2,706
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Coeliac disease: beyond genetic susceptibility and gluten. A narrative review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-16 | Received 03 Jul 2018, Accepted 08 Jan 2019, Published online: 11 Mar 2019

References

  • Ludvigsson JF, Leffler DA, Bai JC, et al. The Oslo definitions for coeliac disease and related terms. Gut. 2013;62:43–52.
  • Catassi C, Gatti S, Fasano A. The new epidemiology of celiac disease. J Pediatr Gastroenterol Nutr. 2014;59:S7–S9.
  • Dube C, Rostom A, Sy R, et al. The prevalence of celiac disease in average-risk and at-risk Western European populations: a systematic review. Gastroenterology. 2005;128:S57–S67.
  • Cummins AG, Roberts-Thomson IC. Prevalence of celiac disease in the Asia-Pacific region. J Gastroenterol Hepatol. 2009;24:1347–1351.
  • Dore MP, Cuccu M, Pes GM, et al. Clinical pattern of celiac disease in a population residing in North Sardinia (Italy). Recenti Prog Med. 2012;103:564–569.
  • Aziz I, Branchi F, Sanders DS. The rise and fall of gluten! Proc Nutr Soc. 2015;74:221–226.
  • Virta LJ, Saarinen MM, Kolho KL. Declining trend in the incidence of biopsy-verified coeliac disease in the adult population of Finland, 2005-2014. Aliment Pharmacol Ther. 2017;46:1085–1093.
  • Nelson R, McNeish AS, Anderson CM. Coeliac disease in children of Asian immigrants. Lancet. 1973;1:348–350.
  • Cataldo F, Montalto G. Celiac disease in the developing countries: a new and challenging public health problem. Wjg. 2007;13:2153–2159.
  • Leonard MM, Fasano A. The microbiome as a possible target to prevent celiac disease. Expert Rev Gastroenterol Hepatol. 2016;10:555–556.
  • Hadorn DC, Baker D, Hodges JS, et al. Rating the quality of evidence for clinical practice guidelines. J Clin Epidemiol. 1996;49:749–754.
  • Greco L, Romino R, Coto I, et al. The first large population based twin study of coeliac disease. Gut. 2002;50:624–628.
  • Dubois PC, Trynka G, Franke L, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42:295–302.
  • Kuja-Halkola R, Lebwohl B, Halfvarson J, et al. Heritability of non-HLA genetics in coeliac disease: a population-based study in 107 000 twins. Gut. 2016;65:1793–1798.
  • Di Sabatino A, Vanoli A, Giuffrida P, et al. The function of tissue transglutaminase in celiac disease. Autoimmun Rev. 2012;11:746–753.
  • Halstensen TS, Brandtzaeg P. Activated T lymphocytes in the celiac lesion: non-proliferative activation (CD25) of CD4+ alpha/beta cells in the lamina propria but αproliferation (Ki-67) of alpha/beta and gamma/delta cells in the epithelium. Eur J Immunol. 1993;23:505–510.
  • Beckett CG, DellʼOlio D, Shidrawi RG, et al. Gluten-induced nitric oxide and pro-inflammatory cytokine release by cultured coeliac small intestinal biopsies. Eur J Gastroenterol Hepatol. 1999;11:529–535.
  • Ciccocioppo R, D’Alò S, Sabatino ADI, et al. Mechanisms of villous atrophy in autoimmune enteropathy and coeliac disease. Clin Exp Immunol. 2002;128:88–93.
  • Caballero B, Popkin BM. The nutrition transition: diet and disease in the developing world. Amsterdam: Academic Press; 2002.
  • de Lorgeril M, Salen P. Gluten and wheat intolerance today: are modern wheat strains involved? Int J Food Sci Nutr. 2014;65:577–581.
  • Falth-Magnusson K, Franzen L, Jansson G, et al. Infant feeding history shows distinct differences between Swedish celiac and reference children. Pediatr Allergy Immunol. 1996;7:1–5.
  • Ascher H, Krantz I, Rydberg L, et al. Influence of infant feeding and gluten intake on coeliac disease. Arch Dis Child. 1997;76:113–117.
