018;3:51. doi:10.12688/wellcomeopenres.14392.1.
  • Eliuk S, Makarov A. Evolution of orbitrap mass spectrometry instrumentation. Annu Rev Anal Chem (Palo Alto Calif). 2015;8(1):61–80. doi:10.1146/annurev-anchem-071114-040325.
  • Michalski A, Damoc E, Hauschild JP, et al. Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics. 2011;10(9):M111 011015. doi:10.1074/mcp.M111.011015.
  • Zhou X, Wu LF, Wang WY, et al. Anxa2 attenuates osteoblast growth and is associated with hip BMD and osteoporotic fracture in Chinese elderly. PLoS One. 2018;13(3):e0194781. doi:10.1371/journal.pone.0194781.
  • Marques GS, Silva Z, Videira PA. Antitumor efficacy of human monocyte-derived dendritic cells: comparing effects of two monocyte isolation methods. Biol Proced Online. 2018;20. doi:10.1186/s12575-018-0069-6.
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. doi:10.1038/nbt.1511.
  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–1805. doi:10.1021/pr101065j.
  • China Health Promotion Foundation White Paper China. Osteoporosis a summary statement of China. Beijing, 2008.
  • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate Proteome-Wide Label-Free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513-26.
  • Nahnsen S, Bielow C, Reinert K, Kohlbacher O. Tools for Label-Free Peptide Quantification. Molecular & Cellular Proteomics; 2013;12(3):549–556.
  • Maycas M, Portoles MT, Matesanz MC, Buendia I, Linares J, Feito MJ, Arcos D, Vallet‐Regí M, Plotkin LI, Esbrit P, AR Gortázar. High glucose alters the secretome of mechanically stimulated osteocyte-like cells affecting osteoclast precursor recruitment and differentiation. J Cell Physiol. 2017;232(12):3611–21. doi:10.1002/jcp.25829.
  • Zhou X, Li CH, He P, et al. Ab1 interactor 1: a novel biomarker for osteoporosis in Chinese elderly men. J Proteomics. 2019;207:103440. doi:10.1016/j.jprot.2019.103440.
  • Parfitt AM. Osteoclast Precursors as Leukocytes: Importance of the Area Code. Bone. 1998;23(6):491–494.
  • Sapkota M, Li L, Choi H, Gerwick WH, Soh Y. Bromo-honaucin a inhibits osteoclastogenic differentiation in RAW 264.7 cells via akt and ERK signaling pathways. Eur J Pharmacol. 2015;769:100–109. doi:10.1016/j.ejphar.2015.11.003.
  • Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8. doi:10.1126/science.289.5484.1504.
  • Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev. 2017;38(4):325–50. doi:10.1210/er.2015-1114.
  • Padamsey Z, McGuinness L, Bardo SJ, Reinhart M, Tong R, Hedegaard A, et al. Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron. 2017;93(1):132–46. doi:10.1016/j.neuron.2016.11.013.
  • Guo JC, Ren RY, Yao XD, Ye YP, Sun K, Lin JM, et al. PKM2 suppresses osteogenesis and facilitates adipogenesis by regulating β-catenin signaling and mitochondrial fusion and fission. Aging-Us. 2020;12(4):3976–92. doi:10.18632/aging.102866.
  • Murakami K, Yoshino M. Zinc inhibition of pyruvate kinase of M-type isozyme. Biometals. 2017;30(3):335–40. doi:10.1007/s10534-017-0009-y.
  • Yang W, Lu Z. Pyruvate kinase M2 at a glance. J Cell Sci. 2015;128:1655–60. doi:10.1242/jcs.166629.
  • Yang WW, Xia Y, Ji HT, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011;480(7375):118–122. doi:10.1038/nature10598.
  • Gao X, Wang H, Yang JJ, Liu X, Liu ZR. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell. 2012;45(5):598–609. doi:10.1016/j.molcel.2012.01.001.
  • Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, Jiang F PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett. 2016;11(3):1980–6. doi:10.3892/ol.2016.4168.
  • Han DW, Choi YS, Kim HW, Shin S, Ha YJ, Kang EH, Park, JW, Park, JK, Shin, K, Song, YW, Lee, YJ Extracellular pyruvate kinase M2 promotes osteoclastogenesis and is associated with radiographic progression in early rheumatoid arthritis. SCI REP-UK. 2022;12(1):12. doi:10.1038/s41598-022-07667-6.
  • Kim H, Takegahara N, Choi Y. IgSF11-mediated phosphorylation of pyruvate kinase M2 regulates osteoclast differentiation and prevents pathological bone loss. Bone Res. 2023;11(1):11. doi:10.1038/s41413-023-00251-2.
  • Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016;17(12):1721–1730. doi:10.15252/embr.201643300.
  • Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, Wang, L, Yang, W, Lu, Z PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7(1):12431. doi:10.1038/ncomms12431.
  • Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, et al. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol. 2017;19(11):1358–70. doi:10.1038/ncb3630.
  • Wong N, Ojo D, Yan J, Tang D. PKM2 contributes to cancer metabolism. Cancer Lett. 2015;356(2):184–91. doi:10.1016/j.canlet.2014.01.031.
  • Hsu MC, Hung WC, Yamaguchi H, et al. Extracellular PKM2 induces cancer proliferation by activating the EGFR signaling pathway. Am J Cancer Res. 2016;6(3):628–638.
  • Dai JL, Escara-Wilke J, Keller JM, Jung Y, Taichman R, Pienta KJ, Keller ET Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis. J Exp Med. 2019;216(12):2883–99. doi:10.1084/jem.20190158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.