1,423
Views
0
CrossRef citations to date
0
Altmetric
Gastroenterology

The role of molecular imaging in detecting fibrosis in Crohn’s disease

, , , , , , , , & show all
Article: 2313676 | Received 15 Oct 2023, Accepted 30 Jan 2024, Published online: 12 Feb 2024

References

  • D’Haens G, Rieder F, Feagan BG, et al. Challenges in the pathophysiology, diagnosis, and management of intestinal fibrosis in inflammatory bowel disease. Gastroenterology. 2022;162(1):1–12. doi: 10.1053/j.gastro.2019.05.072.
  • Latella G, Di Gregorio J, Flati V, et al. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50(1):53–65. doi: 10.3109/00365521.2014.968863.
  • Alfredsson J, Wick MJ. Mechanism of fibrosis and stricture formation in Crohn’s disease. Scand J Immunol. 2020;92(6):e12990. doi: 10.1111/sji.12990.
  • Lin X, Wang Y, Liu Z, et al. Intestinal strictures in crohn’s disease: a 2021 update. Therap Adv Gastroenterol. 2022;15:17562848221104951. doi: 10.1177/17562848221104951.
  • Wu X, Lin X, Tan J, et al. Cellular and molecular mechanisms of intestinal fibrosis. Gut Liver. 2023;17(3):360–374. doi: 10.5009/gnl220045.
  • Shaban N, Hoad CL, Naim I, et al. Imaging in inflammatory bowel disease: current and future perspectives. Frontline Gastroenterol. 2022;13(e1):e28–e34. doi: 10.1136/flgastro-2022-102117.
  • Waldner MJ, Rath T, Schürmann S, et al. Imaging of mucosal inflammation: current technological developments, clinical implications, and future perspectives. Front Immunol. 2017;8:1256. doi: 10.3389/fimmu.2017.01256.
  • Horsthuis K, Bipat S, Bennink RJ, et al. Inflammatory bowel disease diagnosed with US, MR, scintigraphy, and CT: meta-analysis of prospective studies. Radiology. 2008;247(1):64–79. doi: 10.1148/radiol.2471070611.
  • Rieder F, Latella G, Magro F, et al. European Crohn’s and Colitis Organisation topical review on prediction, diagnosis and management of fibrostenosing Crohn’s disease. J Crohns Colitis. 2016;10(8):873–885. doi: 10.1093/ecco-jcc/jjw055.
  • Gordon IO, Bettenworth D, Bokemeyer A, et al. International consensus to standardise histopathological scoring for small bowel strictures in Crohn’s disease. Gut. 2022;71(3):479–486. doi: 10.1136/gutjnl-2021-324374.
  • De Voogd F, Mookhoek A, Gecse K, et al. Systematic review: histological scoring of strictures in crohn’s disease. J Crohns Colitis. 2020;14(6):734–742. doi: 10.1093/ecco-jcc/jjz177.
  • Foti PV, Travali M, Farina R, et al. Can conventional and diffusion-weighted mr enterography biomarkers differentiate inflammatory from fibrotic strictures in crohn’s disease? Medicina. 2021;57(3):265. doi: 10.3390/medicina57030265.
  • Li X-h, Mao R, Huang S-y, et al. Ability of DWI to characterize bowel fibrosis depends on the degree of bowel inflammation. Eur Radiol. 2019;29(5):2465–2473. doi: 10.1007/s00330-018-5860-x.
  • Zhang M-C, Li X-H, Huang S-Y, et al. IVIM with fractional perfusion as a novel biomarker for detecting and grading intestinal fibrosis in Crohn’s disease. Eur Radiol. 2019;29(6):3069–3078. doi: 10.1007/s00330-018-5848-6.
  • Lu B, Lin J, Du J, et al. Native T 1 mapping and magnetization transfer imaging in grading bowel fibrosis in Crohn’s disease: a comparative animal study. Biosensors (Basel). 2021;11(9):302. doi: 10.3390/bios11090302.
