1,151
Views
0
CrossRef citations to date
0
Altmetric
Nephrology

Cerebral white matter burden is linked to cognitive function in patients undergoing hemodialysis

, , , , , , , , , , & show all
Article: 2310142 | Received 30 Jun 2023, Accepted 21 Jan 2024, Published online: 07 Feb 2024

References

  • Stevens LA, Viswanathan G, Weiner DE. Chronic kidney disease and end-stage renal disease in the elderly ­population: current prevalence, future projections, and clinical significance. Adv Chronic Kidney Dis. 2010;17(4):1–12. doi: 10.1053/j.ackd.2010.03.010.
  • Hannan M, Steffen A, Quinn L, et al. The assessment of cognitive function in older adult patients with chronic kidney disease: an integrative review. J Nephrol. 2019;32(2):211–230. doi: 10.1007/s40620-018-0494-2.
  • Vanderlinden JA, Ross-White A, Holden R, et al. Quantifying cognitive dysfunction across the spectrum of end-stage kidney disease: a systematic review and meta-analysis. Nephrology. 2019;24(1):5–16. doi: 10.1111/nep.13448.
  • Drew DA, Tighiouart H, Rollins J, et al. Evaluation of screening tests for cognitive impairment in patients receiving maintenance hemodialysis. J Am Soc Nephrol. 2020;31(4):855–864. doi: 10.1681/ASN.2019100988.
  • Yaffe K, Ackerson L, Kurella Tamura M, et al. Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study. J Am Geriatr Soc. 2010;58(2):338–345. doi: 10.1111/j.1532-5415.2009.02670.x.
  • Berger I, Wu S, Masson P, et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016;14(1):206. doi: 10.1186/s12916-016-0745-9.
  • Murray AM, Bell EJ, Tupper DE, et al. The brain in kidney disease (BRINK) cohort study: design and baseline cognitive function. Am J Kidney Dis. 2016;67(4):593–600. doi: 10.1053/j.ajkd.2015.11.008.
  • O'Lone E, Connors M, Masson P, et al. Cognition in people with End-Stage kidney disease treated with hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2016;67(6):925–935. doi: 10.1053/j.ajkd.2015.12.028.
  • Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology. 2013;81(11):977–983. doi: 10.1212/WNL.0b013e3182a43e45.
  • Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–356. doi: 10.2214/ajr.149.2.351.
  • Sudo FK, Alves CE, Alves GS, et al. White matter hyperintensities, executive function and global cognitive performance in vascular mild cognitive impairment. Arq Neuropsiquiatr. 2013;71(7):431–436. doi: 10.1590/0004-282X20130057.
  • Wieczorek J, Mizia-Stec K, Lasek-Bal A, et al. CHA2DS2-Vasc score, age and body mass index as the main risk factors of hyperintense brain lesions in ­asymptomatic patients with paroxysmal non-valvular atrial fibrillation. Int J Cardiol. 2016;215:476–481. doi: 10.1016/j.ijcard.2016.04.094.
  • Li J, Zhao Y, Mao J. Association between the extent of white matter damage and early cognitive impairment following acute ischemic stroke. Exp Ther Med. 2017;13(3):909–912. doi: 10.3892/etm.2017.4035.
  • Claus JJ, Coenen M, Staekenborg SS, et al. Cerebral white matter lesions have low impact on cognitive function in a large elderly memory clinic population. J Alzheimers Dis. 2018;63(3):1129–1139. doi: 10.3233/JAD-171111.
  • Kynast J, Lampe L, Luck T, et al. White matter hyperintensities associated with small vessel disease impair ­social cognition beside attention and memory. J Cereb Blood Flow Metab. 2018;38(6):996–1009. doi: 10.1177/0271678X17719380.
  • Fruhwirth V, Enzinger C, Fandler-Höfler S, et al. Baseline white matter hyperintensities affect the course of cognitive function after small vessel disease-related stroke: a prospective observational study. Eur J Neurol. 2021;28(2):401–410. doi: 10.1111/ene.14593.
  • Agarwal P, Panda AK, Jena S, et al. Correlation of cerebral atrophy and white matter hyperintensity burden in MRI with clinical cognitive decline. Siriraj Med J. 2022;74(5):323–329. doi: 10.33192/Smj.2022.39.
  • Odagiri G, Sugawara N, Kikuchi A, et al. Cognitive function among hemodialysis patients in Japan. Ann Gen Psychiatry. 2011;10(1):20. doi: 10.1186/1744-859X-10-20.
