83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of in vitro Toxicities of 8-Prenylnaringenin, Tartrazine and 17β-Estradiol, Representatives of Natural and Synthetic Estrogens, in Rat and Human Hepatoma Cell Lines

ORCID Icon & ORCID Icon
Pages 106-116 | Received 01 Jul 2023, Accepted 27 Mar 2024, Published online: 10 Apr 2024

References

  • Pohjanvirta R, Nasri A. The potent phytoestrogen 8-prenylnaringenin: a friend or a foe? Int J Mol Sci. 2022;23(6):3168. doi:10.3390/ijms23063168.
  • Paterni I, Granchi C, Minutolo F. Risks and benefits related to alimentary exposure to xenoestrogens. Crit Rev Food Sci Nutr. 2017;57(16):3384–3404. doi:10.1080/10408398.2015.1126547
  • Rashid H, Alqahtani SS, Alshahrani S. Diet: a source of endocrine disruptors. Endocr Metab Immune Disord Drug Targets. 2020;20(5):633–645. doi:10.2174/1871530319666191022100141
  • Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL, Barker E. Botanicals and their bioactive phytochemicals for women’s health. Pharmacol Rev. 2016;68(4):1026–1073. doi:10.1124/pr.115.010843
  • Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol. 2014;741:230–236. doi:10.1016/j.ejphar.2014.07.057
  • Mizobuchi S, Sato Y. A new flavanone with antifungal activity isolated from hops. Agri Bio Chem. 1984;48(11):2771–2775. doi:10.1080/00021369.1984.10866564
  • Milligan S, Kalita J, Heyerick A, Rong H, De Cooman L, De Keukeleire D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab. 1999;84(6):2249–2249. doi:10.1210/jcem.84.6.5887
  • Nasri A, Pohjanvirta R. In vitro estrogenic, cytotoxic, and genotoxic profiles of the xenoestrogens 8-prenylnaringenine, genistein and tartrazine. Environ Sci Pollut Res Int. 2021;28(22):27988–27997. doi:10.1007/s11356-021-12629-y
  • Bolego C, Poli A, Cignarella A, Paoletti R. Phytoestrogens: pharmacological and therapeutic perspectives. Curr Drug Targets. 2003;4(1):77–87. doi:10.2174/1389450033347000
  • Simons R, Gruppen H, Bovee TF, Verbruggen MA, Vincken J-P. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSerms). Food Funct. 2012;3(8):810–827. doi:10.1039/c2fo10290k
  • Zhang Y, Zhou D, Liu W, et al. Cytotoxic activity and related mechanisms of prenylflavonoids isolated from mallotus conspurcatus croizat. Chem Biodivers. 2019;16(5):e1800465. doi:10.1002/cbdv.201800465
  • Koosha S, Mohamed Z, Sinniah A, Ibrahim ZA, Seyedan A, Alshawsh MA. Antiproliferative and apoptotic activities of 8-prenylnaringenin against human colon cancer cells. Life Sci. 2019;232:116633. doi:10.1016/j.lfs.2019.116633
  • Effenberger KE, Johnsen SA, Monroe DG, Spelsberg TC, Westendorf JJ. Regulation of osteoblastic phenotype and gene expression by hop-derived phytoestrogens. J Steroid Biochem Mol Biol. 2005;96(5):387–399. doi:10.1016/j.jsbmb.2005.04.038
  • van Duursen MB, Smeets EE, Rijk JC, Nijmeijer SM, van den Berg M. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model. Toxicol Appl Pharmacol. 2013;269(2):132–140. doi:10.1016/j.taap.2013.03.014
  • Das A, Mukherjee A. Genotoxicity testing of the food colours amaranth and tartrazine. Int J Hum Genet. 2004;4(4):277–280. doi:10.1080/09723757.2004.11885906
  • Rao P, Bhat R, Sudershan R, Krishna T, Naidu N. Exposure assessment to synthetic food colours of a selected population in Hyderabad, India. Food Addit Contam Part A. 2004;21(5):415–421. doi:10.1080/02652030410001668772
  • Rao P, Sudershan R. Risk assessment of synthetic food colours: a case study in Hyderabad, India. IJFSNPH. 2008;1(1):68–87. doi:10.1504/IJFSNPH.2008.018857
  • Rowe KS, Rowe KJ. Synthetic food coloring and behavior: a dose response effect in a double-blind, placebo-controlled, repeated-measures study. J Pediatr. 1994;125(5):691–698. doi:10.1016/S0022-3476(06)80164-2
  • Axon A, May FE, Gaughan LE, Williams FM, Blain PG, Wright MC. Tartrazine and sunset yellow are xenoestrogens in a new screening assay to identify modulators of human oestrogen receptor transcriptional activity. Toxicology. 2012;298(1–3):40–51. doi:10.1016/j.tox.2012.04.014
  • U.S. Food and Drug Administration (FDA). Summary of Color Additives for Use in the United States in Foods, Drugs, Cosmetics, and Medical Devices. Silver Spring, Maryland: US Department of Health and Human Services; 2017.