  • Ivarsson A, Hernell O, Stenlund H, et al. Breast-feeding protects against celiac disease. Am J Clin Nutr. 2002;75:914–921.
  • Peters U, Schneeweiss S, Trautwein EA, et al. A case-control study of the effect of infant feeding on celiac disease. Ann Nutr Metab. 2001;45:135–142.
  • Greco L, Mayer M, Grimaldi M, et al. The effect of early feeding on the onset of symptoms in celiac disease. J Pediatr Gastroenterol Nutr. 1985;4:52–55.
  • Auricchio S, Follo D, de Ritis G, et al. Does breast feeding protect against the development of clinical symptoms of celiac disease in children? J Pediatr Gastroenterol Nutr. 1983;2:428–433.
  • Akobeng AK, Ramanan AV, Buchan I, et al. Effect of breast feeding on risk of coeliac disease: a systematic review and meta‐analysis of observational studies. Arch Dis Child. 2005;91:39–43.
  • Vriezinga SL, Auricchio R, Bravi E, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371:1304–1315.
  • Lionetti E, Castellaneta S, Francavilla R, SIGENP (Italian Society of Pediatric Gastroenterology, Hepatology, and Nutrition) Working Group on Weaning and CD Risk, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med. 2014;371:1295–1303.
  • Jansen MA, Tromp II, Kiefte-de Jong JC, et al. Infant feeding and anti-tissue antitransglutaminase antibody concentrations in the Generation R Study. Am J Clin Nutr. 2014;100:1095–1101.
  • Kemppainen KM, Lynch KF, Liu E, TEDDY Study Group, et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin Gastroenterol Hepatol. 2017;15:694–702.
  • Ivarsson A, Myléus A, Norström F, et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics. 2013;131:e687–e694.
  • Szajewska H, Shamir R, Chmielewska A, PREVENTCD Study Group, et al. Systematic review with meta-analysis: early infant feeding and coeliac disease–update 2015. Aliment Pharmacol Ther. 2015;41:1038–1054.
  • Sarno M, Discepolo V, Troncone R, et al. Risk factors for celiac disease. Ital J Pediatr. 2015;41:57.
  • Barroso M, Beth SA, Voortman T, et al. Dietary patterns after the weaning and lactation period are associated with celiac disease autoimmunity in children. Gastroenterology. 2018;154:2087–2096.
  • Mårild K, Tapia G, Haugen M, et al. Maternal and neonatal vitamin D status, genotype and childhood celiac disease. PLoS One. 2017;12:e0179080.
  • Kamen DL, Tangpricha V. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med. 2010;88:441–450.
  • Yang CY, Leung PS, Adamopoulos IE, et al. The implication of vitamin D and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol. 2013;45:217–226.
  • Cattaneo A, Ballabio C, Bertelli AA, et al. Evaluation of residual immunoreactivity in red and white wines clarified with gluten or gluten derivatives. Int J Tissue React. 2003;25:57–64.
  • Simonato B, Mainente F, Tolin S, et al. Immunochemical and mass spectrometry detection of residual proteins in gluten fined red wine. J Agric Food Chem. 2011;59:3101–3110.
  • O'Shea N, Arendt E, Gallagher E. State of the art in gluten-free research. J Food Sci. 2014;79:R1067–R1076.
  • Plot L, Amital H. Infectious associations of Celiac disease. Autoimmunity Reviews. 2009;8:316–319.
  • Kårhus LL, Gunnes N, Størdal K, et al. Influenza and risk of later celiac disease: a cohort study of 2.6 million people. Scand J Gastroenterol. 2018;53:15–23.
  • Auricchio R, Cielo D, de Falco R, et al. Respiratory infections and the risk of celiac disease. Pediatrics. 2017;140:e20164102.
  • Tjernberg AR, Ludvigsson JF. Children with celiac disease are more likely to have attended hospital for prior respiratory syncytial virus infection. Dig Dis Sci. 2014;59:1502–1508.
  • Stene LC, Honeyman MC, Hoffenberg EJ, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterology. 2006;101:2333–2340.