  • Adler J, Swanson SD, Schmiedlin-Ren P, et al. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology. 2011;259(1):127–135. doi: 10.1148/radiol.10091648.
  • Dal Buono A, Faita F, Peyrin-Biroulet L, et al. Ultrasound elastography in inflammatory bowel diseases: a systematic review of accuracy compared with histopathological assessment. J Crohns Colitis. 2022;16(10):1637–1646. doi: 10.1093/ecco-jcc/jjac082.
  • Allocca M, Dal Buono A, D’Alessio S, et al. Relationships between intestinal ultrasound parameters and histopathologic findings in a prospective cohort of patients with crohn’s disease undergoing surgery. J of Ultrasound Medicine. 2023;42(8):1717–1728. doi: 10.1002/jum.16191.
  • Meng J, Mao Y, Zhou J, et al. Mesenteric abnormalities play an important role in grading intestinal fibrosis in patients with crohn’s disease: a computed tomography and clinical marker-based nomogram. Therap Adv Gastroenterol. 2022;15:17562848221122504. doi: 10.1177/17562848221122504.
  • Xu C, Jiang W, Wang L, et al. Intestinal ultrasound for differentiating fibrotic or inflammatory stenosis in Crohn’s disease: a systematic review and meta-analysis. J Crohns Colitis. 2022;16(9):1493–1504. doi: 10.1093/ecco-jcc/jjac052.
  • Allocca M, Fiorino G, Bonifacio C, et al. Noninvasive multimodal methods to differentiate inflamed vs fibrotic strictures in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2019;17(12):2397–2415. doi: 10.1016/j.cgh.2019.04.025.
  • Dillman JR, Swanson SD, Johnson LA, et al. Comparison of noncontrast MRI magnetization transfer and T2-weighted signal intensity ratios for detection of bowel wall fibrosis in a crohn’s disease animal model. J Magn Reson Imaging. 2015;42(3):801–810. doi: 10.1002/jmri.24815.
  • Li X-h, Mao R, Huang S-y, et al. Characterization of ­degree of intestinal fibrosis in patients with crohn disease by using magnetization transfer MR imaging. Radiology. 2018;287(2):494–503. doi: 10.1148/radiol.2017171221.
  • Meng J, Huang S, Sun C, et al. Comparison of three magnetization transfer ratio parameters for assessment of ­intestinal fibrosis in patients with Crohn’s disease. Korean J Radiol. 2020;21(3):290–297. doi: 10.3348/kjr.2019.0217.
  • Kim K-J, Lee Y, Park SH, et al. Diffusion-weighted MR enterography for evaluating crohn’s disease: how does it add diagnostically to conventional MR enterography? Inflamm Bowel Dis. 2015;21(1):101–109. doi: 10.1097/MIB.0000000000000222.
  • Tielbeek JA, Ziech ML, Li Z, et al. Evaluation of conventional, dynamic contrast enhanced and diffusion weighted MRI for quantitative Crohn’s disease assessment with histopathology of surgical specimens. Eur Radiol. 2014;24(3):619–629. doi: 10.1007/s00330-013-3015-7.
  • Rosenbaum DG, Rose ML, Solomon AB, et al. Longitudinal diffusion-weighted imaging changes in children with small bowel Crohn’s disease: preliminary experience. Abdom Imaging. 2015;40(5):1075–1080. doi: 10.1007/s00261-015-0403-2.
  • Kovanlikaya A, Beneck D, Rose M, et al. Quantitative apparent diffusion coefficient (ADC) values as an imaging biomarker for fibrosis in pediatric Crohn’s disease: preliminary experience. Abdom Imaging. 2015;40(5):1068–1074. doi: 10.1007/s00261-014-0247-1.
  • Rieder F, Bettenworth D, Ma C, et al. An expert consensus to standardise definitions, diagnosis and treatment targets for anti-fibrotic stricture therapies in Crohn’s disease. Aliment Pharmacol Ther. 2018;48(3):347–357. doi: 10.1111/apt.14853.