  • Celojevic D, Petersen A, Karlsson J, Behndig A, Zetterberg M. Effects of 17β-estradiol on proliferation, cell viability and intracellular redox status in native human lens epithelial cells. Mol Vis. 2011;17:1987
  • Sasaki YF, Kawaguchi S, Kamaya A, et al. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res Genet Toxicol Environ Mutagen. 2002;519(1–2):103–119. doi:10.1016/S1383-5718(02)00128-6
  • Hamelers IH, Van Schaik RF, Sussenbach JS, Steenbergh PH. 17β-estradiol responsiveness of MCF-7 laboratory strains is dependent on an autocrine signal activating the IGF type I receptor. Cancer Cell Int. 2003;3(1):1–10. doi:10.1186/1475-2867-3-10
  • Shen M, Shi H, Migliaccio A. Estradiol and estrogen receptor agonists oppose oncogenic actions of leptin in HepG2 cells. Plos One. 2016;11(3):e0151455. doi:10.1371/journal.pone.0151455
  • Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702. doi:10.1210/er.2001-0038
  • Wang H, Li H, Moore LB, et al. The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor. Mol Endocrinol. 2008;22(4):838–857. doi:10.1210/me.2007-0218
  • Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol. 2020;502:110665. doi:10.1016/j.mce.2019.110665
  • Yang L, Broderick D, Campbell Y, et al. Conformational modulation of the farnesoid X receptor by prenylflavonoids: insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. Biochim Biophys Acta (BBA)-Proteins Proteom. 2016;1864:1667–1677. doi:10.1016/j.bbapap.2016.08.019
  • Mahiout S, Tagliabue SG, Nasri A, et al. In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. Toxicol In Vitro. 2018;52:178–188. doi:10.1016/j.tiv.2018.06.010
  • Van Meeuwen J, Ter Burg W, Piersma A, Van den Berg M, Sanderson J. Mixture effects of estrogenic compounds on proliferation and pS2 expression of MCF-7 human breast cancer cells. Food Chem Toxicol. 2007;45(11):2319–2330. doi:10.1016/j.fct.2007.06.011
  • Wätjen W, Weber N, Lou Y-J, et al. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol. 2007;45(1):119–124. doi:10.1016/j.fct.2006.08.008
  • Arul D, Subramanian P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res. 2013;19(4):763–770. doi:10.1007/s12253-013-9641-1
  • Banjerdpongchai R, Wudtiwai B, Khawon P. Induction of human hepatocellular carcinoma HepG2 cell apoptosis by naringin. Asian Pac J Cancer Prev. 2016;17:3289–3294
  • Sanaei M, Kavoosi F, Pourahmadi M, Moosavi SN. Effect of genistein and 17-β Estradiol on the viability and apoptosis of human Hepatocellular Carcinoma HepG2 cell line. Adv Biomed Res. 2017;6(1):6. doi:10.4103/abr.abr_53_17
  • Sanaei M, Kavoosi F, Dehghani F. Comparative analysis of the effects of 17-beta estradiol on proliferation, and apoptosis in hepatocellular carcinoma hep G2 and LCL-PI 11 cell lines. Asian Pac J Cancer Prev. 2018;19:2637
  • Guo Y, Cai X, Lu H, et al. 17β-estradiol promotes apoptosis of HepG2 cells caused by oxidative stress by increasing Foxo3a phosphorylation. Front Pharmacol. 2021;12:607379. doi:10.3389/fphar.2021.607379
  • Lye H, Chiew J, Siddique M. Cytotoxic effect of commonly used food dyes on human hepatoma cell line, HepG2. Int Food Res J. 2018;25:1457–1463
  • Amin K, Hameid IH, Abd EA. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol. 2010;48(10):2994–2999. doi:10.1016/j.fct.2010.07.039
  • Saxena B, Sharma S. Food color induced hepatotoxicity in Swiss albino rats, Rattus norvegicus. Toxicol Int. 2015;22(1):152. doi:10.4103/0971-6580.172286
  • Kamal AA, Fawzia S-S. Toxicological and safety assessment of tartrazine as a synthetic food additive on health biomarkers: a review. Afr J Biotechnol. 2018;17(6):139–149. doi:10.5897/AJB2017.16300
  • Kavoosi F, Dastjerdi MN, Valiani A, Esfandiari E, Sanaei M, Hakemi MG. Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line. Adv Biomed Res. 2016;5(1):133. doi:10.4103/2277-9175.187395
  • Ho S-M. Estrogen, progesterone and epithelial ovarian cancer. Reprod Biol Endocrinol. 2003;1(1):73–78. doi:10.1186/1477-7827-1-73
  • Hsu I, Yeh C-R, Slavin S, et al. Estrogen receptor alpha prevents bladder cancer development via INPP4B inhibited akt pathway in vitro and in vivo. Oncotarget. 2014;5(17):7917. doi:10.18632/oncotarget.1421