  • Ziberna F, De Lorenzo G, Schiavon V, et al. Lack of evidence of rotavirus-dependent molecular mimicry as a trigger of coeliac disease. Clin Exp Immunol. 2016;186:356–363.
  • Kagnoff MF, Austin RK, Hubert JJ, et al. Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med. 1984;160:1544–1557.
  • Kagnoff MF, Paterson YJ, Kumar PJ, et al. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut. 1987;28:995–1001.
  • Diaconescu I, Alexandru G, Carpa R, et al. Too few studies provided a link between viral infections and celiac disease. Int J Celiac Dis. 2016;4:135–137.
  • Howdle PD, Blair Zajdel ME, Smart CJ, et al. Lack of a serologic response to an E1B protein of adenovirus 12 in coeliac disease. Scand J Gastroenterol. 1989;24:282–286.
  • Mahon J, Blair GE, Wood GM, et al. Is persistent adenovirus 12 infection involved in coeliac disease? A search for viral DNA using the polymerase chain reaction. Gut. 1991;32:1114–1116.
  • Vesy CJ, Greenson JK, Papp AC, et al. Evaluation of celiac disease biopsies for adenovirus 12 DNA using a multiplex polymerase chain reaction. Mod Pathol. 1993;6:61–64.
  • Thevenot T, Denis J, Jouannaud V, et al. Coeliac disease in chronic hepatitis C. A French multicentre prospective study. Aliment Pharmacol Ther. 2007;26:1209–1216.
  • Ruggeri C, La Masa AT, Rudi S, et al. Celiac disease and non-organ-specific autoantibodies in patients with chronic hepatitis C virus infection. Dig Dis Sci. 2008;53:2151–2155.
  • Casella G, Viganò D, Settanni CR, et al. Association between celiac disease and chronic hepatitis C. Gastroenterol Hepatol Bed Bench. 2016;9:153–157.
  • Fine KD, Ogunji F, Saloum Y, et al. Celiac sprue: another autoimmune syndrome associated with hepatitis C. Am J Gastroenterology. 2001;96:138–145.
  • Satta R, Pes GM, Quarta Colosso BM, et al. Skin manifestations in patients with hepatitis C virus-related chronic liver disease. J Eur Acad Dermatol Venereol. 2018.
  • Bardella MT, Marino R, Meroni PL. Celiac disease during interferon treatment. Ann Intern Med. 1999;131:157–158.
  • Durante-Mangoni E, Iardino P, Resse M, et al. Silent celiac disease in chronic hepatitis C: impact of interferon treatment on the disease onset and clinical outcome. J Clin Gastroenterol. 2004;38:901–905.
  • Sjöberg K, Lindgren S, Eriksson S. Frequent occurrence of non-specific gliadin antibodies in chronic liver disease. Endomysial but not gliadin antibodies predict coeliac disease in patients with chronic liver disease. Scand J Gastroenterol. 1997;32:1162–1167.
  • Opri R, Veneri D, Mengoli C, et al. Immune response to Hepatitis B vaccine in patients with celiac disease: a systematic review and meta-analysis. Hum Vaccin Immunother. 2015;11:2800–2805.
  • Plot L, Amital H, Barzilai O, et al. Infections may have a protective role in the etiopathogenesis of celiac disease. Ann N Y Acad Sci. 2009;1173:670–674.
  • Sandberg-Bennich S, Dahlquist G, Källén B. Coeliac disease is associated with intrauterine growth and neonatal infections. Acta Paediatr. 2007;91:30–33.
  • Myléus A, Hernell O, Gothefors L, et al. Early infections are associated with increased risk for celiac disease: an incident case-referent study. BMC Pediatr. 2012;12:194.
  • Dore MP, Bilotta M, Vaira D, et al. High prevalence of Helicobacter pylori infection in shepherds. Dig Dis Sci. 1999;44:1161–1164.
  • Cabral VL, Patrício FR, Gabbay MA, et al. Intraepithelial lymphocytes in duodenum from Brazilian adolescents with type 1 diabetes. Influence of Helicobacter pylori. Pediatr Diabetes. 2009;10:316–320.