  • Zalev J, Richards LM, Clingman BA, et al. Opto-acoustic imaging of relative blood oxygen saturation and total hemoglobin for breast cancer diagnosis. J Biomed Opt. 2019;24(12):1–16. doi: 10.1117/1.JBO.24.12.121915.
  • Eriksson O, Laughlin M, Brom M, et al. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia. 2016;59(7):1340–1349. doi: 10.1007/s00125-016-3959-7.
  • Catalano O, Maccioni F, Lauri C, et al. Hybrid imaging in crohn’s disease: from SPECT/CT to PET/MR and new image interpretation criteria. AIMN)(IAR), Section of the Society of. 2017;62(1):40–55.
  • Groshar D, Bernstine H, Stern D, et al. PET/CT enterography in Crohn disease: correlation of disease activity on CT enterography with 18F-FDG uptake. J Nucl Med. 2010;51(7):1009–1014. doi: 10.2967/jnumed.109.073130.
  • Pellino G, Nicolai E, Catalano OA, et al. PET/MR versus PET/CT imaging: impact on the clinical management of small-bowel crohn’s disease. J Crohns Colitis. 2016;10(3):277–285. doi: 10.1093/ecco-jcc/jjv207.
  • Shyn PB, Mortele KJ, Britz-Cunningham SH, et al. Low-dose 18F-FDG PET/CT enterography: improving on CT enterography assessment of patients with Crohn disease. J Nucl Med. 2010;51(12):1841–1848. doi: 10.2967/jnumed.110.080796.
  • Singh AK, Kumar R, Gupta P, et al. FDG-PET–CT enterography helps determine clinical significance of suspected ileocecal thickening: a prospective study. Dig Dis Sci. 2021;66(5):1620–1630. doi: 10.1007/s10620-020-06361-9.
  • Ahmadi A, Li Q, Muller K, et al. Diagnostic value of noninvasive combined fluorine-18 labeled fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography enterography in active Crohn’s disease. Inflamm Bowel Dis. 2010;16(6):974–981. doi: 10.1002/ibd.21153.
  • Das CJ, Makharia G, Kumar R, et al. PET-CT enteroclysis: a new technique for evaluation of inflammatory diseases of the intestine. Eur J Nucl Med Mol Imaging. 2007;34(12):2106–2114. doi: 10.1007/s00259-007-0525-z.
  • Glaudemans AW, de Vries EF, Galli F, et al. The use of F-FDG-PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin Dev Immunol. 2013;2013:623036–623014. doi: 10.1155/2013/623036.
  • Lapp RT, Spier BJ, Perlman SB, et al. Clinical utility of positron emission tomography/computed tomography in inflammatory bowel disease. Mol Imaging Biol. 2011;13(3):573–576. doi: 10.1007/s11307-010-0367-0.
  • Spier BJ, Perlman SB, Jaskowiak CJ, et al. PET/CT in the evaluation of inflammatory bowel disease: studies in patients before and after treatment. Mol Imaging Biol. 2010;12(1):85–88. doi: 10.1007/s11307-009-0232-1.
  • Catalano OA, Wu V, Mahmood U, et al. Diagnostic performance of PET/MR in the evaluation of active inflammation in Crohn disease. Am J Nucl Med Mol Imaging. 2018;8(1):62.
  • Catalano OA, Gee MS, Nicolai E, et al. Evaluation of quantitative PET/MR enterography biomarkers for discrimination of inflammatory strictures from fibrotic strictures in Crohn disease. Radiology. 2016;278(3):792–800. doi: 10.1148/radiol.2015150566.
  • Maccioni F, Patak MA, Signore A, et al. New frontiers of MRI in Crohn’s disease: motility imaging, diffusion-weighted imaging, perfusion MRI, MR spectroscopy, molecular imaging, and hybrid imaging (PET/MRI). Abdom Imaging. 2012;37(6):974–982. doi: 10.1007/s00261-012-9890-6.