  • Marino M. Xenoestrogens challenge 17β-estradiol protective effects in colon cancer. World J Gastrointest Oncol. 2014;6(3):67. doi:10.4251/wjgo.v6.i3.67
  • Wei Q, Guo P, Mu K, et al. Estrogen suppresses hepatocellular carcinoma cells through ERβ-mediated upregulation of the NLRP3 inflammasome. Lab Invest. 2015;95(7):804–816. doi:10.1038/labinvest.2015.63
  • Yeh S, Miyamoto H, Shima H, Chang C. From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc National Acad Sci. 1998;95(10):5527–5532. doi:10.1073/pnas.95.10.5527
  • Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen–estrogen receptor signaling. Reprod Med Biol. 2017;16(1):4–20. doi:10.1002/rmb2.12006
  • Bulzomi P, Bolli A, Galluzzo P, Leone S, Acconcia F, Marino M. Naringenin and 17β‐estradiol coadministration prevents hormone‐induced human cancer cell growth. IUBMB Life. 2010;62(1):51–60. doi:10.1002/iub.279
  • Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol In Vitro. 2013;27(1):149–156. doi:10.1016/j.tiv.2012.10.008
  • Gerhauser C, Alt A, Heiss E, et al. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Res. 2002;1(11):959–969
  • Dorn C, Weiss TS, Heilmann J, Hellerbrand C. Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int J Oncol. 2010;36(2):435–441. doi:10.3892/ijo_00000517.
  • Viegas O, Žegura B, Pezdric M, et al. Protective effects of xanthohumol against the genotoxicity of heterocyclic aromatic amines MeIQx and PhIP in bacteria and in human hepatoma (HepG2) cells. Food Chem Toxicol. 2012;50(3–4)949–955.
  • Plazar J, Filipič M, Groothuis GM. Antigenotoxic effect of Xanthohumol in rat liver slices. Toxicol In Vitro. 2008;22(2):318–327.
  • Ueng Y-F, Chang Y-L, Oda Y, et al. In vitro and in vivo effects of naringin on cytochrome P450-dependent monooxygenase in mouse liver. Life Sci. 1999;65(24):2591–2602.
  • Gross-Steinmeyer K, Stapleton PL, Tracy JH, et al. Modulation of aflatoxin B1–mediated genotoxicity in primary cultures of human hepatocytes by diindolylmethane, curcumin, and xanthohumols. Toxicol Sci. 2009;112(2):303–310.
  • Bastaki M, Farrell T, Bhusari S, Pant K, Kulkarni R. Lack of genotoxicity in vivo for food color additive Tartrazine. Food Chem Toxicol. 2017;105:278–284.
  • Poul M, Jarry G, Elhkim MO, Poul J-M. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice. Food Chem Toxicol. 2009;47(2):443–448.
  • Khayyat L, Essawy A, Sorour J, Soffar A. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. Peer J. 2017;5:e3041.
  • El-Borm HT, Badawy GM, Hassab El-Nabi S, El-Sherif WA, Atallah MN. Toxicity of sunset yellow FCF and tartrazine dyes on DNA and cell cycle of liver and kidneys of the chick embryo: The alleviative effects of curcumin. Egypt J Zool. 2020;74(74):43–55.
  • Stiborová M, Dračínská H, Bořek-Dohalská L, et al. Exposure to endocrine disruptors 17alpha-ethinylestradiol and estradiol influences cytochrome P450 1A1-mediated genotoxicity of benzo [a] pyrene and expression of this enzyme in rats. Toxicology. 2018;400:48–56.
  • Russo J, Russo IH. The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol. 2006;102(1–5):89–96.
  • Orozco-Hernández L, Gutiérrez-Gómez AA, SanJuan-Reyes N, et al. 17β-estradiol induces cyto-genotoxicity on blood cells of common carp (cyprinus carpio). Chemosphere. 2018;191:118–127.
  • Fleck SC, Hildebrand AA, Pfeiffer E, Metzler M. Catechol metabolites of zeranol and 17β-estradiol: a comparative in vitro study on the induction of oxidative DNA damage and methylation by catechol-O-methyltransferase. Toxicol Lett. 2012;210(1):9–14.
  • Fery Y, Mueller SO, Schrenk D. Development of stably transfected human and rat hepatoma cell lines for the species-specific assessment of xenobiotic response enhancer module (XREM)-dependent induction of drug metabolism. Toxicology. 2010;277(1–3):11-19.
  • Darwish WS, Ikenaka Y. Biological responses of xenobiotic metabolizing enzymes to lead exposure in cultured H4IIE rat. JJVR. 2013;61:S48–S53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.