  • Memeo L, Jhang J, Hibshoosh H, et al. Duodenal intraepithelial lymphocytosis with normal villous architecture: common occurrence in H. pylori gastritis. Mod Pathol. 2005;18:1134–1144.
  • Villanacci V, Bassotti G, Liserre B, et al. Helicobacter pylori infection in patients with celiac disease. Am J Gastroenterol. 2006;101:1880–1885.
  • Cho KY, Cho MS, Seo JW. FOXP3+ regulatory T cells in children with Helicobacter pylori infection. Pediatr Dev Pathol. 2012;15:118–126.
  • Abenavoli L, Arena V, Giancotti F, et al. Celiac disease, primary biliary cirrhosis and helicobacter pylori infection: one link for three diseases. Int J Immunopathol Pharmacol. 2010;23:1261–1265.
  • Narang M, Puri AS, Sachdeva S, et al. Celiac disease and Helicobacter pylori infection in children: is there any association? J Gastroenterol Hepatol. 2017;32:1178–1182.
  • Basyigit S, Unsal O, Uzman M, et al. Relationship between Helicobacter pylori infection and celiac disease: a cross-sectional study and a brief review of the literature. Prz Gastroenterol. 2017;12:49–54.
  • Dore MP, Salis R, Loria MF, et al. Helicobacter pylori infection and occurrence of celiac disease in subjects HLA-DQ2/DQ8 positive: a prospective study. Helicobacter. 2018;23:e12465.
  • Ludvigsson J, Jones MP, Faresjö Å. Worm infestations and development of autoimmunity in children - The ABIS study. PLoS One. 2017;12:e0173988.
  • Maizels RM, Pearce EJ, Artis D, et al. Regulation of pathogenesis and immunity in helminth infections. J Exp Med. 2009;206:2059–2066.
  • Sher A, Fiorentino D, Caspar P, et al. Production of IL-10 by CD4+ T lymphocytes correlates with down-regulation of Th1 cytokine synthesis in helminth infection. J Immunol. 1991;147:2713–2716.
  • Sotgiu S, Pugliatti M, Sotgiu A, et al. Does the "hygiene hypothesis" provide an explanation for the high prevalence of multiple sclerosis in Sardinia? Autoimmunity. 2003;36:257–260.
  • Daveson AJ, Jones DM, Gaze S, et al. Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blinded placebo controlled trial. PLoS One. 2011;6:e17366.
  • Freeman HJ. Drug-induced sprue-like intestinal disease. Int J Celiac Dis. 2014;2:49–53.
  • Canova C, Zabeo V, Pitter G, et al. Association of maternal education, early infections, and antibiotic use with celiac disease: a population-based birth cohort study in northeastern Italy. Am J Epidemiol. 2014;180:76–85.
  • Kemppainen KM, Vehik K, Lynch KF, Environmental Determinants of Diabetes in the Young (TEDDY) Study Group, et al. Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr. 2017;171:1217–1225.
  • Cryer B, Feldman M. Effects of very low dose daily, long-term aspirin therapy on gastric, duodenal, and rectal prostaglandin levels and on mucosal injury in healthy humans. Gastroenterology. 1999;117:17–25.
  • Lebwohl B, Spechler SJ, Wang TC, et al. Use of proton pump inhibitors and subsequent risk of celiac disease. Dig Liver Dis. 2014;46:36–40.
  • Ianiro G, Bibbò S, Montalto M, et al. Systematic review: sprue-like enteropathy associated with olmesartan. Aliment Pharmacol Ther. 2014;40:16–23.
  • Vaarala O, Jokinen J, Lahdenkari M, et al. Rotavirus vaccination and the risk of celiac disease or type 1 diabetes in finnish children at early life. Pediatr Infect Dis J. 2017;36:674–675.
  • Silvester JA, Leffler DA. Is autoimmunity infectious? the effect of gastrointestinal viral infections and vaccination on risk of celiac disease autoimmunity. Clin Gastroenterol Hepatol. 2017;15:703–705.
  • Myléus A, Stenlund H, Hernell O, et al. Early vaccinations are not risk factors for celiac disease. Pediatrics. 2012;130:e63–e70.