  • Bhattaru A, Borja A, Zhang V, et al. FDG-PET/CT as the superior imaging modality for inflammatory bowel disease. JNucl Med. 2020;61(1):1159.
  • Perlman SB, Hall BS, Reichelderfer M, editors. PET/CT imaging of inflammatory bowel disease. Semin Nucl Med. 2013;43(6):420–426. doi: 10.1053/j.semnuclmed.2013.06.006.
  • Borhani A, Afyouni S, Attari MMA, et al. PET/MR ­enterography in inflammatory bowel disease: a review of applications and technical considerations. Eur J Radiol. 2023;163:110846. doi: 10.1016/j.ejrad.2023.110846.
  • Domachevsky L, Leibovitzh H, Avni-Biron I, et al. Correlation of 18F-FDG PET/MRE metrics with inflammatory biomarkers in patients with Crohn’s disease: a pilot study. Contrast Media Mol Imaging. 2017;2017:7167292–7167299. doi: 10.1155/2017/7167292.
  • Li Y, Langhorst J, Koch AK, et al. Assessment of ileocolonic inflammation in Crohn’s disease: which surrogate marker is better—MaRIA, Clermont, or PET/MR index? Initial results of a feasibility trial. J Nucl Med. 2019;60(6):851–857. doi: 10.2967/jnumed.118.216937.
  • Freitag MT, Fenchel M, Bäumer P, et al. Improved clinical workflow for simultaneous whole-body PET/MRI ­using high-resolution CAIPIRINHA-accelerated MR-based attenuation correction. Eur J Radiol. 2017;96:12–20. doi: 10.1016/j.ejrad.2017.09.007.
  • Kusmirek JE, Magnusson JD, Perlman SB. Current applications for nuclear medicine imaging in pulmonary disease. Curr Pulmonol Rep. 2020;9(3):82–95. doi: 10.1007/s13665-020-00251-1.
  • Désogère P, Montesi SB, Caravan P. Molecular probes for imaging fibrosis and fibrogenesis. Chemistry. 2019;25(5):1128–1141. doi: 10.1002/chem.201801578.
  • Luo Q, Shao N, Zhang A-C, et al. Smart biomimetic nanozymes for precise molecular imaging: application and challenges. Pharmaceuticals. 2023;16(2):249. doi: 10.3390/ph16020249.
  • Wang J, Lin S, Brown JM, et al. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev. 2021;302(1):211–227. doi: 10.1111/imr.12974.
  • Chen W, Lu C, Hirota C, et al. Smooth muscle hyperplasia/hypertrophy is the most prominent histological change in Crohn’s fibrostenosing bowel strictures: a semiquantitative analysis by using a novel histological grading scheme. J Crohns Colitis. 2017;11(1):92–104. doi: 10.1093/ecco-jcc/jjw126.
  • Welz L, Aden K. Fibrosis and inflammation in inflammatory bowel disease—more than 2 sides of the same coin? Gastroenterology. 2023;164(1):19–21. doi: 10.1053/j.gastro.2022.10.024.
  • Li Z, Lu B, Lin J, et al. A type I collagen-targeted mr imaging probe for staging fibrosis in crohn’s disease. Front Mol Biosci. 2021;8:762355. doi: 10.3389/fmolb.2021.762355.
  • Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001;2(1):343–372. doi: 10.1146/annurev.genom.2.1.343.
  • Li C, Kuemmerle JF. Mechanisms that mediate the ­development of fibrosis in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20(7):1250–1258. doi: 10.1097/MIB.0000000000000043.
  • Johnson LA, Rodansky ES, Sauder KL, et al. Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflamm Bowel Dis. 2013;19(5):891–903. doi: 10.1097/MIB.0b013e3182813297.
  • Sofias AM, De Lorenzi F, Peña Q, et al. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev. 2021;175:113831. doi: 10.1016/j.addr.2021.113831.
  • Santacroce G, Lenti MV, Di Sabatino A. Therapeutic targeting of intestinal fibrosis in crohn’s disease. Cells. 2022;11(3):429. doi: 10.3390/cells11030429.