  • Jung S, Lee YK, Choi SR, et al. Relationship between cognitive impairment and depression in dialysis patients. Yonsei Med J. 2013;54(6):1447–1453. doi: 10.3349/ymj.2013.54.6.1447.
  • Fadili W, Al Adlouni A, Louhab N, et al. Prevalence and risk factors of cognitive dysfunction in chronic hemodialysis patients. Aging Ment Health. 2014;18(2):207–211. doi: 10.1080/13607863.2013.823375.
  • Tiffin-Richards FE, Costa AS, Holschbach B, et al. The montreal cognitive assessment (MoCA) - a sensitive screening instrument for detecting cognitive impairment in chronic hemodialysis patients. PLOS One. 2014;9(10):e106700. doi: 10.1371/journal.pone.0106700.
  • Lin KN, Wang PN, Liu CY, et al. Cutoff scores of the cognitive abilities screening instrument, chinese version in screening of dementia. Dement Geriatr Cogn Disord. 2002;14(4):176–182. doi: 10.1159/000066024.
  • Vasconcellos LF, Pereira JS, Adachi M, et al. Correlation of MRI visual scales with neuropsychological profile in mild cognitive impairment of parkinson’s disease. Parkinsons Dis. 2017;2017:7380102. doi: 10.1155/2017/7380102.
  • Miyazaki S, Kitamura M, Hayashida M, et al. Survival and cognitive deterioration in elderly patients undergoing hemodialysis. Geriatr Gerontol Int. 2023;23(2):111–116. doi: 10.1111/ggi.14531.
  • Wei CS, Yan CY, Yu XR, et al. Association between white matter hyperintensities and chronic kidney disease: a systematic review and Meta-Analysis. Front Med (Lausanne). 2022;9:770184. doi: 10.3389/fmed.2022.770184.
  • Lin YT, Wu PH, Lee HH, et al. Indole-3 acetic acid ­increased risk of impaired cognitive function in patients receiving hemodialysis. Neurotoxicology. 2019;73:85–91. doi: 10.1016/j.neuro.2019.02.019.
  • Makino T, Umegaki H, Suzuki Y, et al. Relationship ­between small cerebral white matter lesions and cognitive function in patients with alzheimer’s disease and amnestic mild cognitive impairment. Geriatr Gerontol Int. 2014;14(4):819–826. doi: 10.1111/ggi.12176.
  • Mimenza-Alvarado A, Aguilar-Navarro SG, Yeverino-Castro S, et al. Neuroimaging characteristics of small-vessel disease in older adults with normal cognition, mild cognitive impairment, and alzheimer disease. Dement Geriatr Cogn Dis Extra. 2018;8(2):199–206. doi: 10.1159/000488705.
  • Scheppach JB, Wu A, Gottesman RF, et al. Association of kidney function measures with signs of neurodegeneration and small vessel disease on brain magnetic resonance imaging: the atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis. 2023;81(3):261–269.e1. doi: 10.1053/j.ajkd.2022.07.013.
  • Garnier-Crussard A, Desestret V, Cotton F, et al. White matter hyperintensities in ageing: pathophysiology, associated cognitive disorders and prevention. Rev Med Interne. 2020;41(7):475–484. doi: 10.1016/j.revmed.2020.02.009.
  • Thorn LM, Shams S, Gordin D, et al. Clinical and MRI features of cerebral small-vessel disease in type 1 diabetes. Diabetes Care. 2019;42(2):327–330. doi: 10.2337/dc18-1302.
  • Debette S, Schilling S, Duperron MG, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 2019;76(1):81–94. doi: 10.1001/jamaneurol.2018.3122.
  • Thal DR, Attems J, Ewers M. Spreading of amyloid, tau, and microvascular pathology in alzheimer’s disease: findings from neuropathological and neuroimaging studies. J Alzheimers Dis. 2014;42(Suppl 4): s 421–9. doi: 10.3233/JAD-141461.
  • van Westen D, Lindqvist D, Blennow K, et al. Cerebral white matter lesions - associations with Aβ isoforms and amyloid PET. Sci Rep. 2016;6(1):20709. doi: 10.1038/srep20709.
  • Vogels SC, Emmelot-Vonk MH, Verhaar HJ, et al. The association of chronic kidney disease with brain lesions on MRI or CT: a systematic review. Maturitas. 2012;71(4):331–336. doi: 10.1016/j.maturitas.2012.01.008.