  • Roberts SE, Williams JG, Meddings D, et al. Perinatal risk factors and coeliac disease in children and young adults: a record linkage study. Aliment Pharmacol Ther. 2009;29:222–231.
  • Decker E, Engelmann G, Findeisen A, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics. 2010;125:e1433–e1440.
  • Mårild K, Stephansson O, Montgomery S, et al. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology. 2012;142:39–45.
  • Lionetti E, Castellaneta S, Francavilla R, SIGENP Working Group of Weaning and CD Risk, et al. Mode of delivery and risk of celiac disease: risk of celiac disease and age at gluten introduction cohort study. J Pediatr. 2017;184:81–86.e2.
  • Dydensborg Sander S, Hansen AV, Størdal K, et al. Mode of delivery is not associated with celiac disease. Clin Epidemiol. 2018;10:323–332.
  • Emilsson L, Magnus MC, Størdal K. Perinatal risk factors for development of celiac disease in children, based on the prospective Norwegian Mother and Child Cohort Study. Clin Gastroenterol Hepatol. 2015;13:921–927.
  • Koletzko S, Lee HS, Beyerlein A, TEDDY Study Group, et al. Cesarean section on the risk of celiac disease in the offspring: the TEDDY study. J Pediatr Gastroenterol Nutr. 2018;66:417–424.
  • Lebwohl B, Green PH, Murray JA, et al. Season of birth in a nationwide cohort of coeliac disease patients. Arch Dis Child. 2013;98:48–51.
  • Ivarsson A, Hernell O, Nyström L, et al. Children born in the summer have increased risk for coeliac disease. J Epidemiol Community Health. 2003;57:36–39.
  • Lewy H, Meirson H, Laron Z. Seasonality of birth month of children with celiac disease differs from that in the general population and between sexes and is linked to family history and environmental factors. J Pediatr Gastroenterol Nutr. 2009;48:181–185.
  • Daniel S, Kalansky A, Tsur A, et al. Seasonality of birth affects paediatric coeliac disease. Acta Paediatr. 2019;108:529–534.
  • Andersen R, Mølgaard C, Skovgaard LT, et al. Teenage girls and elderly women living in northern Europe have low winter vitamin D status. Eur J Clin Nutr. 2005;59:533–541.
  • Fisman D. Seasonality of viral infections: mechanisms and unknowns. Clin Microbiol Infect. 2012;18:946–954.
  • Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol. 2017;17:21–29.
  • Namatovu F, Lindkvist M, Olsson C, et al. Season and region of birth as risk factors for coeliac disease a key to the aetiology? Arch Dis Child. 2016;101:1114–1118.
  • Kuja-Halkola R, Lebwohl B, Halfvarson J, et al. Birth weight, sex, and celiac disease: a nationwide twin study. Clin Epidemiol. 2017;9:567–577.
  • Verdu EF, Galipeau HJ, Jabri B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2015;12:497–506.
  • Parmar A, Alakulppi N, Paavola-Sakki P, et al. Association study of FUT2 (rs601338) with celiac disease and inflammatory bowel disease in the Finnish population. Tissue Antigens. 2012;80:488–493.
  • Wacklin P, Mäkivuokko H, Alakulppi N, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS ONE. 2011;6:e20113.
  • Trynka G, Hunt KA, Bockett NA, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011;43:1193–1201.
  • Pozo-Rubio T, de Palma G, Mujico JR, et al. Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease; the PROFICEL study. Nutr Hosp. 2013;28:464–473.
  • De Palma G, Capilla A, Nova E, et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS ONE. 2012;7:e30791.
  • Olivares M, Neef A, Castillejo G, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64:406–417.
  • Sellitto M, Bai G, Serena G, et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE. 2012;7:e33387.
  • Collado MC, Donat E, Ribes-Koninckx C, et al. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008;8:232.
  • Olivares M, Benítez-Páez A, de Palma G, et al. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: the PROFICEL study. Gut Microbes. 2018;9:551–558.
  • Olivares M, Walke AW, Capilla A, et al. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome. 2018;6:36.
  • Zamakhchari M, Wei G, Dewhirst F, et al. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One. 2011;6:e24455.