  • Poggioli G, Pierangeli F, Laureti S, et al. Indication and type of surgery in Crohn’s disease. Aliment Pharmacol Ther. 2002;16 Suppl 4(s4):59–64. doi: 10.1046/j.1365-2036.16.s4.9.x.
  • Farmer RG, Hawk WA, TurnbullJrRB. Indications for surgery in Crohn’s disease: analysis of 500 cases. Gastroenterology. 1976;71(2):245–250. doi: 10.1016/S0016-5085(76)80196-5.
  • James S, Tyrrell-Price J. Commentary: PET/MR versus PET/CT imaging: impact on the clinical management of small-bowel crohn’s disease. Front Med. 2017;4:59. doi: 10.3389/fmed.2017.00059.
  • Colombel J-F, D’haens G, Lee W-J, et al. Outcomes and strategies to support a treat-to-target approach in ­inflammatory bowel disease: a systematic review. J Crohns Colitis. 2020;14(2):254–266. doi: 10.1093/ecco-jcc/jjz131.
  • Saji H. In vivo molecular imaging. Biol Pharm Bull. 2017;40(10):1605–1615. doi: 10.1248/bpb.b17-00505.
  • Noriega-Álvarez E, Martín-Comín J, editors. Molecular imaging in inflammatory bowel disease. Semin Nucl Med. 2023. doi: 10.1053/j.semnuclmed.2022.12.003.
  • Le Fur M, Zhou IY, Catalano O, et al. Toward molecular imaging of intestinal pathology. Inflamm Bowel Dis. 2020;26(10):1470–1484. doi: 10.1093/ibd/izaa213.
  • Rieder F, de Bruyn JR, Pham BT, et al. Results of the 4th scientific workshop of the ECCO (group II): markers of intestinal fibrosis in inflammatory bowel disease. J Crohns Colitis. 2014;8(10):1166–1178. doi: 10.1016/j.crohns.2014.03.009.
  • Latella G, Rieder F. Intestinal fibrosis: ready to be ­reversed. Curr Opin Gastroenterol. 2017;33(4):239–245. doi: 10.1097/MOG.0000000000000363.
  • Scharitzer M, Macher-Beer A, Mang T, et al. Evaluation of intestinal fibrosis with 68Ga-FAPI PET/MR enterography in Crohn disease. Radiology. 2023;307(3):e222389. doi: 10.1148/radiol.222389.
  • Lenze F, Wessling J, Bremer J, et al. Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: prospective comparison of 18F-FDG-PET/CT, MR-enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm Bowel Dis. 2012;18(12):2252–2260. doi: 10.1002/ibd.22930.
  • Alyami AS. The role of radiomics in fibrosis Crohn’s disease: a review. Diagnostics. 2023;13(9):1623. doi: 10.3390/diagnostics13091623.
  • Meng J, Luo Z, Chen Z, et al. Intestinal fibrosis classification in patients with Crohn’s disease using CT enterography–based deep learning: comparisons with radiomics and radiologists. Eur Radiol. 2022;32(12):8692–8705. doi: 10.1007/s00330-022-08842-z.
  • Lin S, Lin X, Li X, et al. Making qualitative intestinal stricture quantitative: embracing radiomics in IBD. InflammBowel Dis. 2020;26(5):743–745. doi: 10.1093/ibd/izz197.
  • Stidham RW, Enchakalody B, Waljee AK, et al. Assessing small bowel stricturing and morphology in Crohn’s disease using semi-automated image analysis. Inflamm Bowel Dis. 2020;26(5):734–742. doi: 10.1093/ibd/izz196.
  • Mori M, Passoni P, Incerti E, et al. Training and validation of a robust PET radiomic-based index to predict distant-relapse-free-survival after radio-chemotherapy for locally advanced pancreatic cancer. Radiother Oncol. 2020;153:258–264. doi: 10.1016/j.radonc.2020.07.003.