  • Shima H, Ishimura E, Naganuma T, et al. Decreased kidney function is a significant factor associated with silent cerebral infarction and periventricular hyperintensities. Kidney Blood Press Res. 2011;34(6):430–438. doi: 10.1159/000328722.
  • Li Q, Yang Y, Reis C, et al. Cerebral small vessel disease. Cell Transplant. 2018;27(12):1711–1722. doi: 10.1177/0963689718795148.
  • De Silva TM, Miller AA. Cerebral small vessel disease: targeting oxidative stress as a novel therapeutic strategy? Front Pharmacol. 2016;7:61. doi: 10.3389/fphar.2016.00061.
  • Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. doi: 10.1016/S1474-4422(10)70104-6.
  • de Leeuw FE, Barkhof F, Scheltens P. White matter ­lesions and hippocampal atrophy in Alzheimer’s disease. Neurology. 2004;62(2):310–312. doi: 10.1212/01.wnl.0000103289.03648.ad.
  • Muller M, Appelman APA, van der Graaf Y, et al. Brain atrophy and cognition: interaction with cerebrovascular pathology? Neurobiol Aging. 2011;32(5):885–893. doi: 10.1016/j.neurobiolaging.2009.05.005.
  • Carmichael O, Mungas D, Beckett L, et al. MRI predictors of cognitive change in a diverse and carefully characterized elderly population. Neurobiol Aging. 2012;33(1):83–95. doi: 10.1016/j.neurobiolaging.2010.01.021.
  • Birdsill AC, Koscik RL, Jonaitis EM, et al. Regional white matter hyperintensities: aging, Alzheimer’s disease risk, and cognitive function. Neurobiol Aging. 2014;35(4):769–776. doi: 10.1016/j.neurobiolaging.2013.10.072.
  • Smith CD, Johnson ES, Van Eldik LJ, et al. Peripheral (deep) but not periventricular MRI white matter hyperintensities are increased in clinical vascular dementia compared to Alzheimer’s disease. Brain Behav. 2016;6(3):e00438.
  • Prins ND, van Straaten EC, van Dijk EJ, et al. Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics. Neurology. 2004;62(9):1533–1539. doi: 10.1212/01.wnl.0000123264.40498.b6.
  • van Straaten EC, Fazekas F, Rostrup E, et al. Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke. 2006;37(3):836–840. doi: 10.1161/01.STR.0000202585.26325.74.
  • Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–972. doi: 10.1136/jnnp.55.10.967.
  • Gouw AA, van der Flier WM, van Straaten EC, et al. Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc Dis. 2008;25(3):247–253. doi: 10.1159/000113863.
  • Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in ­elderly persons. Biol Psychiatry. 2008;64(4):273–280. doi: 10.1016/j.biopsych.2008.03.024.
  • Griffanti L, Jenkinson M, Suri S, et al. Classification and characterization of periventricular and deep white matter hyperintensities on MRI: a study in older adults. Neuroimage. 2018;170:174–181. doi: 10.1016/j.neuroimage.2017.03.024.
  • De Groot JC, De Leeuw FE, Oudkerk M, et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol. 2002;52(3):335–341. doi: 10.1002/ana.10294.
  • van den Heuvel DM, ten Dam VH, de Craen AJ, et al. Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. J Neurol Neurosurg Psychiatry. 2006;77(2):149–153. doi: 10.1136/jnnp.2005.070193.
  • Silbert LC, Howieson DB, Dodge H, et al. Cognitive impairment risk: white matter hyperintensity progression matters. Neurology. 2009;73(2):120–125. doi: 10.1212/WNL.0b013e3181ad53fd.
  • Owen JP, Wang MB, Mukherjee P. Periventricular white matter is a nexus for network connectivity in the human brain. Brain Connect. 2016;6(7):548–557. doi: 10.1089/brain.2016.0431.
  • Darvesh S, Freedman M. Subcortical dementia: a neurobehavioral approach. Brain Cogn. 1996;31(2):230–249. doi: 10.1006/brcg.1996.0043.
  • Selden NR, Gitelman DR, Salamon-Murayama N, et al. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121(12):2249–2257. doi: 10.1093/brain/121.12.2249.
  • Guo H, Liu W, Li H, et al. Structural and functional brain changes in hemodialysis patients with End-Stage renal disease: DTI analysis results and ALFF analysis results. Int J Nephrol Renovasc Dis. 2021;14:77–86. doi: 10.2147/IJNRD.S295025.