  • Fernandez-Feo M, Wei G, Blumenkranz G, et al. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Clin Microbiol Infect. 2013;19:E386–E394.
  • Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem. 2010;109:801–807.
  • Lindfors K, Blomqvist T, Juuti-Uusitalo K, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152:552–558.
  • De Palma G, Cinova J, Stepankova R, et al. Pivotal advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol. 2010;87:765–778.
  • De Palma G, Kamanova J, Cinova J, et al. Modulation of phenotypic and functional maturation of dendritic cells by intestinal bacteria and gliadin: relevance for celiac disease. J Leukoc Biol. 2012;92:1043–1054.
  • Jacobson ED, Prior JT, Faloon WW. Malabsorptive syndrome induced by neomycin: morphologic alterations in the jejunal mucosa. J Lab Clin Med. 1960;56:245–250.
  • Mårild K, Ludvigsson J, Sanz Y, et al. Antibiotic exposure in pregnancy and risk of coeliac disease in offspring: a cohort study. BMC Gastroenterol. 2014;14:75.
  • Stolte K. Schwere Durchfalle bei neuropathischen Kindern. Jahrb Kinderh. 1917;36:89–127.
  • Thompson MW. Heredity, maternal age, and birth order in the etiology of celiac disease. Am J Hum Genet. 1951;3:159–166.
  • Zingone F, West J, Crooks CJ, et al. Socioeconomic variation in the incidence of childhood coeliac disease in the UK. Arch Dis Child. 2015;100:466–473.
  • Kondrashova A, Mustalahti K, Kaukinen K, et al. Lower economic status and inferior hygienic environment may protect against celiac disease. Ann Med. 2008;40:223–231.
  • Olén O, Bihagen E, Rasmussen F, et al. Socioeconomic position and education in patients with coeliac disease. Dig Liver Dis. 2012;44:471–476.
  • Whyte LA, Kotecha S, Watkins WJ, et al. Coeliac disease is more common in children with high socio-economic status. Acta Paediatr. 2014;103:289–294.
  • Wingren CJ, Björck S, Lynch KF, et al. Coeliac disease in children: a social epidemiological study in Sweden. Acta Paediatr. 2012;101:185–191.
  • Ludvigsson JF, ABIS Study Group. Socio-economic characteristics in children with coeliac disease. Acta Paediatr. 2005;94:107–113.
  • Snook JA, Duyer L, Lee-Elliott C, et al. Adult coeliac disease and cigarette smoking. Gut. 1996;30:60–62.
  • Patel AH, Loftus EV, Jr, Murray JA, et al. Cigarette smoking and celiac sprue: a case-control study. Am J Gastroenterol. 2001;96:2388–2391.
  • Vazquez H, Smecuol E, Flores D, et al. Relation between cigarette smoking and celiac disease: evidence from a case-control study. Am J Gastroenterology. 2001;96:798–802.
  • Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.
  • Suman S, Williams EJ, Thomas PW, et al. Is the risk of adult coeliac disease causally related to cigarette exposure? Eur J Gastroenterol Hepatol. 2003;15:995–1000.
  • Sugiyama D, Nishimura K, Tamaki K, et al. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2010;69:70–81.
  • Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: cellular and molecular mechanisms. J Dent Res. 2012;91:142–149.
  • Tollerud DJ, Clark JW, Brown LM, et al. The effects of cigarette smoking on T-cell subsets. Am Rev Respir Dis. 1989;139:1446–1451.
  • Drago S, El Asmar R, Di Pierro M, et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41:408–419.
  • Sánchez E, De Palma G, Capilla A, et al. Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol. 2011;77:5316–5323.
  • Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol. 2012;10:1096–1100.
  • Porras M, Martin MT, Yang PC, et al. Correlation between cyclical epithelial barrier dysfunction and bacterial translocation in the relapses of intestinal inflammation. Inflamm Bowel Dis. 2006;12:843–852.
  • Vorobjova T, Raikkerus H, Kadaja L, et al. Circulating zonulin correlates with density of enteroviruses and tolerogenic dendritic cells in the small bowel mucosa of celiac disease patients. Dig Dis Sci. 2017;62:358–371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.